JPH04319674A - Method for locating earth fault point - Google Patents

Method for locating earth fault point

Info

Publication number
JPH04319674A
JPH04319674A JP8841291A JP8841291A JPH04319674A JP H04319674 A JPH04319674 A JP H04319674A JP 8841291 A JP8841291 A JP 8841291A JP 8841291 A JP8841291 A JP 8841291A JP H04319674 A JPH04319674 A JP H04319674A
Authority
JP
Japan
Prior art keywords
point
fault
section
terminal
fault point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8841291A
Other languages
Japanese (ja)
Inventor
Yasuhiro Yamamoto
康弘 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP8841291A priority Critical patent/JPH04319674A/en
Publication of JPH04319674A publication Critical patent/JPH04319674A/en
Pending legal-status Critical Current

Links

Landscapes

  • Locating Faults (AREA)

Abstract

PURPOSE:To perform work searching a fault point by reduced labor by specifying the fault point by judging which of branches the fault point on and after a branch point is present in by the use of the data of a power supply terminal and two power receiving terminals. CONSTITUTION:The distance from the power terminal A of a resistance- grounded type three-terminal single circuit transmission line to a fault point is calculated and, when the calculated distance exceeds the distance from the power supply terminal A to a rotary branch point T, the voltages VB, VC and currents IB, IC of a fault phase of other terminals B, C are measured. The positive phase impedance ZB of the circuit in the section TB between the branch point T and a terminal B and the positive phase impedance ZC in the section TC between the branch point T and a terminal C are used to respectively calculate the values of formulae VTB=VB-ZBIB and VTC=VC-ZCIC. When the value VTB is smaller than the value VTC, the fault point is judged to be present in the section TB and, when the value VTC is smaller than the value VTB, the fault point is judged to be present in the section TC.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、抵抗接地方式の3端子
系単回線送電線における1線地絡故障点の標定方法に関
する。ここにおいて「単回線送電線」とは、当初から単
回線として布設されたものでもよく、並行2回線送電線
の一方が故障して単回線運用されているものであっても
よい。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for locating a one-wire ground fault point in a resistance-grounded three-terminal single-circuit power transmission line. Here, the "single-circuit power transmission line" may be one that was originally installed as a single-circuit line, or it may be one that is operated as a single line due to a failure in one of the parallel two-circuit power transmission lines.

【0002】0002

【従来の技術】変電所間の送電線は、建造物内で保守管
理されている変電所等と比較して、外部に起因する故障
(雷撃による絶縁破壊、あるいは鳥や樹木の接触等)が
不可避である。故障発生時には、故障点探索作業が伴う
が、特に山間部における故障点探索は非常に困難な場合
がある。
[Prior Art] Compared to substations that are maintained and managed inside buildings, power transmission lines between substations are more susceptible to failures caused by external sources (insulation breakdown due to lightning strikes, contact with birds or trees, etc.). It is inevitable. When a failure occurs, it is necessary to search for the failure point, but searching for the failure point can be extremely difficult, especially in mountainous areas.

【0003】そこで、故障点の位置、範囲を予め計算で
特定(標定)しておけば、その範囲内で故障点を探索す
ればよく、作業の効率化につながる。従来から抵抗接地
送電線における地絡故障点標定方式として直角方向成分
を算定する方式(特公昭58−36743号公報参照)
が採用されている。この方式は、端子電圧、端子電流、
線路のインピーダンスから、故障点を特定する方式であ
る。この方式を、2端子系単回線送電線を例にとって、
a相地絡故障が発生した場合について説明する。図4に
示すように、送電端Aと受電端Bとの間に送電線Lが接
続され、送電端Aには電源TRが、受電端Bには負荷L
Bが接続されている。 d;送電端Aから受電端Bまでの距離、xd;送電端A
から故障点までの距離、Va ;送電端Aにおけるa相
電圧、 Ia ;送電端Aにおけるa相電流、 Vaf;故障点におけるa相電圧、 Iaf;故障点におけるa相電流、 Zf ;故障点における地絡インピーダンスとする。x
,Vaf、Iaf、Zf は未知の値である。なお、こ
の明細書において、表記V,Iは、それぞれベクトル
[0003] Therefore, if the position and range of the failure point are specified (orientated) by calculation in advance, the failure point can be searched for within that range, leading to improved work efficiency. Conventionally, there has been a method of calculating the component in the right angle direction as a method for locating the ground fault point in resistance-grounded power transmission lines (see Japanese Patent Publication No. 58-36743).
has been adopted. This method consists of terminal voltage, terminal current,
This method identifies the failure point based on the impedance of the line. Using this method as an example of a two-terminal single-circuit transmission line,
A case where an a-phase ground fault occurs will be explained. As shown in FIG. 4, a power transmission line L is connected between a power transmission end A and a power reception end B, a power supply TR is connected to the power transmission end A, and a load L is connected to the power reception end B.
B is connected. d: Distance from transmitting end A to receiving end B, xd: Transmitting end A
Distance from to the fault point, Va: A-phase voltage at the sending end A, Ia: A-phase current at the sending end A, Vaf: A-phase voltage at the fault point, Iaf: A-phase current at the fault point, Zf: A-phase current at the fault point Ground fault impedance. x
, Vaf, Iaf, and Zf are unknown values. Note that in this specification, notations V and I respectively represent vectors.

