JPH04319672A - Method for locating fault point - Google Patents

Method for locating fault point

Info

Publication number
JPH04319672A
JPH04319672A JP8841091A JP8841091A JPH04319672A JP H04319672 A JPH04319672 A JP H04319672A JP 8841091 A JP8841091 A JP 8841091A JP 8841091 A JP8841091 A JP 8841091A JP H04319672 A JPH04319672 A JP H04319672A
Authority
JP
Japan
Prior art keywords
zero
current
sequence
data
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8841091A
Other languages
Japanese (ja)
Other versions
JP3013487B2 (en
Inventor
Hideki Nakamori
中森 英樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP3088410A priority Critical patent/JP3013487B2/en
Publication of JPH04319672A publication Critical patent/JPH04319672A/en
Application granted granted Critical
Publication of JP3013487B2 publication Critical patent/JP3013487B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Locating Faults (AREA)

Abstract

PURPOSE:To restore perfect data and to locate a fault point, in a case locating one circuit earth fault point in a resistance ground type three-terminal parallel two-circuit transmission line to which a power supply having one resistance- grounded transmission terminal and not having load or neutral earthing at the other terminals thereof is connected, by compensating the data of the other terminals when the data of the transmission terminal is omitted. CONSTITUTION:The zero phase difference currents I0', I0'' at two terminals B, C and zero phase voltage V0', VI0'' at any other terminals B, C are detected. The omitted zero phase difference current I0 at a transmission terminal is estimated on the basis of formula I0=k¦V0'¦- I0'- I0'' or I0=k¦V0''¦- I 0'- I0'' using the ratio (k) of the zero phase fault current and zero phase voltage rating and an one-circuit earth fault point is located using the zero phase difference currents I0, I0', I0''.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、抵抗接地方式の送電端
を有する3端子平行2回線送電線における1回線1地点
での地絡故障点の標定方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for locating a ground fault point at one point on each line in a three-terminal parallel two-circuit power transmission line having resistance-grounded power transmission ends.

【0002】0002

【従来の技術】変電所間の送電線は、電力供給の信頼度
向上のため、一般的に平行2回線方式で行われている。 この送電線は、建造物内で保守管理されている変電所等
と比較して、外部に起因する故障(雷撃による絶縁破壊
、あるいは鳥や樹木の接触等)が不可避である。したが
って、故障発生時には故障点探索作業が伴い、特に山間
部における故障点探索は非常に困難な場合がある。
2. Description of the Related Art In order to improve the reliability of power supply, power transmission lines between substations are generally constructed using a parallel two-circuit system. Compared to substations, etc., which are maintained and managed inside buildings, these power transmission lines are susceptible to failures caused by external sources (insulation breakdown due to lightning strikes, contact with birds or trees, etc.). Therefore, when a failure occurs, it is necessary to search for a failure point, and searching for a failure point may be extremely difficult, especially in mountainous areas.

【0003】そこで、故障点の範囲を予め計算で特定(
標定)しておけば、その範囲内で故障点を探索すればよ
く、作業の効率化につながる。従来から抵抗接地方式の
3端子平行2回線送電線における1回線1地点での地絡
故障点標定方式として、各端子における2回線の差電流
を用いて分流比を算出する方式(特開平2−15416
8号公報参照)が採用されている。
[0003] Therefore, the range of failure points is specified in advance by calculation (
Once the location is established, the failure point can be searched for within that range, leading to more efficient work. Conventionally, as a method for locating the ground fault fault point at one point per circuit in a resistance-grounded three-terminal parallel two-circuit power transmission line, a method of calculating the shunt ratio using the difference current between the two circuits at each terminal (Japanese Patent Application Laid-Open No. 2002-20012-1) has been proposed. 15416
(Refer to Publication No. 8) has been adopted.

