JPH065256B2 - Accident point location method - Google Patents

Accident point location method

Info

Publication number
JPH065256B2
JPH065256B2 JP60291752A JP29175285A JPH065256B2 JP H065256 B2 JPH065256 B2 JP H065256B2 JP 60291752 A JP60291752 A JP 60291752A JP 29175285 A JP29175285 A JP 29175285A JP H065256 B2 JPH065256 B2 JP H065256B2
Authority
JP
Japan
Prior art keywords
section
accident
terminal
point
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60291752A
Other languages
Japanese (ja)
Other versions
JPS62150176A (en
Inventor
俊二 浜中
哲彦 河野
裕志 川神
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CHUGOKU DENRYOKU KK
Hitachi Cable Ltd
Original Assignee
CHUGOKU DENRYOKU KK
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CHUGOKU DENRYOKU KK, Hitachi Cable Ltd filed Critical CHUGOKU DENRYOKU KK
Priority to JP60291752A priority Critical patent/JPH065256B2/en
Publication of JPS62150176A publication Critical patent/JPS62150176A/en
Publication of JPH065256B2 publication Critical patent/JPH065256B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Locating Faults (AREA)

Description

【発明の詳細な説明】 [発明の対象] 本発明は電力系統の事故点を標定する事故点標定方式特
に多端子送電線路の事故点標定方式に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] The present invention relates to a fault point locating method for locating a fault point in a power system, and more particularly to a fault point locating method for a multi-terminal transmission line.

[従来の技術とその問題点] 近年の電力系統では需要の拡大、広域化に伴ない、長尺
化あるいは多端子化が進み、複雑な系統となってきてお
り、これに適用可能な精度の高い事故点標定装置の開発
が望まれている。
[Prior art and its problems] In recent years, the demand for power systems has expanded and the area has expanded, and the number of terminals has become longer and more complex. Development of a high accident location device is desired.

現在用いられている事故点標定方式としては、事故時に
インパルスを印加し、その反射波が戻ってくるまでの時
間を計測するパルスレーザー方式、あるいは事故点で発
生するパルスを両端の電気所で計測し、その時間差より
事故点を標定するサージ受信方式等があり、いずれも進
行波現象を利用したものである。
Currently used accident location methods are pulse laser method in which an impulse is applied at the time of an accident and the time until the reflected wave returns, or the pulse generated at the accident point is measured at the electrical stations at both ends. However, there is a surge receiving system that locates the accident point from the time difference, and all of them use the traveling wave phenomenon.

しかしながら、印加パルスあるいは事故サージは、その
伝播速度が速いこと、進行するに従い減衰変歪を受ける
こと、ねん架部や分岐点で反射を受けること、あるいは
雷との混同を受けること等の理由により、性能向上の面
で明らかに限界がある。
However, the applied pulse or accident surge has a high propagation speed, is subject to attenuation / distortion as it progresses, is reflected at a suspension or branch point, or is confused with lightning. However, there is a clear limit in terms of performance improvement.

これを改善するものとして、例えば架空送電線路の架空
地線に流れる電流を複数の位置例えば鉄塔で検出して、
それらの位相及び絶対値情報から事故区間を標定する方
式が提案されている。しかしながら、これは標定精度を
高めるためにはそれだけ多数箇所での検出が必要とな
り、これに応じて多数の装置を必要とするため設備費が
高くなる欠点があった。
To improve this, for example, by detecting the current flowing through the overhead ground wire of the overhead power transmission line at a plurality of positions, such as a steel tower,
A method for locating an accident section based on the phase and absolute value information has been proposed. However, this has a drawback that detection is required at a large number of places in order to improve the orientation accuracy, and accordingly a large number of devices are required, which increases the equipment cost.