【0004】0004

【外1】[Outside 1]

【0005】を表わすものとする。図4の回路は、対象
座標法を使えば、図5のように等価変換される。ここに
、 V0 ,V1 ,V2 ;送電端Aにおける零相,正相
,逆相電圧、 I0 ,I1 ,I2 ;送電端Aにおける送電線Lの
零相,正相,逆相電流、 Vof,V1f,V2f;故障点における零相,正相,
逆相電圧、 I0f,I1f,I2f;故障点における送電線Lの零
相,正相,逆相電流である。
0005. The circuit in FIG. 4 is equivalently transformed as shown in FIG. 5 by using the object coordinate method. Here, V0, V1, V2: Zero-sequence, positive-sequence, and negative-sequence voltages at transmission end A, I0, I1, I2; Zero-phase, positive-sequence, and negative-sequence currents of power transmission line L at transmission end A, Vof, V1f , V2f; zero phase, positive phase at the fault point,
Negative sequence voltage, I0f, I1f, I2f: Zero-sequence, positive-sequence, and negative-sequence currents of the power transmission line L at the failure point.

【0006】故障点を流れる零相電流は、等価的に地絡
インピーダンスZfの3倍の値を持つインピーダンス素
子3Zfを流れる。上記の等価回路図(図5)において
、 Vof=V0 −xZ0 I0 V1f=V1 −xZ1 I1 V2f=V2 −xZ1 I2 3Zf I0f=Vof+V1f+V2fと表わされる
。ここに、Z1 は送電線Lの正相インピーダンス、Z
0 は送電線Lの零相インピーダンスである。 なお、この明細書において、表記Zは、ベクトル
The zero-sequence current flowing through the fault point flows through an impedance element 3Zf having a value equivalently three times the ground fault impedance Zf. In the above equivalent circuit diagram (FIG. 5), Vof=V0 -xZ0 I0 V1f=V1 -xZ1 I1 V2f=V2 -xZ1 I2 3Zf I0f=Vof+V1f+V2f. Here, Z1 is the positive sequence impedance of the power transmission line L, and Z
0 is the zero-sequence impedance of the power transmission line L. In addition, in this specification, the notation Z is a vector

【00
07】
00
07]

【外2】[Outside 2]

【0008】を表わすものとする。 関係式 Va =V0 +V1 +V2 , Ia1=I0 +I1 +I2 を使えば、       3Zf I0f=V0 +V1 +V2 
−xZ0 I0 −xZ1 (I1 +I2 )   
             =Va −x[(Z0 −
Z1 )I0 +Z1 Ia1]が導かれる。この式を
書き替えると、       Va =3Zf I0f+x[Z1 Ia
 +(Z0 −Z1 )I0 ]    (1) とな
る。
[0008] Using the relational expression Va =V0 +V1 +V2, Ia1=I0 +I1 +I2, 3Zf I0f=V0 +V1 +V2
-xZ0 I0 -xZ1 (I1 +I2)
=Va −x[(Z0 −
Z1 )I0 +Z1 Ia1] is derived. Rewriting this formula, Va = 3Zf I0f+x[Z1 Ia
+(Z0 −Z1)I0] (1).

【0009】この(1) 式において、地絡インピーダ
ンスZf の値が実数(純抵抗)であるので、両辺のI
0fに対する直角方向の成分が等しいという関係を利用
すれば、Zfの値に関係なく、故障点の距離xを求める
ことができる。そのためには、a相電圧Va ,a相電
流Ia ,零相電流I0 が分り、正相インピーダンス
Z1 、零相インピーダンスZ0 がすべて分っている
必要があるが、これらの値は、定数であったり、送電端
Aで測定できるものである。
In equation (1), since the value of ground fault impedance Zf is a real number (pure resistance), I on both sides
By using the relationship that the components in the direction perpendicular to 0f are equal, the distance x to the failure point can be found regardless of the value of Zf. To do this, it is necessary to know the a-phase voltage Va, the a-phase current Ia, and the zero-sequence current I0, as well as the positive-sequence impedance Z1 and zero-sequence impedance Z0, but these values may be constants or , which can be measured at the power transmission end A.

【0010】(1) 式の直角方向成分を求めるには、
零相故障電流I0fと送電端Aの零相電流I0 との位
相を等しいと仮定し、零相電流I0 の複素共役I0 
* をかけて、虚数成分Im を求めればよい。その結
果、  x=Im   Va I0 *   /Im 
  {Z1 Ia +(Z0 −Z1 )I0 }I0
 *                       
                         
                   (2) とい
う式が得られ、故障点の距離xdを求めることができる
(1) To find the orthogonal component of the equation,
Assuming that the phases of the zero-sequence fault current I0f and the zero-sequence current I0 at the transmission end A are equal, the complex conjugate I0 of the zero-sequence current I0
* Multiply to find the imaginary component Im. As a result, x=Im Va I0 * /Im
{Z1 Ia + (Z0 - Z1 )I0 }I0
*

(2) The following equation is obtained, and the distance xd to the failure point can be determined.

【0011】[0011]

【発明が解決しようとする課題】3端子系単回線送電線
に前記の方式を適用することを想定する。図6は、一般
的な3端子系単回線送電線の系統図であり、各端をA端
、B端、C端とし、分岐点をTとする。A端には中性点
接地された電源が接続され、B端、C端には図示してい
ないが、負荷又は中性点接地されていない電源が接続さ
れている。
[Problems to be Solved by the Invention] It is assumed that the above method is applied to a three-terminal single-circuit power transmission line. FIG. 6 is a system diagram of a typical three-terminal single-line power transmission line, with each end designated as A, B, and C, and a branching point as T. A power source whose neutral point is grounded is connected to the A terminal, and a load or a power source whose neutral point is not grounded is connected to the B and C ends, although not shown.