【0004】この方式を、図3に示すような3端子平行
2回線送電線について説明する。各送電線を1L,2L
と表示し、3端子をそれぞれA端,B端,C端とし、分
岐点をTで表わす。AT,BT,CT間の距離をそれぞ
れd1 ,d2 ,d3 とする。A端には中性点接地
された電源(変圧器でもよい)TRが接続されている。 B端、C端には一般の負荷又は中性点のない電源(図示
せず)が接続されている。A端,B端,C端では、各回
線の零相電流I10,I20,I10′,I20′,I
10″,I20″をそれぞれ測定し、差電流 ΔI=|I10−I20|, ΔI′=|I10′−I20′|, ΔI″=|I10″−I20″|, を算出している。なお、この明細書において、表記”I
”は、ベクトル
This method will be explained for a three-terminal parallel two-circuit power transmission line as shown in FIG. Each power transmission line is 1L, 2L
The three terminals are designated as A end, B end, and C end, respectively, and the branch point is represented by T. Let the distances between AT, BT, and CT be d1, d2, and d3, respectively. A power source (a transformer may be used) whose neutral point is grounded is connected to the A terminal. A general load or a power source without a neutral point (not shown) is connected to the B terminal and the C terminal. At the A, B, and C ends, the zero-sequence currents of each line I10, I20, I10', I20', I
10'' and I20'' are measured respectively, and the difference currents ΔI=|I10−I20|, ΔI′=|I10′−I20′|, ΔI″=|I10″−I20″|, are calculated. In this specification, the notation "I"
” is a vector

【0005】[0005]

【外1】[Outside 1]

【0006】を表わすものとする。この方式によれば、
0006. According to this method,
formula

【0007】[0007]

【数1】[Math 1]

【0008】[0008]

【数2】[Math 2]

【0009】[0009]

【数3】[Math 3]

【0010】によってx,x′,x″を算出し、xがd
1 よりも小さい場合にはxをA端から故障点までの距
離とし、xがd1 よりも大きな場合には、x′とd2
 とを比較し、x′がd2 よりも小さい場合には、x
′をB端から故障点までの距離とし、x′がd2 より
も大きな場合にはx″をC端から故障点までの距離とす
る。以上のようにして、各端での電流を検出することに
より、故障点を標定することができる。
x, x', x'' are calculated by
1, then x is the distance from end A to the failure point, and when x is greater than d1, x' and d2 are
and if x' is smaller than d2, x
' is the distance from the B end to the fault point, and if x' is larger than d2, x'' is the distance from the C end to the fault point.As described above, the current at each end is detected. This allows the fault point to be located.

【0011】[0011]

【発明が解決しようとする課題】前記の方式ではA端、
B端、C端からのデータを全て収集する必要があるが、
送電端のデータが、検出手段の不良、データ伝送回線の
不良等により欠落した場合、演算ができなくなることに
なる。そこで、本発明は、抵抗接地した送電端Aを1つ
有し、他端B及びCには負荷又は中性点接地のない電源
を接続した抵抗接地方式3端子平行2回線送電線におけ
る1回線地絡故障点を標定する場合において、送電端A
のデータが欠落した場合に、他の2つの端のデータによ
って補うことにより、完全なデータを復元し、もって故
障点の標定ができる故障点標定方法を提供することを目
的とする。
[Problem to be solved by the invention] In the above system, the A end,
It is necessary to collect all data from end B and end C,
If data at the power transmission end is lost due to a defect in the detection means, a defect in the data transmission line, etc., calculations will no longer be possible. Therefore, the present invention provides one line in a resistance-grounded three-terminal parallel two-circuit power transmission line that has one resistance-grounded power transmission end A, and the other ends B and C are connected to a load or a power source without neutral point grounding. When locating the ground fault point,
An object of the present invention is to provide a failure point locating method that can restore complete data by supplementing data from the other two ends when data is missing, thereby locating the failure point.