[発明の目的] 本発明は、前記従来技術の欠点を改善すたものであり、
系統分岐が多数存在しかつ複数の電源を有する多端子送
電線路においても事故点を精度良く標定できると共に、
装置数延いては設備費の低減並びに信頼性・保守性の向
上に役立つ新規な事故点標定方式を提供することを目的
とする。
The object of the present invention is to improve the above-mentioned drawbacks of the prior art.
Accident points can be accurately located even in multi-terminal transmission lines that have multiple system branches and have multiple power sources, and
It is an object of the present invention to provide a new accident point locating method that helps reduce the number of devices and, in addition, the equipment cost and improve reliability and maintainability.

[発明の概要] すなわち、本発明は、多端子送電線路において、各端子
で計測される三相各相の電圧(V)・電流(I)情報と
端子から端子までの区間若しくは端子から分岐点までの
区間(以下区間という)について予め決定されている区
間距離()及び線路インピーダンス(Z)とから各区
間毎に定義される事故区間判別関数f(V、I、、
Z)を用いて周辺のノードから順次内部のノードへ判定
を進めて事故区間の標定をした後、前記各端子で計測さ
れる三相各相の電圧(V)・電流(I)情報から定まる
当該事故区間両端の電圧(V)・電流(I)情報と当該
事故区間について予め決定されている区間距離()及
び線路インピーダンス(Z)とから事故点の標定をする
ことを特徴とする。
[Summary of the Invention] That is, according to the present invention, in a multi-terminal power transmission line, voltage (V) / current (I) information of each of the three phases measured at each terminal and a section from the terminal to the terminal or a branch point from the terminal. Up to the section (hereinafter referred to as section), the fault section discriminant function f (V, I,) defined for each section from the section distance () and the line impedance (Z) that are predetermined.
Z) is used to sequentially proceed from the peripheral node to the internal node to locate the faulty section, and then it is determined from the voltage (V) / current (I) information of each of the three phases measured at the terminals. It is characterized in that a fault point is located based on voltage (V) / current (I) information at both ends of the fault section, a section distance () and a line impedance (Z) which are predetermined for the fault section.

[実施例] 以下に、本発明の実施例を詳述する。[Examples] Examples of the present invention will be described in detail below.

第1図において事故点をFとし、端子SR間の距離を
、端子Sから事故点Fまでの距離をk(0<k<
1)とし、送電線路の単位長当りの正相インピーダンス
をZ1とすると、例えば、b、c相で相間短絡事故が発
生した時には、端子Sについて b,Vc…端子Sでのb、c相の相電圧 Ib,Ib…端子Sでのb、c相の相電流 ZbcF…事故点付加インピーダンス と表わすことができる。ZbcFが無視できる程小さい場
合には、(1)式により事故点までの距離k(が定めら
れ、これが現行の距離リレーの基本式となっている。一
方、端子Rについても(1)式と同様の関係式が成り立つ
ので一般に未知数できるZbcFを消去することができ、
結局 Vb′,Vc′…端子Rでのb、c相の相電圧 Ib′,Ib′…端子Rでのb、c相の相電流 により係数kが求まる。すなわち、予め既知できる、
1並びに端子S、Rの各点で計測される電流・電圧情
報により事故点の標定が可能である。本発明の根幹はこ
の事柄を一般の多端子送電線路に拡張することにある。
In FIG. 1, the accident point is F, and the distance between the terminals SR is k (0 <k <
Assuming 1) and the positive phase impedance per unit length of the transmission line is Z 1 , for example, when an interphase short circuit accident occurs in the b and c phases, the terminal S V b , V c ... Phase voltage of b and c phases at terminal S I b , I b ... Phase current of b and c phases at terminal S Z bcF ... Can be expressed as impedance at fault point. When Z bcF is so small that it can be ignored, the distance k to the accident point is defined by equation (1), which is the basic equation of the current distance relay. On the other hand, the terminal R is also equation (1). Since the same relational expression as is established , Z bcF, which can be an unknown number in general, can be eliminated,
After all Vb ', Vc' ... Phase voltage of b and c phases at terminal R Ib ', Ib' ... Phase current of b and c phases at terminal R The coefficient k is obtained. That is, it can be known in advance,
The fault point can be located based on the current / voltage information measured at each point of Z 1 and terminals S and R. The basis of the present invention is to extend this matter to a general multi-terminal transmission line.

第2図に示すように端子S、T、Rを有する3端子送電
線路においてノードNとし、各区間SN、TN、RNの
区間距離をそれぞれ123、各区間SN、T
N、RNでの単位長当りの正相インピーダンスをそれぞ
れZ1 SN,Z1 TN,Z1 RNとする。前述の2端子の場合と
同様b、c相での相間短絡事故が発生し、その事故点F
は区間RNにあるものとする。ノードNから事故点Fま
での距離はk13である。(2)式に従いkは、次式で表
わされる。
As shown in FIG. 2, in a three-terminal power transmission line having terminals S, T, and R, a node N is set, and section distances of the sections SN, TN, and RN are 1 , 2 , 3 and sections SN, T, respectively.
Positive phase impedances per unit length at N and RN are Z 1 SN , Z 1 TN , and Z 1 RN , respectively. As in the case of the above-mentioned two terminals, a phase-to-phase short circuit accident occurs in the b and c phases and the accident point
Is in the interval RN. The distance from the node N to the accident point F is k1 3 . According to the equation (2), k is represented by the following equation.

b N,Vc N…ノードNでのb、c相の相電圧 Ib N,Ic N…ノードNでのb、c相の相電流 一方、キルヒホッフの法則より、 である。(4),(5)式を(3)式に代入すれば次式を得る。 V b N , V c N ... Phase voltage of b and c phases at node N I b N , I c N ... Phase current of b and c phases at node N On the other hand, according to Kirchhoff's law, Is. By substituting Eqs. (4) and (5) into Eq. (3), the following equation is obtained.

すなわち、各区間SN、TN、RNの区間距離及び単位
長当りの正相インピーダンスが既知であれば、3端子
S、R、の各点で計測される電圧・電流情報により事故
点が標定される。
That is, if the section distances of the sections SN, TN, and RN and the positive-phase impedance per unit length are known, the fault point is located by the voltage / current information measured at the points of the three terminals S and R. .

本発明は(6)式による事故点の標定を行なうに先立ち、
事故区間判別関数fなるものを用い事故区間の標定を行
なう方式である。以下この事故区間の標定について述べ
る。
The present invention, prior to the location of the accident point by the formula (6),
This is a method of locating an accident section by using an accident section discriminant function f. The orientation of this accident section will be described below.

区間RTについて、次式で与えられる事故区間判別関数
STを考える。
Consider the accident section discriminant function f ST given by the following equation for the section RT.

同様に区間TR、SRについても を考える。区間RNで事故が発生し、区間SN、TNが
健全な場合には、 fST=0,fTR≠0,fSR≠0…(10) が成り立つ。従って各端子、S、T、Rでの電圧・電流
情報の計測値から、事故区間判別関数fにより次のよう
に事故区間の標定ができる。
Similarly for sections TR and SR think of. When an accident occurs in the section RN and the sections SN and TN are sound, f ST = 0, f TR ≠ 0, f SR ≠ 0 (10). Therefore, from the measured values of the voltage / current information at each terminal, S, T, and R, the fault segment discriminant function f can be used to locate the fault segment as follows.

ST=0,fRT=0,fSR=0→事故なし fST=0,fRT≠0,fSR≠0→事故区間RN fST≠0,fTR≠0,fSR=0→事故区間TN…(11) fST≠0,fTR=0,fSR≠0→事故区間SN そして4端子以上の多端子送電線路においても、同様の
手順で事故区間及び事故点の標定が可能である。例え
ば、第3図に示すような系統の送電線路においては、ノ
ードN1及びN2に対して上記した事故区間判別関数を適
用することによりノードN1については区間AN1
1、CN1、ノードN2については区間DN2、EN2
いずれの区間に事故点が含まれているかを判定する。判
定の結果これらのいずれの区間にも事故点が含まれてい
ない場合事故区間判別関数f(V、I、、Z)=0に
は、ノードN1、N2のそれぞれの電圧・電流情報はそれ
ぞれ端子A、B、Cの電圧・電流情報、端子D,Eの電
圧・電流情報を用いて表わすことができるので、結局ノ
ードN3を分岐点とするノードN1、N2と端子Hで構成
される端子送電線路に置き換えることができ、前述の3
端子送電線路の場合と同様の手順の適用が可能である。
すなわち、一般の複雑多岐な系統の送電線路においても
周辺のノードから事故区間判別関数fによる判定を行な
い、順次より内部のノードへと進めて行くという操作を
行なえば、最終的に事故区間及び事故点の標定が可能で
ある。
f ST = 0, f RT = 0, f SR = 0 → no accident f ST = 0, f RT ≠ 0, f SR ≠ 0 → accident section RN f ST ≠ 0, f TR ≠ 0, f SR = 0 → Accident section TN (11) f ST ≠ 0, f TR = 0, f SR ≠ 0 → Accident section SN And even in a multi-terminal transmission line with 4 or more terminals, it is possible to locate the accident section and the accident point by the same procedure. Is. For example, in a power transmission line of the system shown in FIG. 3, section AN 1 for node N 1 by applying fault section discriminant function described above with respect to the node N 1 and N 2,
For B 1 , CN 1 , and node N 2, it is determined which of the sections DN 2 and EN 2 contains the accident point. As a result of the judgment, when the accident point is not included in any of these sections, the voltage / current information of the nodes N 1 and N 2 is stored in the accident section discriminant function f (V, I, Z) = 0. Since it can be represented by using the voltage / current information of the terminals A, B, and C and the voltage / current information of the terminals D and E, respectively, the nodes N 1 and N 2 and the terminal H whose branch points are the node N 3 are eventually used. It can be replaced with a configured terminal transmission line, and
The same procedure as in the case of the terminal transmission line can be applied.
That is, even in general transmission lines of complicated and diverse systems, if the operation is performed from the surrounding nodes by the accident section discriminant function f, and the operation is sequentially advanced to the internal nodes, finally the accident section and the accident will occur. Orientation of points is possible.

以上の説明は、b、c相の相間短絡事故を例としたが、
本発明はこれに限定されるものではなく、地絡事故にお
いても適用可能なのは言うまでもない。
In the above explanation, the interphase short circuit accident of the b and c phases is taken as an example.
Needless to say, the present invention is not limited to this and can be applied to a ground fault accident.

次に本発明を実施するための具体的構成の一例を図を参
照しながら説明する。第4図はその構成図ある。ノード
Nで分岐される送電線路の各区間1,1′,1″の各端
子にはそれぞれ変成器2,2′,2″でサンプリング回
路3,3′,3″及び送受信器4,4′,4″が順次配
置接続されている。送受信器4,4′,4″は例えば光
複合架空地線の光ファイバ又はマイクロ波回線の伝送路
5,5′,5″により相互に結ばれており、変成器2,
2′,2″で観測される各端子の電圧・電流情報はサン
プリング回路3,3′,3″でサンプリング同期した情
報とされる。区間1の端子は他の区間1′,1″の端子
に対し上位端子となっており、事故点の標定をするため
の演算処理はここで行なわれる。すなわち送受信器4は
他の端子の送受信器4′,4″から伝送路5′,5″を
介してそれぞれ区間1′,1″の各端子の電圧・電流情
報を受取り、事故点標定装置6で演算処理して事故点の
標定とし、表示器7が結果を表示する。ちなみに、伝送
路5,5′,5″は電圧・電流情報の伝送に使われるの
みならず各区間1,1′,1″の各端子の情報信号を同
期させるための同期信号の伝送に使うこと並びに他の通
信回線との共用を妨げるものではない。
Next, an example of a specific configuration for carrying out the present invention will be described with reference to the drawings. FIG. 4 is a block diagram thereof. The transformers 2, 2 ', 2 "are respectively connected to the terminals of the sections 1, 1', 1" of the transmission line branched at the node N by the sampling circuits 3, 3 ', 3 "and the transceivers 4, 4'. , 4 ″ are sequentially arranged and connected. The transmitters / receivers 4, 4 ′, 4 ″ are connected to each other by, for example, an optical fiber of an optical composite overhead ground wire or a transmission line 5, 5 ′, 5 ″ of a microwave line.
The voltage / current information of each terminal observed at 2 ', 2 "is information synchronized with sampling at the sampling circuits 3, 3', 3". The terminal of the section 1 is a higher terminal than the terminals of the other sections 1'and 1 ", and the arithmetic processing for locating the fault point is performed here. The voltage / current information of each terminal of the sections 1'and 1 "is received from the devices 4'and 4" via the transmission lines 5'and 5 ", and the fault point locating device 6 performs arithmetic processing to determine the fault point. The display 7 displays the result. Incidentally, the transmission lines 5, 5 ', 5 "are used not only for transmission of voltage / current information but also for transmission of a synchronizing signal for synchronizing the information signal of each terminal of each section 1, 1', 1". It does not prevent sharing with other communication lines.

第5図は前記事故点標定装置6の演算フロー図である。
事故発生有無判定部61は各区間1,1′,1″の各端
子からの電圧・電流情報に異常値が確認されると事故の
発生を告げ、事故形態判定部62に電圧・電流情報を渡
す。事故形態判定部62は事故形態の判定すなわち相間
短絡事故、地絡事故の別について判定を行なうもので、
各端子の各相の電圧・電流情報を用いる。事故形態が判
定されると事故区間標定部63は前述した事故区間判別
関数fによる演算を行ない事故区間の標定をする。事故
区間判別関数fは事故形態の違いに合わせて種々設定さ
れるものである。事故点標定部64は当該事故区間につ
いて事故点標定を行なうもので、区間1,1′,1″の
区間距離・単位長当りの正相インピーダンスが既知の値
として予め入力されておりこれらの値と各区間1,
1′,1″の各端子の電圧・電流情報を用い事故点を標
定する。
FIG. 5 is a calculation flowchart of the accident point locating device 6.
If an abnormal value is confirmed in the voltage / current information from each terminal of each section 1, 1 ′, 1 ″, the accident occurrence / non-existence judging unit 61 notifies the occurrence of the accident, and informs the accident form judging unit 62 of the voltage / current information. The accident type determination unit 62 determines the type of accident, that is, the phase short circuit accident and the ground fault, and
The voltage / current information of each phase at each terminal is used. When the accident type is determined, the accident section locating unit 63 performs the calculation by the above-described accident section discriminant function f to locate the accident section. The accident section discriminant function f is variously set according to the difference in the accident form. The accident point locator 64 performs accident point locating for the accident section. The section distances of sections 1, 1 ', and 1 "and the positive-phase impedance per unit length are input in advance as known values. And each section 1,
The fault point is located by using the voltage / current information of each terminal of 1'and 1 ".

事故点標定装置6による標定結果は表示器7で例えば事
故発生時間、事故区間、事故点について表示を行なう。
The result of orientation by the accident point locating device 6 is displayed on the display device 7, for example, about the time when the accident occurred, the accident section, and the accident point.

本発明は多端子送電線路の各端子で計測される三相各相
の電圧・電流情報を事故点標定の要素としているので、
特にこの電流瞬時値に着目すれば、電流差動式リレーを
用いた系統の保護継電システムとしての機能を併せ持つ
ことが可能である。
Since the present invention uses the voltage / current information of each of the three phases measured at each terminal of the multi-terminal transmission line as an element of fault location,
In particular, if attention is paid to this instantaneous current value, it is possible to have a function as a system protective relay system using a current differential relay.

[発明の効果] 以上説明したように本発明によれば、多端子送電線路の
各端子例えば変電所で計測差る三相各相の電圧・電流情
報と端子から端子までの区間若しくは端子から分岐点ま
での区間について予め決定されている区間距離及び線路
インピーダンスを用いて事故区間判別関数により事故区
間の標定をした後、当該事故区間について事故点を標定
する方式なので、各端子で電圧・電流情報を計測し上位
端子に伝送する装置と、当該上位端子で演算処理する装
置のみで構成することができ、従来の多数の鉄塔設置に
よる標定方式に比較して精度を損なうことなく廉価なも
のとなる。
[Effects of the Invention] As described above, according to the present invention, voltage / current information of each terminal of a multi-terminal transmission line, for example, three-phase each phase measured at a substation, and a section from a terminal to a terminal or a branch from the terminal. Voltage and current information is calculated at each terminal because the fault point is located by the fault zone discriminant function using the predetermined zone distance and line impedance for the zone up to the point It can be configured with only a device that measures and transmits to the upper terminal and a device that performs arithmetic processing at the upper terminal, which is inexpensive without compromising accuracy compared to the conventional orientation method by installing many towers. .

また、本発明の実施に必要な各種装置は各端子に設置さ
れるのみであるから、信頼性・保守性の面で非常に有利
である。
In addition, various devices necessary for carrying out the present invention are only installed in each terminal, which is very advantageous in terms of reliability and maintainability.

【図面の簡単な説明】[Brief description of drawings]

第1図、第2図、第3図はそれぞれ2端子送電線路、3
端子送電線路、6端子送電線路の系統図、第4図は本発
明実施に係る構成図、第5図は事故点標定装置6の演算
フロー図である。 2…変成器、 3…サンプリング回路、 4…送受信器、 6…事故点標定装置、 7…表示器、 61…事故発生有無判定部、 62…事故形態判定部、 63…事故区間標定部、 64…事故点標定部。
Figures 1, 2 and 3 show 2-terminal transmission lines and 3 respectively.
FIG. 4 is a system diagram of the terminal transmission line and the 6-terminal transmission line, FIG. 4 is a configuration diagram according to the embodiment of the present invention, and FIG. 5 is a calculation flow diagram of the accident point locating device 6. 2 ... Transformer, 3 ... Sampling circuit, 4 ... Transceiver, 6 ... Accident point locating device, 7 ... Indicator, 61 ... Accident occurrence determination unit, 62 ... Accident form determination unit, 63 ... Accident section locating unit, 64 … Accident point locator.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 川神 裕志 茨城県日立市日高町5丁目1番1号 日立 電線株式会社電線研究所内 (56)参考文献 特開 昭58−219463(JP,A) 特開 昭58−208675(JP,A) ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Hiroshi Kawakami 5-1-1 Hidaka-cho, Hitachi-shi, Ibaraki Hitachi Cable Co., Ltd. Electric Wire Laboratory (56) Reference JP-A-58-219463 (JP, A) ) JP-A-58-208675 (JP, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】多端子送電線路において、各端子で計測さ
れる三相各相の電圧(V)・電流(I)情報と端子から
端子までの区間若しくは端子から分岐点までの区間(以
下区間という)について予め決定されている区間距離
()及び線路インピーダンス(Z)とから各区間毎に
定義される事故区間判別関数f(V、I、、Z)が、
当該区間に事故点を含む場合f(V、I、、Z)≠0
となり、事故点を含まない場合にはf(V、I、、
Z)=0となることを用いて多端子送電線路の周辺のノ
ードから事故区間判別関数fによる判定を行い、事故点
が含まれていない場合には順次より内部のノードへ判定
を進めて行くことにより事故区間の標定をした後、前記
各端子で計測される三相各相の電圧(V)・電流(I)
情報から定まる当該事故区間両端の電圧(V)・電流
(I)情報と当該事故区間について予め決定されている
区間距離()及び線路インピーダンス(Z)とから事
故点の標定をすることを特徴とする事故点標定方式。
1. In a multi-terminal transmission line, voltage (V) / current (I) information of each of the three phases measured at each terminal and a section from a terminal to a terminal or a section from a terminal to a branch point (hereinafter referred to as a section) The fault section discriminant function f (V, I, Z) defined for each section from the section distance () and the line impedance (Z) that are predetermined for
When the accident point is included in the section f (V, I, Z) ≠ 0
If the accident point is not included, f (V, I ,,
Z) = 0 is used to determine from the nodes around the multi-terminal transmission line by the accident section discriminant function f, and when the accident point is not included, the determination is sequentially advanced to the internal nodes. After locating the faulty section, the voltage (V) and current (I) of each of the three phases measured at the terminals
A feature of the present invention is to locate a fault point from voltage (V) / current (I) information at both ends of the fault section determined from information, and a section distance () and line impedance (Z) that are predetermined for the fault section. Accident point location method.
JP60291752A 1985-12-24 1985-12-24 Accident point location method Expired - Lifetime JPH065256B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60291752A JPH065256B2 (en) 1985-12-24 1985-12-24 Accident point location method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60291752A JPH065256B2 (en) 1985-12-24 1985-12-24 Accident point location method

Publications (2)

Publication Number Publication Date
JPS62150176A JPS62150176A (en) 1987-07-04
JPH065256B2 true JPH065256B2 (en) 1994-01-19

Family

ID=17772953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60291752A Expired - Lifetime JPH065256B2 (en) 1985-12-24 1985-12-24 Accident point location method

Country Status (1)

Country Link
JP (1) JPH065256B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013066212A2 (en) * 2011-10-24 2013-05-10 Открытое Акционерное Общество "Федеральная Сетевая Компания Единой Энергетической Системы" (Оао "Фск Еэс") Method for determining the distance to a fault on a power transmission line and device for the implementation thereof
RU2475768C1 (en) * 2011-10-24 2013-02-20 Открытое Акционерное Общество "Федеральная Сетевая Компания Единой Энергетической Системы" (Оао "Фск Еэс") Method to detect distance to area of damage on power transmission line

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58208675A (en) * 1982-05-31 1983-12-05 Fuji Electric Co Ltd Fault point locating system
JPS58219463A (en) * 1982-06-15 1983-12-20 Fuji Facom Corp Fault point location system for 4 terminal transmission line

Also Published As

Publication number Publication date
JPS62150176A (en) 1987-07-04

Similar Documents

Publication Publication Date Title
US4499417A (en) Determining location of faults in power transmission lines
Magnago et al. A new fault location technique for radial distribution systems based on high frequency signals
US7283915B2 (en) Method and device of fault location
US4438475A (en) Ultra-high speed protective relay apparatus and method for providing single pole switching
EP0035365A2 (en) Method and apparatus for fault detection
CN110082636A (en) A kind of power cable fault localization method and system
CN107219439A (en) Determine the methods, devices and systems of the abort situation of failure on the wire of power supply network
US7075308B2 (en) Blocking impedance
WO2019166903A1 (en) Method and device for fault location in a two-terminal transmission system
JPS6327770A (en) Trouble point locating system
CN106841914B (en) Fault distance measuring device of distribution line
Ding et al. A novel fault location algorithm for mixed overhead‐cable transmission system using unsynchronized current data
Bo et al. Accurate fault location and protection scheme for power cable using fault generated high frequency voltage transients
JPH065256B2 (en) Accident point location method
Thomas et al. A novel transmission-line voltage measuring method
CN110865279A (en) Single-phase earth fault positioning method based on neutral point earth current starting
JP3362755B2 (en) A method for searching for incorrectly connected cores in balanced communication lines.
JP2568097B2 (en) Power cable accident section detection method
JPS628070A (en) Failure orientation system
JPH0583874B2 (en)
JPH06105278B2 (en) Accident point location method
JPH0327055B2 (en)
Redfern et al. Detection of broken conductors using the positional protection technique
JPS6252539B2 (en)
JP3503274B2 (en) Fault location method for two parallel transmission and distribution lines