【0012】故障点はTB間にあるものとする(TC間
にあっても取扱いは同じである)が、送電線の管理者は
、故障点がどこにあるか分からない。管理者は、前記(
2) 式を使用して故障点を探索しようとするが、故障
点の距離はTA間の距離d1 よりも大きくなってしま
うので、分岐点Tよりも遠くにあることは分かるが、故
障点がTB間、TC間の何れにあるか分からない。
[0012] It is assumed that the failure point is located between TBs (the handling is the same even if it is between TCs), but the transmission line manager does not know where the failure point is. The administrator is responsible for the above (
2) I try to search for the fault point using the formula, but the distance of the fault point is larger than the distance d1 between TAs, so I know that it is farther than the branch point T, but the fault point is I don't know whether it is between TBs or between TCs.

【0013】したがって、TB間、TC間の両方を探索
しなければならず、故障点の探索作業にかかる労力は倍
加する。本発明は、前記の問題に鑑みてなされたもので
あり、抵抗接地した電源端Aを1つ有し、他端B,Cに
は負荷又は中性点接地のない電源を接続した抵抗接地方
式3端子系単回線送電線における1線地絡故障点を標定
する場合において、故障点が分岐点より遠くにあっても
、故障点を正確に標定することができる方法を提供する
ことを目的とする。
[0013] Therefore, it is necessary to search both between TBs and between TCs, and the effort required to search for a failure point is doubled. The present invention has been made in view of the above-mentioned problem, and is a resistance-grounded type having one power supply end A that is resistance-grounded, and the other ends B and C are connected to a power supply without load or neutral point grounding. The purpose of this invention is to provide a method that can accurately locate a fault point even if the fault point is far from a branch point when locating a single line ground fault fault point in a three-terminal single circuit power transmission line. do.

【0014】[0014]

【課題を解決するための手段】本発明の方法は、電源端
Aより故障点までの距離を算出し、算出された距離が、
当該電源端Aから回線分岐点Tまでの距離を越えるとき
には、他端B,Cでの故障相の電圧VB,VC 及び故
障相の電流IB,IC を測定し、分岐点Tと端Bとの
区間TBでの回線の正相インピーダンスZB 、分岐点
Tと端Cとの区間TCでの回線の正相インピーダンスZ
C を用いて、式     VTB=VB −ZB IB,       
                         
  (3)     VTC=VC −ZC IC  
                         
        (4) の値をそれぞれ計算し、値V
TBが値VTCよりも小さなとき、故障点は区間TBに
あると判定し、値VTCが値VTBよりも小さなとき、
故障点は区間TCにあると判定し、前記のように判定さ
れたされた区間において故障点の標定をする方法である
[Means for Solving the Problems] The method of the present invention calculates the distance from the power supply terminal A to the failure point, and the calculated distance is
When exceeding the distance from the power source end A to the line branch point T, measure the fault phase voltages VB, VC and fault phase currents IB, IC at the other ends B and C, and check the distance between the branch point T and the line branch point B. Positive sequence impedance ZB of the line in section TB, positive sequence impedance Z of the line in section TC between branch point T and end C
Using C, the formula VTB=VB −ZB IB,

(3) VTC=VC-ZC IC

(4) Calculate each value and obtain the value V
When TB is smaller than the value VTC, it is determined that the fault point is in the section TB, and when the value VTC is smaller than the value VTB,
This method determines that the failure point is in the section TC, and locates the failure point in the determined section as described above.

【0015】[0015]

【作用】図1,図2を参照しながら説明する。図2は発
明の適用対象である抵抗接地方式3端子系単回線送電線
回路を示している。電源端Aと受電端B、受電端Cとの
間にT形3相回線が設けられており、電源端Aと分岐点
Tとの間の距離はd1 、受電端Bと分岐点Tとの間の
距離はd2 、受電端Cと分岐点Tとの間の距離はd3
 とする。回線の正相インピーダンスは電源端Aと分岐
点Tとの間はZA 、受電端Bと分岐点Tとの間はZB
 、受電端Cと分岐点Tとの間はZC とする。
[Operation] This will be explained with reference to FIGS. 1 and 2. FIG. 2 shows a resistance-grounded three-terminal single-line power transmission line circuit to which the invention is applied. A T-type 3-phase line is installed between power supply end A, power receiving end B, and power receiving end C. The distance between power end A and branch point T is d1, and the distance between power receiving end B and branch point T is d1. The distance between them is d2, and the distance between the receiving end C and the branch point T is d3.
shall be. The positive phase impedance of the line is ZA between power supply end A and branch point T, and ZB between power receiving end B and branch point T.
, the distance between the power receiving end C and the branch point T is ZC.

【0016】電源端Aの正相電圧はVA 、受電端Bの
正相電圧はVB 、受電端Cの正相電圧はVC 、分岐
点の正相電圧はVT とする。電源端Aから正相電流I
B+IC が流れ出し、受電端Bには正相電流IB が
、受電端Cには正相電流IC が流れ出すものとする。 受電端Bの電圧VB は、電源端Aの電圧VA 、正相
インピーダンスZA,ZB ZC 、電流IB ,電流
IC を使って    VB =VA −(IB +I
C )ZA +IB ZB             
      (5) と表される。また、受電端Cの電
圧VC は、    VC =VA −(IB +IC
 )ZA +IC ZC              
     (6) と表される。
It is assumed that the positive-sequence voltage at the power source end A is VA, the positive-sequence voltage at the power-receiving end B is VB, the positive-sequence voltage at the power-receiving end C is VC, and the positive-sequence voltage at the branch point is VT. Positive sequence current I from power supply terminal A
It is assumed that B+IC begins to flow, a positive sequence current IB flows to the power receiving end B, and a positive sequence current IC flows to the power receiving end C. The voltage VB at the power receiving end B is calculated using the voltage VA at the power supply end A, the positive sequence impedances ZA, ZB ZC, the current IB, and the current IC, as follows: VB = VA - (IB + I
C) ZA +IB ZB
(5) It is expressed as In addition, the voltage VC at the receiving end C is VC = VA - (IB + IC
)ZA +IC ZC
(6) It is expressed as

【0017】また、受電端Bからみると、分岐点の電圧
VT は、     VTB=VB −IB ZB        
                         
      (7)   受電端Cからみると、分岐点
の電圧VT は、    VTC=VC −IC ZC
                         
              (8) と表される。故
障がないとき、(7)(8)の両者は当然等しくなって
いる。
[0017] Also, when viewed from the power receiving end B, the voltage VT at the branch point is as follows: VTB=VB -IB ZB

(7) Viewed from the receiving end C, the voltage VT at the branch point is: VTC=VC -IC ZC

(8) It is expressed as When there is no failure, both (7) and (8) are naturally equal.

【0018】ところが、図1に示したように区間TBで
地絡故障が起こり、地絡電流Ifが流れ出すと、受電端
Bの電圧VB は、     VB =VA −(IB +IC +If)Z
A +(IB −If)xZB           
        +IB (1−x)ZB      
                   (9) 受電
端Cの電圧VC は、     VC =VA −(IB +IC +If)Z
A +IC ZC             (10)
となる。
However, as shown in FIG. 1, when a ground fault occurs in the section TB and the ground fault current If begins to flow, the voltage VB at the receiving end B becomes VB = VA - (IB + IC + If) Z
A + (IB - If) x ZB
+IB (1-x)ZB
(9) The voltage VC at the receiving end C is VC = VA - (IB +IC +If)Z
A +IC ZC (10)
becomes.

【0019】地絡故障が起こったことを知らずに、分岐
点の電圧VTBを(7) 式に基づいて計算すると、 
   VTB=VB −IB ZB         
=VA −(IB +IC +If)ZA +(IB 
−If)xZB                  
     +IB (1−x)ZB −IB ZB  
       =VA −(IB +IC +If)Z
A −IfxZB           (11)とな
り、分岐点の電圧VTCを(8) 式に基づいて計算す
ると、                      
VTC=VC −IC ZC         =VA
 −(IB +IC +If)ZA +IC ZC −
IC ZC         =VA −(IB +I
C +If)ZA                 
      (12)となる。
If we calculate the voltage VTB at the branch point based on equation (7) without knowing that a ground fault has occurred, we get:
VTB=VB-IB ZB
=VA −(IB +IC +If)ZA +(IB
-If)xZB
+IB (1-x)ZB -IB ZB
=VA −(IB +IC +If)Z
A - IfxZB (11), and when the voltage VTC at the branch point is calculated based on formula (8),
VTC=VC-IC ZC=VA
−(IB +IC +If)ZA +IC ZC −
IC ZC =VA −(IB +I
C +If)ZA
(12).

【0020】(11)式と(12)式との差VTC−V
TBをとると、項IfxZB が残る。この項は故障電
流に基づく項であり、抵抗接地した電源端Aが1つ設置
されているので、Ifは流出することとなり(If>0
)、VTC>VTBとなる。もし、区間TCで地絡故障
(図示せず)が起こり、地絡電流Ifが流れ出すと、同
様の式の導出を行えばVTC<VTBとなる。
Difference between equation (11) and equation (12) VTC-V
Taking TB leaves the term IfxZB. This term is based on the fault current, and since one resistance-grounded power supply terminal A is installed, If will flow out (If>0
), VTC>VTB. If a ground fault (not shown) occurs in the section TC and a ground fault current If begins to flow, if a similar formula is derived, VTC<VTB.

【0021】したがって、(7) 式と(8) 式をそ
れぞれ計算し、それらの差をとることによって故障のあ
った点が区間TBであるのか区間TCであるのかを判定
することができる。区間TBにあると判定された後は、
直角成分方式を用いて、式   (xd2 −d1 )Im   {Z1BIa +
(Z0B−Z1B)I0 }I0 *     =Im
   Va I0 *           −d1 
Im   {ZA Ia +(Z0A−Z1A)I0 
}I0 *     (13)により故障点を計算する
ことができる。
Therefore, by calculating the equations (7) and (8) and taking the difference between them, it is possible to determine whether the point where the failure occurs is in the section TB or the section TC. After it is determined that it is in section TB,
Using the orthogonal component method, the formula (xd2 −d1 )Im {Z1BIa +
(Z0B-Z1B)I0 }I0 * = Im
VaI0*-d1
Im {ZA Ia + (Z0A-Z1A) I0
}I0 * The failure point can be calculated by (13).

【0022】区間TCにあると判定された後は、直角成
分方式を用いて、式   (yd3 −d1 )Im   {Z1CIa +
(Z0C−Z1C)I0 }I0 *     =Im
   Va I0 *           −d1 
Im   {ZA Ia +(Z0A−Z1A)I0 
}I0 *     (14)により故障点を計算する
ことができる。ここに、yd3 は区間TCにある分岐
点Cから故障点までの距離、Z1Bは区間TBにおける
正相インピーダンス、Z0Bは区間TBにおける零相イ
ンピーダンスス、Z1Aは区間TAにおける正相インピ
ーダンス、Z0Aは区間TAにおける零相インピーダン
、Z1Cは区間TCにおける正相インピーダンス、Z0
Cは区間TCにおける零相インピーダンスである。
After it is determined that it is in the interval TC, the formula (yd3 - d1 )Im {Z1CIa +
(Z0C-Z1C)I0 }I0 * = Im
VaI0*-d1
Im {ZA Ia + (Z0A-Z1A) I0
}I0 * The failure point can be calculated by (14). Here, yd3 is the distance from branch point C in section TC to the fault point, Z1B is the positive sequence impedance in section TB, Z0B is the zero sequence impedance in section TB, Z1A is the positive sequence impedance in section TA, and Z0A is the section Zero-sequence impedance in TA, Z1C is positive-sequence impedance in section TC, Z0
C is the zero-sequence impedance in section TC.

【0023】[0023]

【実施例】以下、この発明の故障点標定方法を添付図面
に基いて詳細に説明する。なお、前述した図1,図2と
共通するものについて同じ符号を使用する。図3は一般
的な3端子単回線送電線、及びこの発明に係る故障点標
定方法に適用される故障点算定装置を示す図であり、3
端子単回線送電線(以下3端子系と略称する)Lは、電
源端A側に高抵抗Rにより接地された電源TRを配置し
、受電端B側に負荷LB、受電端C側に非接地電源LC
を配置している。故障点算定装置1は電源端A側に配置
されている。なお、負荷LBの配置し,中性点を接地し
ていない電源の配置はこの逆でもよく、さらに受電端B
、受電端Cともに負荷を配置してもよく、受電端B、受
電端Cともに中性点を接地していない電源を配置しても
よい。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The failure point locating method of the present invention will be explained in detail below with reference to the accompanying drawings. Note that the same reference numerals are used for the same parts as in FIGS. 1 and 2 described above. FIG. 3 is a diagram showing a general three-terminal single-circuit power transmission line and a fault point calculation device applied to the fault point locating method according to the present invention.
A terminal single-line power transmission line (hereinafter referred to as a three-terminal system) L has a power source TR grounded by a high resistance R on the power source end A side, a load LB on the power receiving end B side, and an ungrounded power source on the power receiving end C side. Power supply LC
are placed. The failure point calculation device 1 is placed on the power supply end A side. Note that the placement of the load LB and the placement of the power source whose neutral point is not grounded may be reversed, and the receiving end B
, a load may be placed on both the power receiving end B and the power receiving end C, and a power source whose neutral point is not grounded may be placed on both the power receiving end B and the power receiving end C.

【0024】上記3端子系Lには、電源端A側における
回線Lのa相、b相及びc相に接続される変流器CT1
a,1b,1c、及び電源端A側の母線に接続され、線
間電圧を検出するトランス2、が接続されている。
The three-terminal system L includes a current transformer CT1 connected to the a phase, b phase, and c phase of the line L on the power supply terminal A side.
a, 1b, 1c, and a transformer 2 that is connected to the bus bar on the power supply end A side and detects line voltage.

【0025】故障点算定装置1には、進相器3を通して
読み取った各相電圧・電流、零相電圧・電流、正相電圧
・電流、逆相電圧・電流を所定レベルの電圧信号に変換
する補助トランス4、補助トランス4で変換された電圧
信号を所定電気角(例えば30度)毎にサンプリングす
るサンプルホールド回路5、A/D変換器6、受電端B
,Cにおける測定値のデータを無線、光等を通して受信
する受信器12、A/D変換器6により変換されたディ
ジタル値、及び受信器12を通して読み取った受電端B
,Cにおける測定値のディジタル値を格納するデータメ
モリ7、上記ディジタル値に基づいて地絡故障を検出す
る地絡故障検出部8(例えば64リレーにより構成され
る)、3端子系の区間ATの正相インピーダンスZ1A
の値、零相インピーダンスZ0Aの値、区間BTの正相
インピーダンスZ1Bの値、零相インピーダンスZ0B
の値、、区間CTの正相インピーダンスZ1Cの値、零
相インピーダンスZ0Cの値を定数として格納している
インピーダンスメモリ11、地絡故障検出部8からの故
障点算出指令信号に応じて、インピーダンスメモリ11
に格納している各インピーダンスと、データメモリ7に
格納されている各相電圧・電流、零相電圧・電流、正相
電圧・電流、逆相電圧・電流、受信器12を通して読み
取った受電端B及びCにおける各相電圧・電流、零相電
圧・電流、正相電圧・電流、逆相電圧・電流を要素とし
て前出(2)式の演算を行って電源端Aから故障点まで
の距離を算出し、算出された電源端Aから故障点までの
距離が電源端Aから分岐点Tまでの距離d1 よりも大
きな場合に、前出(3)(4)式の演算を行って故障点
が区間TBにあるのか、区間TCにあるのかを判定し、
区間TBにあれば(13)式、区間TCにあれば(14
)式に基づいて分岐点T以後の故障点を算出する演算部
9、並びに演算部9により算出された故障点等の情報を
表示する表示部10が設けられている。
The failure point calculation device 1 converts each phase voltage/current, zero-sequence voltage/current, positive-sequence voltage/current, and negative-sequence voltage/current read through the phase advancer 3 into a voltage signal of a predetermined level. An auxiliary transformer 4, a sample hold circuit 5 that samples the voltage signal converted by the auxiliary transformer 4 at every predetermined electrical angle (for example, 30 degrees), an A/D converter 6, and a power receiving end B.
, C, a receiver 12 that receives data of measured values at wireless, optical, etc., a digital value converted by the A/D converter 6, and a power receiving end B that reads the data through the receiver 12.
, a data memory 7 that stores digital values of measured values at C, a ground fault detection section 8 (consisting of, for example, 64 relays) that detects ground faults based on the digital values, and a three-terminal system section AT. Positive sequence impedance Z1A
value, value of zero-sequence impedance Z0A, value of positive-sequence impedance Z1B of section BT, zero-sequence impedance Z0B
, the value of the positive sequence impedance Z1C of the section CT, and the value of the zero sequence impedance Z0C as constants. 11
each impedance stored in the data memory 7, each phase voltage/current, zero-sequence voltage/current, positive-sequence voltage/current, negative-sequence voltage/current, and the power receiving end B read through the receiver 12. Calculate the distance from the power supply terminal A to the fault point by calculating the equation (2) above using each phase voltage and current, zero-sequence voltage and current, positive-sequence voltage and current, and negative-sequence voltage and current at C and C as elements. If the calculated distance from the power supply end A to the fault point is greater than the distance d1 from the power supply end A to the branch point T, calculate the above equations (3) and (4) to find the fault point. Determine whether it is in section TB or section TC,
If it is in the section TB, then the formula (13) is used, and if it is in the section TC, it is the formula (14).
) A calculation unit 9 that calculates the failure point after the branch point T based on the formula, and a display unit 10 that displays information such as the failure point calculated by the calculation unit 9 are provided.

【0026】また、受電端Bには、受電端B側における
回線Lのa相、b相及びc相に接続される変流器CT1
4a,14b,14c、電源端A側の母線に接続され、
線間電圧を検出するトランス15、上記変流器CT14
a,14b,14c、トランス15により測定された各
相電圧・電流に基づいて、零相電圧・電流、正相電圧・
電流、逆相電圧・電流を検出し、検出されたデータを無
線、光等を通して送信する送信器13が設けられている
[0026] The power receiving end B also has a current transformer CT1 connected to the a phase, b phase, and c phase of the line L on the power receiving end B side.
4a, 14b, 14c, connected to the bus bar on the power supply end A side,
A transformer 15 for detecting line voltage, and the current transformer CT14
a, 14b, 14c, and each phase voltage/current measured by the transformer 15, zero-sequence voltage/current, positive-sequence voltage/current,
A transmitter 13 is provided that detects current, negative phase voltage/current, and transmits the detected data via radio, light, or the like.

【0027】送信器13には、零相電圧・電流、正相電
圧・電流、逆相電圧・電流を検出する進相器、データを
ディジタル変換するためのサンプルホールド回路、A/
D変換器が内蔵されている。このサンプルホールド回路
及び故障点算定装置1のサンプルホールド回路5の間に
は、演算誤差を発生させないよう、後述するようにサン
プリング同期が採られている。
The transmitter 13 includes a phase advancer for detecting zero-sequence voltage/current, positive-sequence voltage/current, and negative-sequence voltage/current, a sample-and-hold circuit for digitally converting data, and an A/
Built-in D converter. Sampling synchronization is provided between this sample and hold circuit and the sample and hold circuit 5 of the failure point calculation device 1, as will be described later, so as to prevent calculation errors from occurring.

【0028】また、受電端Cには、受電端C側における
回線Lのa相、b相及びc相に接続される変流器CT1
6a,16b,16c、電源端A側の母線に接続され、
線間電圧を検出するトランス17、上記変流器CT16
a,16b,16c、トランス17により測定された各
相電圧・電流に基づいて、零相電圧・電流、正相電圧・
電流、逆相電圧・電流を検出し、検出されたデータを無
線、光等を通して送信する送信器18が設けられている
In addition, the power receiving end C has a current transformer CT1 connected to the a phase, b phase, and c phase of the line L on the power receiving end C side.
6a, 16b, 16c, connected to the bus bar on the power supply end A side,
A transformer 17 for detecting line voltage and the current transformer CT16
Based on the voltage and current of each phase measured by a, 16b, 16c and transformer 17, zero-sequence voltage and current, positive-sequence voltage and
A transmitter 18 is provided that detects current, negative phase voltage/current, and transmits the detected data via radio, light, or the like.

【0029】送信器18には、零相電圧・電流、正相電
圧・電流、逆相電圧・電流を検出する進相器、データを
ディジタル変換するためのサンプルホールド回路、A/
D変換器が内蔵されている。このサンプルホールド回路
及び故障点算定装置1のサンプルホールド回路5の間に
は、演算誤差を発生させないよう、後述するようにサン
プリング同期が採られている。
The transmitter 18 includes a phase advancer for detecting zero-sequence voltage/current, positive-sequence voltage/current, and negative-sequence voltage/current, a sample-and-hold circuit for digitally converting data, and an A/
Built-in D converter. Sampling synchronization is provided between this sample and hold circuit and the sample and hold circuit 5 of the failure point calculation device 1, as will be described later, so as to prevent calculation errors from occurring.

【0030】上記故障点算定装置1の動作は次のとおり
である。地絡故障検出部8が故障を検出すると、演算部
9に故障点標定動作を開始させる。演算部9はデータメ
モリ7に格納されている故障検出相に対応する電流、電
圧データを取り出す。演算部9は、上記各データを取り
込み、電源端Aの故障相電流IA 、故障相電圧VA 
、受電端Bの故障相電流IB ,故障相電圧VB 、受
電端Bの故障相電流IB ,故障相電圧VB を検出す
る。そして、既に示した(3)(4)式に絶対値をつけ
たもの      VTB=|VB −IB ZB |
                         
       (15)      VTC=|VC 
−IC ZC |                 
               (16)に代入して、
電源端Aから故障点までの距離xを数値計算し、算出さ
れた電源端Aから故障点までの距離xが電源端Aから分
岐点Tまでの距離d1 よりも大きな場合に、前出(3
)(4)式の演算を行って故障点が区間TBにあるのか
、区間TCにあるのかを判定し、区間TBにあれば(1
3)式、区間TCにあれば(14)式に基づいて分岐点
T以後の故障点を算出することができる。
The operation of the failure point calculation device 1 is as follows. When the ground fault detection section 8 detects a fault, it causes the calculation section 9 to start a fault point locating operation. The calculation unit 9 retrieves current and voltage data corresponding to the failure detection phase stored in the data memory 7. The calculation unit 9 takes in each of the above data and calculates the faulty phase current IA and faulty phase voltage VA of the power supply terminal A.
, the faulty phase current IB of the power receiving end B, the faulty phase voltage VB, the faulty phase current IB of the power receiving end B, and the faulty phase voltage VB are detected. Then, the equations (3) and (4) shown above are given absolute values: VTB=|VB −IB ZB |

(15) VTC=|VC
-IC ZC |
Substituting into (16),
The distance x from the power supply end A to the fault point is calculated numerically, and if the calculated distance x from the power supply end A to the fault point is greater than the distance d1 from the power supply end A to the branch point T, the above (3)
) (4) to determine whether the failure point is in the interval TB or the interval TC, and if it is in the interval TB, (1
If the equation (3) is in the section TC, the failure point after the branch point T can be calculated based on the equation (14).

【0031】なお、上記送信器13,18、受信器12
間のデータの伝送にあたっては、高速、高信頼性が要求
される。したがって、データ伝送方式として、例えばP
CM伝送方式を用い、通信路も大容量のものを用いるこ
とが好ましい。特に、受電端Aのデータと電源端Bのデ
ータとのサンプリング同期を正確にとらなければ、演算
結果に誤差が生じるので、データ伝送中に生じるサンプ
リング時間差を正確に測定し補正するいわゆるSP同期
制御技術(送信器13、受信器12間で信号を往復させ
、その往復にかかった時間を測定してサンプリング時間
差を求める技術。三菱電機技報Vol.63,No.8
,1989,p.p.27−31 参照)を採用するこ
とが好ましい。
[0031] Note that the transmitters 13, 18 and the receiver 12
High speed and high reliability are required for data transmission between the two. Therefore, as a data transmission method, for example, P
It is preferable to use a CM transmission method and to use a communication channel with a large capacity. In particular, if the sampling synchronization between the data at power receiving end A and the data at power end B is not accurately achieved, errors will occur in the calculation results, so so-called SP synchronization control is used to accurately measure and correct the sampling time difference that occurs during data transmission. Technology (Technology to send a signal back and forth between the transmitter 13 and receiver 12, measure the time taken for the round trip, and find the sampling time difference. Mitsubishi Electric Technical Report Vol. 63, No. 8
, 1989, p. p. 27-31) is preferable.

【0032】なお、本発明は上記の実施例に限定される
ものではなく、例えば電源端A、受電端B,Cにそれぞ
れ送信機を設置してデータの伝送をさせ、電源端Aから
も受電端B,Cからも離れた場所に受信器12を含む故
障点算定装置1を設置することも可能である。その他本
発明の要旨を変更しない範囲内において、種々の変更を
施すことが可能である。
It should be noted that the present invention is not limited to the above-mentioned embodiments; for example, transmitters may be installed at the power source end A and power receiving ends B and C to transmit data, and power can also be received from the power source end A. It is also possible to install the failure point calculation device 1 including the receiver 12 at a location away from the ends B and C. Various other changes may be made without departing from the gist of the present invention.

【0033】[0033]

【発明の効果】以上のように本発明によれば、電源端及
び2つの受電端の情報を用いることによって、分岐点以
後の故障点が何れの分岐にあるのかを判断することがで
きるので、故障点の特定が可能になり、少ない労力で故
障点の探索作業を行うことができる。
As described above, according to the present invention, by using information on the power source end and the two power receiving ends, it is possible to determine in which branch the failure point after the branch point is located. It becomes possible to identify the failure point, and search for the failure point can be performed with less effort.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の原理を説明するための、3端子単回線
送電線の故障相等価回路図である。
FIG. 1 is a fault phase equivalent circuit diagram of a three-terminal single-line power transmission line for explaining the principle of the present invention.

【図2】本発明の原理を説明するための、3端子単回線
送電線の故障相等価回路図である。
FIG. 2 is a fault phase equivalent circuit diagram of a three-terminal single-line power transmission line for explaining the principle of the present invention.

【図3】3端子単回線送電線における故障点標定方法に
適用される故障点算定装置を示す図である。
FIG. 3 is a diagram showing a fault point calculation device applied to a fault point locating method in a three-terminal single-circuit power transmission line.

【図4】一般的な2端子単回線送電線の回路図である。FIG. 4 is a circuit diagram of a general two-terminal single-circuit power transmission line.

【図5】故障点を計算するための等価回路図である。FIG. 5 is an equivalent circuit diagram for calculating a failure point.

【図6】一般的な3端子単回線送電線の回路図である。FIG. 6 is a circuit diagram of a general three-terminal single-circuit power transmission line.

【符号の説明】[Explanation of symbols]

1  故障点算定装置 9  演算部 L  抵抗接地方式3端子単回線送電線A  電源端 B  受電端 C  受電端 1 Failure point calculation device 9 Arithmetic section L Resistance grounding type 3 terminal single circuit power transmission line A Power supply end B Power receiving end C Power receiving end

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】抵抗接地した電源端Aを1つ有し、他端B
及びCには負荷又は中性点接地のない電源を接続した抵
抗接地方式3端子系単回線送電線における1線地絡故障
点を標定する方法であって、電源端Aより故障点までの
距離を算出し、他端B,Cでの故障相の電圧VB,VC
 及び故障相の電流IB,IC を測定し、算出された
距離が、当該電源端Aから回線分岐点Tまでの距離を越
えるときには、分岐点Tと端Bとの区間TBでの回線の
正相インピーダンスZB 、分岐点Tと端Cとの区間T
Cでの回線の正相インピーダンスZC を用いて、式V
TB=VB −ZB IB, VTC=VC −ZC IC の値をそれぞれ計算し、値VTBが値VTCよりも小さ
なとき、故障点は区間TBにあると判定し、値VTCが
値VTBよりも小さなとき、故障点は区間TCにあると
判定し、前記のように判定されたされた区間において故
障点の標定をすることを特徴とする地絡故障点標定方法
Claim 1: Has one power supply terminal A that is resistively grounded, and the other terminal B
and C is a method for locating a single-line ground fault fault point in a resistance-grounded three-terminal single-circuit transmission line connected to a power supply without load or neutral point grounding, and the distance from power supply end A to the fault point. Calculate the fault phase voltages VB and VC at the other ends B and C.
and currents IB and IC of the faulty phase are measured, and if the calculated distance exceeds the distance from the power supply end A to the line branch point T, the positive phase of the line in the section TB between the branch point T and end B is determined. Impedance ZB, section T between branch point T and end C
Using the positive sequence impedance ZC of the line at C, the formula V
Calculate the values of TB = VB - ZB IB, VTC = VC - ZC IC, and when the value VTB is smaller than the value VTC, it is determined that the failure point is in the section TB, and when the value VTC is smaller than the value VTB. A ground fault fault point locating method characterized by determining that the fault point is in the section TC, and locating the fault point in the section determined as described above.
JP8841291A 1991-04-19 1991-04-19 Method for locating earth fault point Pending JPH04319674A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8841291A JPH04319674A (en) 1991-04-19 1991-04-19 Method for locating earth fault point

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8841291A JPH04319674A (en) 1991-04-19 1991-04-19 Method for locating earth fault point

Publications (1)

Publication Number Publication Date
JPH04319674A true JPH04319674A (en) 1992-11-10

Family

ID=13942085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8841291A Pending JPH04319674A (en) 1991-04-19 1991-04-19 Method for locating earth fault point

Country Status (1)

Country Link
JP (1) JPH04319674A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018163066A (en) * 2017-03-27 2018-10-18 三菱電機株式会社 Fault locator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018163066A (en) * 2017-03-27 2018-10-18 三菱電機株式会社 Fault locator

Similar Documents

Publication Publication Date Title
AU2007240222B2 (en) Multi-ended fault location system
US5773980A (en) One-terminal fault location system that corrects for fault resistance effects
CN103869221B (en) Based on the double-circuit line singlephase earth fault distance measurement method of SV network samples
US20120068717A1 (en) Fault location in a non-homogeneous electric power line
FI108893B (en) A method for detecting a faulty or faulty output or branch of a power grid
US6097280A (en) Fault locator that uses positive-phase-sequence electricity
CN1487641B (en) Grounding direction relay system
JP2023507233A (en) Parameter-independent traveling wave-based fault localization using asynchronous measurements
WO2019166903A1 (en) Method and device for fault location in a two-terminal transmission system
US6924647B2 (en) Fault location method and device
Lin et al. Fault location for three-ended ring-topology power system using minimum GPS-based measurements and CVT/CT sensing
JP2000074978A (en) Fault point locator at parallel two-line transmission line
Rahideh et al. A fault location technique for transmission lines using phasor measurements
JP3341485B2 (en) Transmission line fault location method
Voloh et al. Fault locator based on line current differential relays synchronized measurements
JPH04319674A (en) Method for locating earth fault point
Cheng et al. One-terminal impedance fault location algorithm for single phase to earth fault of transmission line
FI108168B (en) Method for determining the electrical grounding state of the output of an electrical grid
Muddebihalkar et al. Analysis of fault location algorithm for transmission line protection based on synchronized phasor measurement
CN110470949A (en) Fault positioning method for transmission line
CN110865279A (en) Single-phase earth fault positioning method based on neutral point earth current starting
JPH05297053A (en) Trouble-point location method of ground fault
JPH04273073A (en) Location for grounding faulty point
JP3013488B2 (en) Ground fault fault location method
US11946966B1 (en) Selective stator ground fault protection using positive-sequence voltage reference