【0012】0012

【課題を解決するための手段】本発明の方法は、抵抗接
地した送電端を1つ有し、他の2つの端には負荷又は中
性点接地のない電源を接続した抵抗接地方式3端子平行
2回線送電線において、送電端での電流データが欠落し
た場合に、他の2つの端での零相差電流ΔI0′及びΔ
I0 ″並びに他のいずれかの端での零相電圧V0 ′
又はV0 ″を検出し、送電線完全地絡時の零相故障電
流と零相電圧定格との比kを用いて、次の式 ΔI0 =k|V0 ′|−ΔI0 ′−ΔI0 ″又
は ΔI0 =k|V0 ″|−ΔI0 ′−ΔI0 ″に
基づいて、欠落した送電端での零相差電流ΔI0 を推
定し、これらの零相差電流ΔI0 、ΔI0 ′及びΔ
I0 ″を用いて1回線地絡故障点を標定する方法であ
る。
[Means for Solving the Problems] The method of the present invention provides a three-terminal resistance-grounded type having one resistance-grounded power transmission end, and the other two ends connected to a power source without a load or neutral point grounding. In a parallel two-circuit transmission line, when current data at the transmission end is missing, the zero-sequence difference currents ΔI0' and Δ at the other two ends
I0 ″ as well as the zero-sequence voltage V0 ′ at either other end.
Or detect V0'' and use the ratio k of the zero-sequence fault current and zero-sequence voltage rating at the time of a complete ground fault in the transmission line, and use the following formula ΔI0 = k | V0 ′ | − ΔI0 ′ − ΔI0 ″ or ΔI0 = The zero-sequence difference current ΔI0 at the missing transmitting end is estimated based on k|V0 ″|−ΔI0 ′−ΔI0 ″, and these zero-sequence difference currents ΔI0 , ΔI0 ′, and Δ
This is a method of locating a single line ground fault fault point using I0''.

【0013】[0013]

【作用】図1を参照しながら説明する。図1は発明の適
用対象である抵抗接地方式3端子平行2回線送電線回路
を示す。送電端Aと受電端B、受電端Cとの間に3端子
平行2回線送電線が設けられており、送電端Aと分岐点
Tとの間の距離はd1 、受電端Bと分岐点Tとの間の
距離はd2 、受電端Cと分岐点Tとの間の距離はd3
 とする。
[Operation] This will be explained with reference to FIG. FIG. 1 shows a resistive grounding type three-terminal parallel two-line power transmission line circuit to which the invention is applied. A three-terminal parallel two-circuit power transmission line is installed between power transmitting end A, power receiving end B, and power receiving end C. The distance between power transmitting end A and branch point T is d1, and the distance between power receiving end B and branch point T is 1. The distance between the receiving end C and the branch point T is d2, and the distance between the receiving end C and the branch point T is d3.
shall be.

【0014】1点Fにおいて1L回線側に地絡事故が発
生し、零相地絡電流Iofが流れ出しているとする。地
絡抵抗はRf で表わす。零相地絡電流Iofは、  
Iof=I10+I10′+I10″        
                         
 (4) で表される。2L回線側は、故障がないので
あるから、  0=I20+I20′+I20″   
                         
        (5) と表される。(4) 式から
(5) 式を引くと、  Iof=(I10−I20)
+(I10′−I20′)+(I10″−I20″)(
6) となる。各端子の電流は殆ど同相であるから、(
6) 式は、  |Iof|=|I10−I20|+|
I10′−I20′|+|I10″−I20″|   
       =ΔI0 +ΔI0 ′+ΔI0 ″ 
                       (7
) と書くことができる。
Assume that a ground fault occurs on the 1L line side at point F, and a zero-sequence ground fault current Iof begins to flow. Ground fault resistance is expressed as Rf. The zero-sequence ground fault current Iof is
Iof=I10+I10′+I10″

(4) It is expressed as Since there is no failure on the 2L line side, 0=I20+I20′+I20″

(5) It is expressed as Subtracting equation (5) from equation (4), Iof=(I10-I20)
+(I10'-I20')+(I10''-I20'')(
6) It becomes. Since the currents at each terminal are almost in phase, (
6) The formula is |Iof|=|I10-I20|+|
I10′-I20′|+|I10″-I20″|
=ΔI0 +ΔI0′+ΔI0″
(7
) can be written as

【0015】一方、回線の零相電圧定格(完全地絡時の
中性点に現れる電圧)と、完全地絡時の零相地絡電流と
を用いると、零相地絡電流Iofは、|Iof|=|V
0 |×(完全地絡時の零相地絡電流)/(零相電圧定
格)となる。ここにV0 は故障時に母線に発生する零
相電圧である。完全地絡時の零相地絡電流も、零相電圧
定格も系統固有の値であるから、この比を次のように定
数kとおく。
On the other hand, using the zero-sequence voltage rating of the line (the voltage that appears at the neutral point in the case of a complete ground fault) and the zero-sequence ground fault current in the case of a complete ground fault, the zero-sequence ground fault current Iof is | Iof|=|V
0 | × (Zero-sequence ground fault current at complete ground fault) / (Zero-sequence voltage rating). Here, V0 is the zero-sequence voltage generated on the bus bar at the time of failure. Since both the zero-sequence ground fault current and the zero-sequence voltage rating at the time of a complete ground fault are system-specific values, this ratio is set as a constant k as follows.

【0016】k=(完全地絡時の零相地絡電流)/(零
相電圧定格)線路の零相インピーダンスは中性点の接地
抵抗Rと比べて充分小さいので送電端A、受電端B、受
電端Cのいずれで測定しても零相電圧V0 はほぼ同じ
値をとるものとする。すなわち、送電端Aで測定した零
相電圧V0 、受電端Bで測定した零相電圧V0 ′、
受電端Cで測定した零相電圧V0 ″のいずれも等しい
ものとする。すると、上の式は、   |Iof|=k|V0 |=k|V0 ′|=k|
V0 ″|            (8) となる。
k=(Zero-sequence ground fault current at complete ground fault)/(Zero-sequence voltage rating) Since the zero-sequence impedance of the line is sufficiently small compared to the ground resistance R at the neutral point, the transmission end A and the reception end B , the zero-sequence voltage V0 is assumed to take approximately the same value regardless of whether it is measured at the power receiving end C. That is, the zero-sequence voltage V0 measured at the sending end A, the zero-sequence voltage V0' measured at the receiving end B,
It is assumed that the zero-sequence voltages V0'' measured at the power receiving end C are equal.Then, the above equation becomes |Iof|=k|V0 |=k|V0'|=k|
V0″| (8)

【0017】いま、送電端Aでの電流電圧データが欠け
ているものとすると、受電端Bで測定した零相電圧V0
 ′又は受電端Cで測定した零相電圧V0″を用いて、
  k|V0 ′|=k|V0 ″|=ΔI0 +ΔI
0 ′+ΔI0 ″と書ける。この式を変形すると、   ΔI0 =k|V0 ′|−ΔI0 ′−ΔI0 
″                    (9) 
又は   ΔI0 =k|V0 ″|−ΔI0 ′−ΔI0 
″                    (10)
となり、送電端Aでの差電流を、受電端B及び受電端C
での差電流及び零相電圧を用いて推定することができる
が分かる。
Now, assuming that the current and voltage data at the power transmitting end A are missing, the zero-sequence voltage V0 measured at the power receiving end B
' or using the zero-sequence voltage V0'' measured at the receiving end C,
k|V0 ′|=k|V0 ″|=ΔI0 +ΔI
0'+ΔI0''. Transforming this equation, ΔI0 = k|V0'|-ΔI0'-ΔI0
″ (9)
or ΔI0 = k | V0 ″ | −ΔI0 ′−ΔI0
″ (10)
Then, the difference current at the sending end A is expressed as the difference current at the receiving end B and the receiving end C.
It can be seen that it can be estimated using the difference current and zero-sequence voltage at .

【0018】[0018]

【実施例】以下、この発明の故障点標定方法を添付図面
に基いて詳細に説明する。なお、前述した図1と共通す
るものについて同じ符号を使用する。図2は3端子平行
2回線送電線、及びこの発明に係る故障点標定方法を実
施する故障点算定装置を示す図であり、3端子平行2回
線送電線は、送電端A側に高抵抗Rにより接地された電
源又は変圧器を配置し、受電端B、受電端C側に負荷又
は非接地電源(図示せず)を配置している。故障点算定
装置3Aは送電端A側に配置されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The failure point locating method of the present invention will be explained in detail below with reference to the accompanying drawings. Note that the same reference numerals are used for the same parts as in FIG. 1 described above. FIG. 2 is a diagram showing a three-terminal parallel two-circuit power transmission line and a fault point calculation device that implements the fault point locating method according to the present invention. A power source or a transformer grounded by a power source is disposed, and a load or an ungrounded power source (not shown) is disposed on the power receiving end B and power receiving end C sides. The failure point calculation device 3A is arranged on the power transmission end A side.

【0019】前記送電端Aには、1L回線、2L回線の
a相、b相及びc相にそれぞれ接続される変流器CT1
A及びCT2A、並びに送電端A側の母線に接続され、
線間電圧を検出するトランス4Aが接続されている。故
障点算定装置3Aには、変流器CT1A,CT2A及び
トランス4Aを通して読み取った値を各相電圧・電流を
表わす所定レベルの電圧信号に変換する入力部31A、
入力部31Aの電圧信号を所定電気角(例えば30度)
毎にサンプリングするサンプルホールド回路32A、A
/D変換器33A、受電端B,Cにおける測定値のデー
タを無線、光等を通して受信する受信器34A、A/D
変換器33Aにより変換されたディジタル値、及び受信
器34Aを通して読み取った受電端B,Cにおける測定
値のディジタル値に基づいて地絡故障を検出する故障検
出部36A(例えば64リレーにより構成される)、3
端子の完全地絡時の零相地絡電流と零相電圧定格との比
kを記憶しているとともに、地絡故障時に、A端の電流
データが欠落した場合に、B端又はC端で測定された零
相電圧V0 ′又はV0 ″、B端及びC端で測定され
た零相電流I10′,I20′,I10″及びI20″
に基づいて、差電流 ΔI′=|I10′−I20′|, ΔI″=|I10″−I20″|, を算出し、前記(9) 式に基づいて、A端の差電流Δ
Iを求め、距離検出部37Aに供給するデータ復元部3
5A、データ復元部35Aから供給されるデータに基づ
いて故障点の距離を算出する距離算出部37A、並びに
故障の発生及び故障点までの距離等を表示する表示部3
8Aが備えられている。
At the power transmission end A, current transformers CT1 are connected to the a phase, b phase, and c phase of the 1L line, 2L line, respectively.
A and CT2A, and connected to the bus bar on the power transmission end A side,
A transformer 4A for detecting line voltage is connected. The failure point calculation device 3A includes an input section 31A that converts the values read through the current transformers CT1A, CT2A and the transformer 4A into voltage signals of predetermined levels representing the voltages and currents of each phase;
The voltage signal of the input section 31A is set at a predetermined electrical angle (for example, 30 degrees).
Sample and hold circuits 32A and 32A sample each time
A/D converter 33A, a receiver 34A that receives data of measured values at power receiving ends B and C via radio, light, etc., and an A/D converter 33A.
A fault detection unit 36A (for example, configured with 64 relays) detects a ground fault based on the digital value converted by the converter 33A and the digital value of the measured value at the power receiving ends B and C read through the receiver 34A. ,3
It memorizes the ratio k between the zero-sequence ground fault current and the zero-sequence voltage rating when a terminal is completely grounded, and also stores the ratio k of the zero-sequence ground fault current and zero-sequence voltage rating when the terminal is completely grounded, and when the current data at the A terminal is missing in the event of a ground fault, the Measured zero-sequence voltage V0' or V0'', zero-sequence current I10', I20', I10'' and I20'' measured at terminal B and terminal C
Based on the equation (9) above, calculate the difference current ΔI′=|I10′−I20′|, ΔI″=|I10″−I20″|,
Data restoration unit 3 calculates I and supplies it to distance detection unit 37A.
5A, a distance calculation unit 37A that calculates the distance to the failure point based on the data supplied from the data restoration unit 35A, and a display unit 3 that displays the occurrence of a failure, the distance to the failure point, etc.
8A is provided.

【0020】また、受電端Bには、1L回線、2L回線
のa相、b相及びc相に接続される変流器CT1B及び
CT2B、並びに受電端B側の母線に接続され、線間電
圧を検出するトランス4Bが接続されている。測定装置
3Bには、変流器CT1B,CT2B及びトランス4B
を通して読み取った値を各相電圧・電流を表わす所定レ
ベルの電圧信号に変換する入力部31B、入力部31B
の電圧信号を所定電気角(例えば30度)毎にサンプリ
ングするサンプルホールド回路32B、A/D変換器3
3B、受電端Bにおける測定値のデータを無線、光等を
通して送信する送信器34Bが設けられている。
[0020] In addition, current transformers CT1B and CT2B are connected to the a-phase, b-phase, and c-phase of the 1L line, 2L line, and the bus bar on the power receiving end B side, and the line voltage A transformer 4B for detecting is connected. The measuring device 3B includes current transformers CT1B, CT2B and transformer 4B.
an input section 31B that converts the values read through the input section 31B into voltage signals of predetermined levels representing voltages and currents of each phase;
A sample hold circuit 32B that samples the voltage signal at every predetermined electrical angle (for example, 30 degrees), and an A/D converter 3
3B, and a transmitter 34B that transmits data of the measured value at the power receiving end B via wireless, optical, etc. is provided.

【0021】また、受電端Cには、受電端C側における
1L回線、2L回線のa相、b相及びc相に接続される
変流器CT1C,CT2C、並びに受電端C側の母線に
線間電圧を検出するトランス4Cが接続され、測定装置
3Cには、上記変流器CT1C,CT2C、及びトラン
ス4Cを通して読み取った値を各相電圧・電流を表わす
所定レベルの電圧信号に変換する入力部31C、入力部
31Cの電圧信号を所定電気角(例えば30度)毎にサ
ンプリングするサンプルホールド回路32C、A/D変
換器33C、並びに受電端Cにおける測定値のデータを
無線、光等を通して送信する送信器34Cが設けられて
いる。
[0021] In addition, the power receiving end C has current transformers CT1C and CT2C connected to the a phase, b phase, and c phase of the 1L line, 2L line on the power receiving end C side, and a line connected to the bus bar on the power receiving end C side. A transformer 4C is connected to the measuring device 3C, and the measuring device 3C has an input section that converts the values read through the current transformers CT1C, CT2C, and the transformer 4C into voltage signals at predetermined levels representing the voltages and currents of each phase. 31C, a sample hold circuit 32C that samples the voltage signal of the input section 31C at every predetermined electrical angle (for example, 30 degrees), an A/D converter 33C, and transmits the data of the measured value at the power receiving end C via radio, light, etc. A transmitter 34C is provided.

【0022】なお、サンプルホールド回路32A,32
B,32Cの間には、演算誤差を発生させないよう、後
述するようにサンプリング同期が採られている。上記故
障点算定装置3Aの動作は次のとおりである。故障検出
部36Aが故障を検出すると、距離算出部37Aに故障
点標定動作を開始させる。距離算出部37Aはデータ復
元部35Aから零相電流、電圧のデータを取り出す。
Note that the sample and hold circuits 32A, 32
Sampling synchronization is provided between B and 32C, as will be described later, to prevent calculation errors from occurring. The operation of the failure point calculation device 3A is as follows. When the failure detection unit 36A detects a failure, it causes the distance calculation unit 37A to start a failure point locating operation. The distance calculation unit 37A extracts zero-sequence current and voltage data from the data restoration unit 35A.

【0023】距離算出部37Aは、上記各データを取り
込み、送電端Aの零相差電流ΔI、、受電端Bの零相電
流ΔI′、受電端Bの零相電流ΔI″を検出する。そし
て、既に示した公知の(1) 式、(2) 式、(3)
 式に基づいていずれかの端A,B又はCから故障点ま
での距離を数値計算する。この場合、地絡故障時に、A
端の電流データが欠落していても、他端で測定された零
相電圧データ及び零相電流データに基づいて、A端の零
相差電流を復元することができるので、距離の算出に支
障を与えることはない。
The distance calculation unit 37A takes in the above data and detects the zero-sequence current ΔI of the power transmitting end A, the zero-sequence current ΔI' of the power receiving end B, and the zero-sequence current ΔI'' of the power receiving end B. Then, The well-known formulas (1), (2), and (3) already shown
The distance from either end A, B or C to the failure point is calculated numerically based on the formula. In this case, when a ground fault occurs, A
Even if the current data at one end is missing, the zero-sequence difference current at the A end can be restored based on the zero-sequence voltage data and zero-sequence current data measured at the other end, so there is no problem in calculating the distance. I won't give anything.

【0024】したがって、故障点算定装置3Aの変流器
CT1A及びCT2A、トランス4A、入力部31A、
サンプルホールド回路32A、A/D変換器33Aを初
めから省略することも可能になる。なお、上記故障点算
定装置3A、測定装置3B、測定装置3C間のデータの
伝送にあたっては、高速、高信頼性が要求される。した
がって、データ伝送方式として、例えばPCM伝送方式
を用い、通信路も大容量のものを用いることが好ましい
。特に、データのサンプリング同期を正確にとらなけれ
ば演算結果に誤差が生じるので、データ伝送中に生じる
サンプリング時間差を正確に測定し補正するいわゆるS
P同期制御技術(送信器13、受信器12間で信号を往
復させ、その往復にかかった時間を測定してサンプリン
グ時間差を補正する技術。三菱電機技報Vol.63,
No.8,1989,p.p.27−31 参照)を採
用することが好ましい。
Therefore, current transformers CT1A and CT2A, transformer 4A, input section 31A,
It is also possible to omit the sample and hold circuit 32A and A/D converter 33A from the beginning. Note that high speed and high reliability are required for data transmission between the failure point calculation device 3A, measurement device 3B, and measurement device 3C. Therefore, it is preferable to use, for example, the PCM transmission method as the data transmission method, and to use a communication path with a large capacity. In particular, if the data sampling synchronization is not accurately achieved, errors will occur in the calculation results, so the so-called S
P-synchronization control technology (a technology that sends a signal back and forth between the transmitter 13 and receiver 12, measures the time taken for the round trip, and corrects the sampling time difference. Mitsubishi Electric Technical Report Vol. 63,
No. 8, 1989, p. p. 27-31) is preferable.

【0025】なお、本発明は上記の実施例に限定される
ものではなく、例えば送電端A、受電端B,Cにそれぞ
れ送信機を設置してデータの伝送をさせ、送電端Aから
も受電端B,Cからも離れた場所に故障点算定装置3A
を設置することも可能である。その他本発明の要旨を変
更しない範囲内において、種々の変更を施すことが可能
である。
It should be noted that the present invention is not limited to the above-mentioned embodiments. For example, transmitters may be installed at the power transmitting end A and power receiving ends B and C to transmit data, and power can also be received from the power transmitting end A. Failure point calculation device 3A is located far away from ends B and C.
It is also possible to install Various other changes may be made without departing from the gist of the present invention.

【0026】[0026]

【発明の効果】以上のように本発明によれば、送電端の
電流データが欠落した場合に、他端の電流、電圧の測定
データを用いることによって、欠落したデータを復元す
ることができる。したがって、地絡故障点が何れの位置
にあるのかを判断することができるので、少ない労力で
故障点の探索作業を行うことができる。
As described above, according to the present invention, when current data at the power transmission end is missing, the missing data can be restored by using the measured data of the current and voltage at the other end. Therefore, since it is possible to determine where the ground fault point is located, it is possible to search for the fault point with less effort.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の原理を説明するための、3端子平行2
回線送電線の回路図である。
[Fig. 1] Three terminal parallel 2 terminals for explaining the principle of the present invention.
It is a circuit diagram of a line power transmission line.

【図2】3端子平行2回線送電線における故障点標定方
法を実施する故障点算定装置を示す図である。
FIG. 2 is a diagram showing a fault point calculation device that implements a fault point locating method in a three-terminal parallel two-circuit power transmission line.

【図3】一般的な3端子平行2回線送電線の回路図であ
る。
FIG. 3 is a circuit diagram of a general three-terminal parallel two-circuit power transmission line.

【符号の説明】[Explanation of symbols]

1L,2L  3端子平行2回線送電線3A  故障点
算定装置 3B,3C  測定装置 35A  データ復元部 37A  距離算出部 4A,4B,4C  トランス A,B,C    送電端 CT1A,CT2A  変流器 CT1B,CT2B  変流器 CT1C,CT2C  変流器
1L, 2L 3-terminal parallel 2-circuit power transmission line 3A Fault point calculation device 3B, 3C Measuring device 35A Data restoration section 37A Distance calculation section 4A, 4B, 4C Transformer A, B, C Transmission end CT1A, CT2A Current transformer CT1B, CT2B Current transformer CT1C, CT2C Current transformer

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】抵抗接地した送電端を1つ有し、他の2つ
の端には負荷又は中性点接地のない電源を接続した抵抗
接地方式3端子平行2回線送電線における1回線地絡故
障点を標定する方法において、送電端での電流データが
欠落した場合に、他の2つの端での零相差電流ΔI0′
及びΔI0 ″、並びに他のいずれかの端での零相電圧
V0 ′又はV0 ″を検出し、送電線の完全地絡時の
零相故障電流と零相電圧定格との比kを用いて、式ΔI
0 =k|V0 ′|−ΔI0 ′−ΔI0 ″又は ΔI0 =k|V0 ″|−ΔI0 ′−ΔI0 ″に
基づいて、欠落した送電端での零相差電流ΔI0 を推
定し、これら3端での零相差電流ΔI0 、ΔI0 ′
及びΔI0 ″を用いて地絡故障点を標定することを特
徴とする故障点標定方法。
Claim 1: Single-line ground fault in a resistance-grounded three-terminal parallel two-circuit power transmission line that has one resistance-grounded power transmission end and the other two ends connected to a load or a power source without neutral point grounding. In the method of locating the fault point, if current data at the transmission end is missing, the zero-sequence difference current ΔI0' at the other two ends
and ΔI0 ″, and the zero-sequence voltage V0 ′ or V0 ″ at either other end, and using the ratio k of the zero-sequence fault current to the zero-sequence voltage rating at the time of a complete earth fault of the transmission line, Formula ΔI
Based on 0 = k | V0 ′ | − ΔI0 ′ − ΔI0 ″ or ΔI0 = k | Zero-sequence difference current ΔI0, ΔI0'
and ΔI0″ to locate the ground fault point.
JP3088410A 1991-04-19 1991-04-19 Fault location method Expired - Fee Related JP3013487B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3088410A JP3013487B2 (en) 1991-04-19 1991-04-19 Fault location method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3088410A JP3013487B2 (en) 1991-04-19 1991-04-19 Fault location method

Publications (2)

Publication Number Publication Date
JPH04319672A true JPH04319672A (en) 1992-11-10
JP3013487B2 JP3013487B2 (en) 2000-02-28

Family

ID=13942032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3088410A Expired - Fee Related JP3013487B2 (en) 1991-04-19 1991-04-19 Fault location method

Country Status (1)

Country Link
JP (1) JP3013487B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3336702B2 (en) * 1993-11-15 2002-10-21 三菱電機株式会社 Elevator door opening and closing control device

Also Published As

Publication number Publication date
JP3013487B2 (en) 2000-02-28

Similar Documents

Publication Publication Date Title
US10228409B2 (en) Fault location using traveling waves
US7472026B2 (en) Multi-ended fault location system
US6466031B1 (en) Systems and methods for locating faults on a transmission line with multiple tapped loads
US20240044965A1 (en) Parameter independent traveling wave-based fault location using unsynchronized measurements
CN106841914B (en) Fault distance measuring device of distribution line
US10345363B2 (en) High-fidelity voltage measurement using resistive divider in a capacitance-coupled voltage transformer
Ito et al. Development of an improved multifunction high speed operating current differential relay for transmission line protection
JP2000074978A (en) Fault point locator at parallel two-line transmission line
JP3341485B2 (en) Transmission line fault location method
JP3586266B2 (en) Fault location method for transmission line and fault location system using the same
JPH04319672A (en) Method for locating fault point
JP3013488B2 (en) Ground fault fault location method
JPH11344525A (en) Fault point plotting device
CN110865279A (en) Single-phase earth fault positioning method based on neutral point earth current starting
JP3013491B2 (en) Short-circuit fault location method
JP2560994B2 (en) Short-circuit fault location method
de Freitas A brief history of fault location in transmission lines
JP3503274B2 (en) Fault location method for two parallel transmission and distribution lines
JPH05297053A (en) Trouble-point location method of ground fault
JPH04273073A (en) Location for grounding faulty point
JPH04319674A (en) Method for locating earth fault point
JPH09304468A (en) Method for locating fault-point of parallel two line system
JPH0574788B2 (en)
JPH06249910A (en) Orientation method of ground-fault point
Ayakawa et al. DEVELOPMENT OF AN IMPROVED MULTIFUNCTION HIGH SPEED OPERATING CURRENT DIFFERENTIAL RELAY FOR TRANSMISSION LINE PROTECTION

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees