JPH0583874B2 - - Google Patents

Info

Publication number
JPH0583874B2
JPH0583874B2 JP60076804A JP7680485A JPH0583874B2 JP H0583874 B2 JPH0583874 B2 JP H0583874B2 JP 60076804 A JP60076804 A JP 60076804A JP 7680485 A JP7680485 A JP 7680485A JP H0583874 B2 JPH0583874 B2 JP H0583874B2
Authority
JP
Japan
Prior art keywords
point
terminal
orientation
distance
terminals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP60076804A
Other languages
Japanese (ja)
Other versions
JPS61235767A (en
Inventor
Kazuhiko Kudo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP7680485A priority Critical patent/JPS61235767A/en
Publication of JPS61235767A publication Critical patent/JPS61235767A/en
Publication of JPH0583874B2 publication Critical patent/JPH0583874B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Locating Faults (AREA)
  • Emergency Protection Circuit Devices (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は3端子より成る送電線に於いて、事故
点迄の距離を標定する故障点標定装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a fault point locating device for locating the distance to a fault point in a power transmission line consisting of three terminals.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

第2図に示すような電気所A,B,Cがある系
統に於いて故障が発生した場合、電気所A,B及
びCから故障点までの距離を知る事は、その後の
不良箇所の修復作業等のために必要であり不可欠
なものである。
If a failure occurs in a system with electric stations A, B, and C as shown in Figure 2, knowing the distance from electric stations A, B, and C to the point of failure is important for subsequent repair of the defective point. It is necessary and essential for work etc.

この為従来より送電線の故障点標定方式として
サージ受信方式、パルスレーダ方式、あるはイン
ピーダンス測定方式等がある。前二者は高価な通
信装置、あるいは送電線への信号結合装置を必要
とする。
For this reason, conventional fault point locating methods for power transmission lines include surge reception methods, pulse radar methods, and impedance measurement methods. The first two require expensive communication equipment or signal coupling equipment to power lines.

これに対し後者のインピーダンス測定方式は、
電圧変成器及び変流器より得られる電圧、電流に
より標定するもので、入力量を得る為に新たな設
備を必要としない。この為、最近インピーダンス
測定方式が特に注目されており、例えば特公昭58
−29471号「事故点判別方式」等が提案されてい
る。
On the other hand, the latter impedance measurement method is
This method uses the voltage and current obtained from voltage transformers and current transformers to locate, and does not require new equipment to obtain input quantities. For this reason, impedance measurement methods have recently attracted particular attention, such as the
−29471 “Accident Point Discrimination Method” etc. have been proposed.

今、説明を簡単にする為、点F1において3相
短絡を想定すると、第3図の等価回路が成立す
る。尚、以下の説明に於いて電気量はすべてベク
トル量である。
Now, to simplify the explanation, assuming a three-phase short circuit at point F1 , the equivalent circuit shown in FIG. 3 is established. In the following explanation, all electric quantities are vector quantities.

第3図の等価回路に於いて、EA=EB=ECとす
ると、回路を流れる電流は故障分のみで正相電流
である。又、故障点にはアーク等による故障点抵
抗が存在しうるが簡単の為、完全短絡とし省略す
る。
In the equivalent circuit of FIG. 3, if E A = E B = E C , the current flowing through the circuit is only the fault component and is a positive sequence current. Also, there may be a fault point resistance due to an arc or the like at the fault point, but for the sake of simplicity, this will be omitted as a complete short circuit.

ここで故障点には各端から流入する故障電流
IA、IB、ICが流れる事になる。又、電気所Aより
故障点F1までのインピーダンスZA1、故障点F1
ら分岐点JまでのインピーダンスZA2及び電気所
B,Cから分岐点J迄のインピーダンスをZB1
ZC1とする。今、電気所Aにおける電圧、電流の
関係を式で表わせば VA=VA1・IA ……(1) となる。これからインピーダンスZAを求めると ZA=VA/IA=ZA1・IA/IA ……(2) この(2)式を単位長当りのインピーダンスZaで割
り算する事により故障点までの距離Xaを算出す
る事が可能となり標定方法は特公昭58−29471号
の発明を含む従来のインピーダンス測定方式に準
ずるものである。
Here, the fault current flows into the fault point from each end.
I A , I B , and I C will flow. Also, the impedance from electrical station A to fault point F 1 is Z A1 , the impedance from fault point F 1 to branch point J is Z A2 , and the impedance from electrical stations B and C to branch point J is Z B1 ,
Let Z C1 . Now, if we express the relationship between voltage and current at electric station A using the formula, it becomes V A = V A1 · I A ...(1). Calculating the impedance Z A from this, Z A = V A / I A = Z A1 · I A / I A ... (2) By dividing this formula (2) by the impedance Z a per unit length, it is possible to reach the failure point. It is possible to calculate the distance X a of , and the location method is based on the conventional impedance measurement method including the invention of Japanese Patent Publication No. 58-29471.

電気所B,CからみたインピーダンスZB,ZC
求めると VB=ZB1IB+ZA2(IB+IC) ……(3) ZB=VB/IB=ZB1+ZA2(1+IC/IB) ……(4) VC=ZC1・IC+ZA2(IC+IB) ……(5) ZC=VC/IC=ZC1+ZA2(1+IB/IC ……(6) となり、それぞれインピーダンスあるいは単位長
当りのインピーダンスで割り、距離Xb、Xcを計
測するが、インピーダンスZAあるいは距離Xa
比べ誤差項が存在する。
Determining the impedances Z B and Z C seen from electric stations B and C, V B = Z B1 I B + Z A2 (I B + I C ) ...(3) Z B = V B / I B = Z B1 + Z A2 ( 1+I C /I B ) ...(4) V C =Z C1・I C +Z A2 (I C +I B ) ...(5) Z C =V C /I C =Z C1 +Z A2 (1+I B /I C ...(6), and the distances X b and X c are measured by dividing by the impedance or impedance per unit length, but there is an error term compared to the impedance Z A or the distance X a .

又、故障点が第2図の点F2,F3を考えると点
F2ではインピーダンスZA,ZC、点F3ではインピ
ーダンスZA,ZBが誤差項を持つ事となり、正確
に事故点まで標定しうる端子は3端子の標定値の
うち1端子のみと言う事になる。
Also, considering that the failure point is points F 2 and F 3 in Figure 2, the point is
At F 2 , the impedances Z A and Z C and at point F 3 , the impedances Z A and Z B have error terms, so only one terminal can accurately locate the fault point among the three terminals. It's going to happen.

〔発明の目的〕[Purpose of the invention]

本発明は上記に鑑み、商用周波電圧、電流を用
いて故障点標定を行う装置の標定値をある電気所
1個所、あるいは複数箇所に収納し、例えば第2
図の電気所A又は電気所B,Cにも集めて、最終
的な故障点標定を行ない、故障点までの正確な距
離標定をさせる為の故障点標定装置を提供する事
を目的とする。
In view of the above, the present invention stores the location values of a device for locating fault points using commercial frequency voltage and current in one or multiple locations at an electrical station, and
The purpose of the present invention is to provide a fault point locating device that can be assembled at electrical station A or electrical stations B and C in the figure to perform final fault location and accurately determine the distance to the fault point.

〔発明の概要〕[Summary of the invention]

本発明は次の原理に基づくものである。いま、
電気所Aにおいて、自端の標定値Xa、電気所B,
Cの標定値Xb、Xcが得られたとすると、各電気
所からの分岐点までの距離は既知である事より分
岐点以内の標定をしている電気所が誤差項を含ま
ない正確な標定をしている結果となる。
The present invention is based on the following principle. now,
At electric station A, the standard value X a of its own end, electric station B,
Assuming that the orientation values X b and X c of C are obtained, since the distance from each electrical station to the branch point is known, the electrical station that is located within the branch point can be accurately determined without including error terms. This results in orientation.

即ち、電気所Aでは(2)式、電気所B及びCでは
(2)式の添字AをB及びCに代えた式を使用する事
により、各電気所の標定値(距離)を電気所Aの
標定値Xa、電気所Bの標定値Xb、電気所Cの標
定値Xcとし、各電気所から分岐点までの距離を
la、lb、lcとすれば、 Xa<la、Xb>lb、Xc>lc ……(7) Xa>la、Xb<lb、Xc>lc ……(8) Xa>la、Xb>lb、Xc<lc ……(9) となる。ここで(7)式、(8)式及び(9)式のいずれかが
成立している場合、分岐点以内と標定している電
気所の標定値を最終的な標定結果とするものであ
る。又、分岐点近傍あるいは以遠の事故に対して
は前述の(7)式、(8)式及び(9)式だけで判定する事は
おたがいに誤差を含んだ値となる可能性がある。
つまり、(7)式、(8)式及び(9)式いずれも成立しない
場合例えば1端子休止等で残り2端子の標定値が
分岐点以遠の標定をしているケース及び対向端近
傍の事故では、自区間の事故が、隣回線の事故で
あるか識別が不可能である。
That is, equation (2) is used at electric station A, and at electric stations B and C.
By using the equation in which the subscript A in equation (2) is replaced by B and C, the orientation value (distance) of each electrical station can be calculated as the orientation value X a of electrical station A, the orientation value X b of electrical station B, and the electrical Let the location value of station C be X c , and the distance from each electric station to the branch point is
If l a , l b , l c , then X a < l a , X b > l b , X c > l c ...(7) X a > l a , X b < l b , X c > l c ……(8) X a > l a , X b > l b , X c < l c …(9). If any of equations (7), (8), and (9) hold true, the location value of the electrical station located within the branch point will be the final location result. . Furthermore, for accidents near or beyond the branch point, if equations (7), (8), and (9) are used alone to judge accidents, each of them may result in values containing errors.
In other words, if none of equations (7), (8), and (9) hold true, for example, if one terminal is suspended, the orientation values of the remaining two terminals are located beyond the branch point, or an accident occurs near the opposite end. In this case, it is impossible to identify whether an accident in one's own section is an accident on an adjacent line.

そこで、標定値が分岐点以遠の標定となつた2
端子の標定値を用い残り1端子の標定値を算出す
るものである。つまり、第2図のF3点の3相事
故を想定し、A,B端の標定値をXa、XBとする
と Xa=VA/Za・IA ……(10) Xb=VB/Zb・IB ……(11) となる。Za,Zbは単位長当りのインピーダンスを
示す。又、分岐点電圧はVJ=VA−IAZa・laより
VA=VJ+IAZa・la、VB=VJ+IBZb・lb(10)式、 (11)
式より Xa=VJ+IAZa・la/Za・IA=VJ/Za・IA+la ……(12) Xb=VJ+IBZb・lb/Zb・IB=VJ/Zb・IB+lb ……(13) 又、 VJ=(IA+IB)・ZC(lc−Xa) ……(14) であり、lc−Xcが判明すれば良い。
Therefore, the orientation value became the orientation beyond the branch point.
The orientation value of the remaining terminal is calculated using the orientation value of the terminal. In other words, assuming a three -phase accident at point F in Figure 2, and assuming the orientation values of ends A and B to be X a and X B , X a = V A /Z a・I A ...(10) X b =V B /Z b・I B ...(11). Z a and Z b indicate impedance per unit length. Also, the branch point voltage is from V J = V A −I A Z a・l a
V A = V J + I A Z a・l a , V B = V J + I B Z b・l b Equation (10), (11)
From the formula , X a = V J + I A Z a・l a /Z a・I A = V J / Z a・I A + l a ……(12 ) b・I B =V J /Z b・I B +l b ...(13) Also, V J = (I A + I B )・Z C (l c −X a ) ...(14) and l All you need to do is find out c −X c .

Xa−la=VJ/Za・IA ……(22) Xb−lb=VJ/Zb・IB ……(23) lc−Xc=VJ/(IA+IB)・ZC ……(24) よりZa=Zb=Zc=Zとすると(22)及び(23)式
を合成し、変形すれば、 (Xa−la)×(Xa−la)/(Xa−la)+(Xb−lb)=VJ
/Z・IA×VJ/Z・IA/VJ/Z・IA+VJ/Z・IB=1/
IA・IB・VJ/Z/(1/IA+1/IB)=VJ/(IA+IB
・Z=lc−Xc……(15) (15)式の如くなり分岐点からの距離lcが判る事よ
りC端からの故障点までの距離lc−(lc−Xc)を求
める事が可能となる。
X a −l a =V J /Z a・I A ...(22) X b −l b =V J /Z b・I B ...(23) l c −X c =V J /(I A +I B )・Z C ... (24) If Z a = Z b = Z c = Z, then by combining and transforming equations (22) and (23), (X a −l a )×(X a −l a )/(X a −l a )+(X b −l b )=V J
/Z・I A ×V J /Z・I A /V J /Z・I A +V J /Z・I B =1/
I A・I B・V J /Z/(1/I A +1/I B )=V J /(I A +I B )
・Z=l c −X c ……(15) Since the distance l c from the branch point is known as shown in equation (15), the distance from the C end to the failure point l c − (l c −X c ) It becomes possible to find.

尚(15)式の値が負となつた場合はC端背後の事故
という事になり区間外判定機能も備える事が可能
である。
Note that if the value of equation (15) is negative, it means that the accident occurred behind the C end, and it is possible to provide an out-of-section determination function.

又、事故F1の時は電気所B,C、又は事故F2
の時は電気所A,Cの標定値を用いて演算する事
が可能である。
In addition, in the case of accident F 1 , electric stations B and C or accident F 2
In this case, it is possible to calculate using the orientation values of electric stations A and C.

従つて、3端子系統の故障点標定装置に於て、
3端子の全ての標定値が得られない場合、つまり
1端子休止等のケースでも残り2端子の標定値を
得る事が出来る。
Therefore, in a fault point locating device for a three-terminal system,
Even if the orientation values of all three terminals cannot be obtained, that is, in a case where one terminal is suspended, the orientation values of the remaining two terminals can be obtained.

但し、2端子の標定値が分岐点以遠と標定して
いてもそれだけでは故障点は不明であるが、各端
からの分岐点までの距離あるいはインピーダンス
が判る為、どの2端子の標定値を用いて演算して
いるかによつて故障点を識別する事が出来る事に
なる。
However, even if the orientation values of the two terminals are located beyond the branch point, the failure point cannot be determined by this alone, but since the distance or impedance from each end to the junction point can be determined, which two terminal orientation values should be used? The point of failure can be identified by calculating whether the

〔発明の実施例〕[Embodiments of the invention]

次に、本発明による故障点標定装置の一実施例
のハードウエアを第1図に示す。
Next, FIG. 1 shows the hardware of an embodiment of the failure point locating device according to the present invention.

第1図に於いて1は対象となる送電線、2は変
成器、3は変流器、4及び5は入力変換回路、6
はアナログデジタル変換回路(以後AD変換回路
と称す)7は演算回路、8は演算回路7の出力7
a及び他の2端からの測定値8a、8bを受信する
受信装置であり、その出力8c,8d,8eを演
算回路9に入力し、前述の(7)式、(8)式、(9)式、
(22)式、(23)式、(15)式等の演算を行なう演算回
路である。又、10は演算回路9の演算結果に基
づいて距離を表示する表示装置である。入力変換
回路4は変成器2の出力を適当なレベルに変換
し、更に高域の周波数成分を除去するための前置
フイルタを経て出力を生じる。これらは通常用い
られる手法であり特に内部構成図は掲げない。入
力変換器5もほぼ同様であり変流器3の2次電流
を適当な電圧レベルに変換し前置フイルタを経て
出力を生ずる。AD変換回路6は入力を一定間隔
でサンプリングしAD変換してデジタル出力を演
算回路7へ印加する。
In Figure 1, 1 is the target power transmission line, 2 is a transformer, 3 is a current transformer, 4 and 5 are input conversion circuits, and 6
is an analog-digital conversion circuit (hereinafter referred to as AD conversion circuit) 7 is an arithmetic circuit, 8 is an output 7 of the arithmetic circuit 7
It is a receiving device that receives measured values 8a and 8b from the terminal a and the other two terminals, and inputs the outputs 8c, 8d, 8e to the arithmetic circuit 9, and calculates the above-mentioned equations (7), (8), and (9). )formula,
This is an arithmetic circuit that performs calculations such as equations (22), (23), and (15). Further, 10 is a display device that displays the distance based on the calculation result of the calculation circuit 9. The input conversion circuit 4 converts the output of the transformer 2 to an appropriate level, and generates an output through a pre-filter for removing high frequency components. These are commonly used methods and no internal configuration diagrams are shown. The input converter 5 is substantially similar and converts the secondary current of the current transformer 3 to an appropriate voltage level and produces an output via a prefilter. The AD conversion circuit 6 samples the input at regular intervals, performs AD conversion, and applies a digital output to the arithmetic circuit 7.

演算回路7は特公昭58−29471号の発明を含む
ものであり、その出力7aは受信装置8へ印加さ
れる。同様に他の2端からも伝送回線等を介して
その標定値8a、8bが受信装置8へ印加され演算
装置9は前述の演算を実施しており故障標定と判
定した時のみその結果を表示装置10に出力して
表示させる。ここで、他端へ伝送する標定値のデ
ータとしては、標定値Xのデータでも、(1−X)
のデータでもよいことは当然である。
The arithmetic circuit 7 includes the invention disclosed in Japanese Patent Publication No. 58-29471, and its output 7a is applied to the receiving device 8. Similarly, the orientation values 8a and 8b are applied from the other two ends to the receiving device 8 via the transmission line, etc., and the arithmetic device 9 performs the above-mentioned calculation, and displays the result only when it is determined to be a faulty location. It is output to the device 10 and displayed. Here, as the location value data to be transmitted to the other end, even if it is the location value X data, (1-X)
Of course, the data may also be used.

以上の実施例の説明において1端子のみに設置
する場合を示したが他の端子も第1図の受信装置
8に送信機能を有する装置構成にする事により各
端で標定演算する事が可能であるし、全く関係の
ない受信箇所に各端子より送信し、そこで標定値
を知り、演算して距離を求める様にする事も可能
である。
In the above description of the embodiment, the case where only one terminal is installed is shown, but the other terminals can also be used to perform orientation calculations at each end by configuring the receiving device 8 in FIG. 1 to have a transmitting function. Alternatively, it is also possible to transmit from each terminal to a completely unrelated reception point, learn the orientation value there, and calculate the distance.

本発明に於いては一端の情報を他端に伝送する
伝送装置を必要とするが現在では遠隔計測あるい
は、系統制御・保護に各種伝送装置が適用されて
おり、同一の装置を本発明にも容易に適用でき
る。
Although the present invention requires a transmission device to transmit information from one end to the other end, various kinds of transmission devices are currently being applied for remote measurement or system control/protection, and the same device can be used in the present invention. Easy to apply.

〔発明の効果〕〔Effect of the invention〕

以上の内容より、各端の電圧・電流情報を1端
に集めて標定する必要がなく、各端の標定値が得
られれば故障点までの標定値を求める事が可能で
あり、従来提案されている方式より簡素な故障点
標定装置が提供できる。
From the above, it is not necessary to gather voltage and current information at each end at one end for location, and if the location values for each end are obtained, it is possible to determine the location value up to the failure point, which was not previously proposed. It is possible to provide a simpler failure point locating device than the conventional method.

又、3端子系統の各端の故障点標定装置の標定
値のみでは、分岐点以遠の事故に対し誤差が含ま
れる為各端の標定値を用いて故障点までの正確な
距離標定が可能となる。
In addition, using only the positioning values of the failure point locating device at each end of a three-terminal system will contain errors for accidents beyond the branching point, so it is not possible to accurately locate the distance to the failure point using the positioning values at each end. Become.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す故障点標定装
置の構成図、第2図は3端子1回線の送電線系統
説明図、第3図は3相短絡故障における正相分回
路の説明図である。 1……送電線、2……変成器、3……変流器、
4,5……入力変換回路、6……A/D変換回
路、7,9……演算回路、10……表示回路。
Fig. 1 is a configuration diagram of a fault point locating device showing an embodiment of the present invention, Fig. 2 is an explanatory diagram of a power transmission line system with three terminals and one circuit, and Fig. 3 is an explanation of a positive phase branch circuit in a three-phase short circuit fault. It is a diagram. 1...Power line, 2...Transformer, 3...Current transformer,
4, 5...Input conversion circuit, 6...A/D conversion circuit, 7, 9...Arithmetic circuit, 10...Display circuit.

Claims (1)

【特許請求の範囲】 1 3端子送電線の故障点を標定する故障点標定
装置に於いて、 各端子それぞれが自端子の電圧及び電流を計測
し、この自端子の電圧及び電流と予め設定される
送電線の線路定数とから故障点までの距離の標定
値を算出する第一の手段と、 この第一の手段で算出した各端子の標定値を用
い、各端子の標定値と各端子から分岐点までの距
離とをそれぞれ比較し、3端子のうちのいずれか
一つの端子の標定値が分岐点までの距離以内のと
き当該端子の標定値を出力する比較手段と、 この比較手段で3端子のうちのいずれか一つの
端子の標定値が分岐点までの距離以内とならなか
つた場合あるいは1端子が休止の場合、分岐点以
遠の標定値を算出した2端子の標定値を用い残り
の1端子の標定値を算出し出力する演算手段とを
具備することを特徴とする故障点標定装置。
[Claims] 1. In a fault point locating device for locating a fault point in a three-terminal power transmission line, each terminal measures the voltage and current of its own terminal, and the voltage and current of the own terminal are set in advance. Using the first means of calculating the distance from the line constant of the transmission line to the fault point, and the orientation of each terminal calculated by this first method, a comparison means that compares the distances to the branch point and outputs the position value of any one of the three terminals when the position value of the terminal is within the distance to the branch point; If the orientation value of any one of the terminals is not within the distance to the branch point, or if one terminal is at rest, the orientation value of the two terminals that calculated the orientation value beyond the junction point is used for the remaining terminals. A failure point locating device characterized by comprising a calculation means for calculating and outputting a locating value of one terminal.
JP7680485A 1985-04-12 1985-04-12 Locating device for fault point Granted JPS61235767A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7680485A JPS61235767A (en) 1985-04-12 1985-04-12 Locating device for fault point

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7680485A JPS61235767A (en) 1985-04-12 1985-04-12 Locating device for fault point

Publications (2)

Publication Number Publication Date
JPS61235767A JPS61235767A (en) 1986-10-21
JPH0583874B2 true JPH0583874B2 (en) 1993-11-29

Family

ID=13615839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7680485A Granted JPS61235767A (en) 1985-04-12 1985-04-12 Locating device for fault point

Country Status (1)

Country Link
JP (1) JPS61235767A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02262073A (en) * 1989-03-31 1990-10-24 Ngk Insulators Ltd Apparatus for detecting accident point of transmission line

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5371241A (en) * 1976-12-08 1978-06-24 Hitachi Ltd Device for determining trouble point
JPS5829471A (en) * 1981-08-13 1983-02-21 小松 明 Sprinkler union method
JPS58208675A (en) * 1982-05-31 1983-12-05 Fuji Electric Co Ltd Fault point locating system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5371241A (en) * 1976-12-08 1978-06-24 Hitachi Ltd Device for determining trouble point
JPS5829471A (en) * 1981-08-13 1983-02-21 小松 明 Sprinkler union method
JPS58208675A (en) * 1982-05-31 1983-12-05 Fuji Electric Co Ltd Fault point locating system

Also Published As

Publication number Publication date
JPS61235767A (en) 1986-10-21

Similar Documents

Publication Publication Date Title
RU2571629C1 (en) Method and device for assessment of angle of zero-phase-sequence voltage at single line-to-ground fault
US11169195B2 (en) Identification of faulty section of power transmission line
WO2019166903A1 (en) Method and device for fault location in a two-terminal transmission system
JP3356484B2 (en) Accident point location device
JPH07122650B2 (en) Fault location method
JPH0583874B2 (en)
JPH065256B2 (en) Accident point location method
JPH0798353A (en) Short circuit fault point orienting method
JP3503274B2 (en) Fault location method for two parallel transmission and distribution lines
JPS58168976A (en) Spotting system for fault point
JPH0436668A (en) Fault point locating method for n-terminal parallel two-line transmission line
JPS58208676A (en) Fault point locating system
JPH1090341A (en) Method for locating fault point
SU736246A1 (en) Device for detecting faults of parallel line
JPS628068A (en) System for locating troubled point direction
JPH0718901B2 (en) Apparatus and method for determining values of circuit elements in three-terminal equivalent circuit
JPH0574788B2 (en)
JP2003009381A (en) Troue phase selector
JPH09304468A (en) Method for locating fault-point of parallel two line system
RU2250472C2 (en) Method of measuring distance to point of single-phase short circuit onto ground in radial distribution circuits
JPH0327055B2 (en)
JPH06258378A (en) Fault point standardizing apparatus using direction decided result
JPS628070A (en) Failure orientation system
JPH02262073A (en) Apparatus for detecting accident point of transmission line
JPH04319672A (en) Method for locating fault point

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees