JPH0582542A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH0582542A
JPH0582542A JP3210792A JP21079291A JPH0582542A JP H0582542 A JPH0582542 A JP H0582542A JP 3210792 A JP3210792 A JP 3210792A JP 21079291 A JP21079291 A JP 21079291A JP H0582542 A JPH0582542 A JP H0582542A
Authority
JP
Japan
Prior art keywords
gate electrode
substrate
film
insulating film
impurity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3210792A
Other languages
Japanese (ja)
Inventor
Noriyuki Shimoji
規之 下地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm Co Ltd
Original Assignee
Rohm Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co Ltd filed Critical Rohm Co Ltd
Priority to JP3210792A priority Critical patent/JPH0582542A/en
Priority to US07/924,840 priority patent/US6489209B1/en
Publication of JPH0582542A publication Critical patent/JPH0582542A/en
Pending legal-status Critical Current

Links

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PURPOSE:To prevent the penetration of ions of a channel in the case where the introduction of an impurity into a source and a drain is performed by implantation, and to reduce the introduction of the impurity into a gate electrode by a method wherein before the introduction of the impurity into the source and the drain is performed, the upper surface only of the gate electrode is covered with an insulating film. CONSTITUTION:A gate electrode 2 is provided on the upper surface of a semiconductor substrate 4 and after the upper surface only of the electrode 2 is covered with an insulating film 1, an impurity is introduced in a source 5 and a drain 6, which are located in the substrate 4, through the whole surface of the substrate 4. For example, an SiO2 film 3 of a film thickness of 10 to 40nm or thereabouts is formed on a P-type substrate 4 of a surface concentration of 1X10<16>cm<-3> or thereabouts and a conductive layer 2 consisting of a polysilicon layer is formed thereon in a film thickness of 0.2 to 0.5mum. Then, a primary insulating film 1 consisting of an SiO2 film is formed. After the film 1 is patterned by etching along with the layer 2, phosphorus is ion- implanted on the conditions of E=70keV 1E13cm<-2> and phosphorus primary diffused layers 5 and 6 having a polarity opposite to that of the substrate 4 are formed in the substrate 4.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、MOSLDD型トラン
ジスタの製造方法にして、ソース・ドレインの不純物導
入を行う際の半導体基板のチャンネルへのイオンの突き
抜けを防止するようにした半導体装置の製造方法に係
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a MOSLDD type transistor, which prevents ion penetration through a channel of a semiconductor substrate when introducing impurities into a source / drain. Pertain to.

【0002】[0002]

【従来の技術】従来この種の半導体装置の製造方法で、
ソース・ドレインの不純物導入をイオン注入で行う際
に、ゲート電極が薄かったり、又、ゲート電極がポリシ
リコンで形成されていたり、又、イオン注入の加速電圧
が高いとゲート電極を突き抜けてしまい、チャンネル領
域にまで、不純物を導入してしまう恐れがあった。又、
ゲート電極にポリシリコンを使用する際にN型かP型に
高濃度にドープするが、ソース・ドレインの不純物導入
が、このゲート電極とは逆導電性の不純物であった場合
には、ゲート電極にまで逆導電極の不純物が導入されて
しまうので、ゲート電極の抵抗が高くなる欠点があっ
た。例えば、ポリシリコンで出来たゲート電極は、通常
柱状に結晶粒がのびている為に、たまたま、結晶粒界に
打ち込まれたイオンは、ゲート電極中にとどまらずにチ
ャンネル領域に達してしまい、その結果局所的にチャン
ネルの不純物濃度が低下することになり、Vthの低下を
もたらす欠点があった。
2. Description of the Related Art Conventionally, in this type of semiconductor device manufacturing method,
When the impurity implantation of the source / drain is performed by ion implantation, the gate electrode is thin, or the gate electrode is formed of polysilicon, and if the acceleration voltage of ion implantation is high, it will penetrate through the gate electrode, There is a risk that impurities may be introduced into the channel region. or,
When polysilicon is used for the gate electrode, N-type or P-type is doped at a high concentration, but when the impurity introduction into the source / drain is an impurity having conductivity opposite to that of the gate electrode, the gate electrode Since the impurities of the reverse conductive electrode are introduced up to this point, there is a drawback that the resistance of the gate electrode becomes high. For example, since a gate electrode made of polysilicon usually has columnar crystal grains, it happens that the ions implanted at the crystal grain boundaries reach the channel region instead of staying in the gate electrode. The impurity concentration of the channel is locally reduced, which has a drawback of lowering Vth.

【0003】[0003]

【発明が解決しようとする課題】本発明は、上記従来例
の欠点を除去すべく、この種半導体装置の製造方法にお
いて、ソース・ドレインの不純物導入をインプラで行う
際のチャンネルへのイオンの突き抜けを防止する一方、
ソース・ドレインの不純物導入を行う際、ゲート電極へ
の不純物導入を低減することを目的とするものである。
SUMMARY OF THE INVENTION In order to eliminate the above-mentioned drawbacks of the conventional example, the present invention provides a method of manufacturing a semiconductor device of this type in which ion penetration into a channel when impurities are introduced into the source / drain by implantation. While preventing
The purpose is to reduce the introduction of impurities into the gate electrode when introducing impurities into the source / drain.

【0004】[0004]

【課題を解決するための手段】本発明は、上記目的を達
成するために、上記の如き半導体装置において、ソース
・ドレインの不純物導入を行う際にゲート電極を、絶縁
膜で覆うようにしたものであり、さらに詳しくは、半導
体装置の製造方法を、半導体基板の表面にSiOの絶
縁層を形成し、ポリシリコンの導電層を形成し、さらに
絶縁層2を形成する工程と、前記導電層膜とSiO
絶縁層2をフォトリソグラフィー技術を用い同時にエッ
チングする工程と、前記エッチングして残った膜をTr
のゲート電極とし、ゲート電極をマスクとして、前記基
板とは逆極性のリンの拡散層を形成する工程と、前記ゲ
ート電極の側面に隣接した絶縁材料からなる垂直層を形
成する工程と、前記ゲート電極の表面に絶縁層3を形成
する工程と、前記ゲート電極と垂直層をマスクとし前記
基板とは逆極性のヒ素の拡散層2を前記拡散層よりも不
純物濃度が高くなるように形成する工程と、前記拡散層
2にコンタクトを形成する工程とから構成したことを特
徴とするものである。
In order to achieve the above object, the present invention is such that in the semiconductor device as described above, the gate electrode is covered with an insulating film when impurities are introduced into the source / drain. More specifically, in the method of manufacturing a semiconductor device, a step of forming an insulating layer of SiO 2 on a surface of a semiconductor substrate, forming a conductive layer of polysilicon, and further forming an insulating layer 2; A step of simultaneously etching the film and the insulating layer 2 of SiO 2 using a photolithography technique;
Gate electrode, and using the gate electrode as a mask, forming a phosphorus diffusion layer having a polarity opposite to that of the substrate, forming a vertical layer made of an insulating material adjacent to a side surface of the gate electrode, A step of forming an insulating layer 3 on the surface of the electrode, and a step of forming an arsenic diffusion layer 2 having a polarity opposite to that of the substrate so as to have an impurity concentration higher than that of the diffusion layer by using the gate electrode and a vertical layer as a mask. And a step of forming a contact on the diffusion layer 2.

【0005】本発明の半導体装置の製造方法によれば、
注入されたイオンは少なくとも一度非晶質層を通過する
ので散乱されて、結晶粒界を通過する可能性は非常に激
減するようになる。また、N型ポリシリコンにP型のソ
ース・ドレインの不純物をイオン注入で導入する際、例
えばBF70keV 5×1015cm−2で注入すると
すると、BF70keVの飛程距離は、60nm程度であ
るから60nmの酸化膜をゲート電極上に形成すれば、5
0%はカットすることが出来た。
According to the method of manufacturing a semiconductor device of the present invention,
Since the implanted ions pass through the amorphous layer at least once, they are scattered and the possibility of passing through the grain boundaries is greatly reduced. Also, when introducing P-type source / drain impurities into N-type polysilicon by ion implantation, for example, if BF 2 70 keV 5 × 10 15 cm −2 is implanted, the range of BF 2 70 keV is about 60 nm. Therefore, if a 60 nm oxide film is formed on the gate electrode,
0% could be cut.

【0006】[0006]

【実施例】以下、図面に示す実施例について、本発明を
詳細に説明する。図面において、4は半導体基板、3は
ゲート酸化膜、2はゲート電極を構成する導電層にし
て、1が該導電層の上面に被覆した一次SiOの絶縁
膜、5,6がリンの一次拡散層、7,8,9はCVD
膜、10,11,12が前記導電層2の上面に被覆した
SiOの二次絶縁膜、13,14がヒ素の二次拡散層
である。
The present invention will be described in detail below with reference to the embodiments shown in the drawings. In the drawing, 4 is a semiconductor substrate, 3 is a gate oxide film, 2 is a conductive layer forming a gate electrode, 1 is an insulating film of primary SiO 2 covering the upper surface of the conductive layer, 5 and 6 are primary layers of phosphorus. Diffusion layer, 7, 8 and 9 are CVD
The films 10, 11 and 12 are SiO 2 secondary insulating films covering the upper surface of the conductive layer 2, and 13 and 14 are arsenic secondary diffusion layers.

【0007】図1乃至図7は、本発明にかかる半導体装
置の製造工程を順次示すものである。
1 to 7 sequentially show manufacturing steps of a semiconductor device according to the present invention.

【0008】まず、第一工程として半導体基板4の上に
ゲート酸化膜としての絶縁膜3が形成され、かつ、該絶
縁膜3の上にゲート電極を構成する導電層2が形成さ
れ、さらに、該導電層2の上にSiOの絶縁膜1が形
成される。本実施例では、半導体基板の表面濃度が、1
×1016cm−3程度ドープされたP型基板を用い、絶
縁膜3には、10〜40nm程度のSiO膜を用いてい
る。導電層2は、高濃度のN型にドープしたポリシリコ
ンが使われているが、これは、ポリシリコンとシリサイ
ド(Wsi,MoSi等)を2層にしたいわゆるポリサイド
でもよい。導電層の膜厚は、0.2〜0.5μmの範囲で
選ばれる。一次絶縁膜1はCVDのSiOより形成さ
れるが、これはポリシリコンを熱酸化したSiO膜で
もよい。
First, as a first step, an insulating film 3 as a gate oxide film is formed on a semiconductor substrate 4, and a conductive layer 2 forming a gate electrode is formed on the insulating film 3, and further, An insulating film 1 of SiO 2 is formed on the conductive layer 2. In this embodiment, the surface concentration of the semiconductor substrate is 1
A P-type substrate doped with about 10 16 cm −3 is used, and the insulating film 3 is a SiO 2 film with a thickness of about 10 to 40 nm. The conductive layer 2 is made of high-concentration N-type doped polysilicon, but it may be a so-called polycide having two layers of polysilicon and silicide (Wsi, MoSi, etc.). The thickness of the conductive layer is selected in the range of 0.2 to 0.5 μm. Although the primary insulating film 1 is formed from SiO 2 of CVD, which may be a polysilicon SiO 2 film formed by thermal oxidation.

【0009】次に第二工程として、図2に示す如く、一
次絶縁膜1と導電層2を、フォトリソグラフィーにより
パターエッチ後、ドライエッチでエッチ除去する。な
お、絶縁膜3には、エッチングの際のオーバーエッチに
より段差が形成されるようになる。
Next, in a second step, as shown in FIG. 2, the primary insulating film 1 and the conductive layer 2 are removed by dry etching after pattern etching by photolithography. A step is formed in the insulating film 3 due to overetching during etching.

【0010】この後第三工程として、図3に示す如く、
半導体基板4に該基板と逆極性のリンの一次拡散層5,
6が形成される。本実施例ではリンをE=70keV,1
E13cm−2でイオン注入している。このイオン注入の
際、チャンネルへのインプラは前記一次絶縁膜1と導電
層2により、完全に阻止される。この後のアニールによ
り、これらの一次拡散層5,6は、導電層2のエッヂ付
近まで拡散してくるようになる。
As a third step thereafter, as shown in FIG.
On the semiconductor substrate 4, a phosphorus primary diffusion layer 5 having a polarity opposite to that of the substrate 5,
6 is formed. In this embodiment, phosphorus is used as E = 70 keV, 1
Ion implantation is performed at E13 cm -2 . At the time of this ion implantation, implantation into the channel is completely blocked by the primary insulating film 1 and the conductive layer 2. By subsequent annealing, these primary diffusion layers 5 and 6 come to diffuse to the vicinity of the edge of the conductive layer 2.

【0011】さらに、第四工程として、図4に示す如
く、一次拡散層5,6、導電層2、半導体基板4の全体
を覆うように、CVD膜の絶縁膜7が形成される。本実
施例では、CVD法により、厚さ0.4μm程度で、Si
膜を形成している。この膜はポリシリコンの様な導
電性の膜でもよい。
Further, as a fourth step, as shown in FIG. 4, an insulating film 7 of a CVD film is formed so as to cover the entire primary diffusion layers 5, 6, the conductive layer 2, and the semiconductor substrate 4. In the present embodiment, the CVD method is used to obtain Si with a thickness of about 0.4 μm.
An O 2 film is formed. This film may be a conductive film such as polysilicon.

【0012】この後、第五工程として、図5に示す如
く、導電層2の側面にのみ残した絶縁膜7の垂直層8、
9が形成される。この垂直層は導電層2に隣接して一次
拡散層5,6を部分的にカバーした状態で形成される。
これは、SiOの異方性のドライエッチにより、全面
にエッチングする(エッチバック法)方法によって得ら
れる。この時、導電層1の側面に存在するSiO膜7
の膜厚が他の部分より厚いために、SiO膜の膜厚分
だけエッチングすれば、この側面部分のSiO膜だけ
が残るようになる。
Thereafter, as a fifth step, as shown in FIG. 5, the vertical layer 8 of the insulating film 7 left only on the side surface of the conductive layer 2,
9 is formed. This vertical layer is formed adjacent to the conductive layer 2 and partially covering the primary diffusion layers 5 and 6.
This is obtained by a method of etching the entire surface (etchback method) by anisotropic dry etching of SiO 2 . At this time, the SiO 2 film 7 existing on the side surface of the conductive layer 1
Thickness of the thicker than other portions, if the film by a thickness partial etching of the SiO 2 film, so only the SiO 2 film of the side portion is left.

【0013】つづいて、第六工程として、図6に示す如
く、導電層2の表面と一次拡散層5,6の露出した表面
を覆う様にSiO膜10,11,12が形成されてい
る。このSiO膜は、熱酸化法により容易に得られ、
後のイオン注入の際のチャネリングを阻止して、前工程
のエッチバックの際のSi基板表面のダメージ回復を目
的に行なわれる。この二次絶縁膜としてのSiOの膜
厚はSi基板表面上で約20nm程度である。
Subsequently, as a sixth step, as shown in FIG. 6, SiO 2 films 10, 11 and 12 are formed so as to cover the surface of the conductive layer 2 and the exposed surfaces of the primary diffusion layers 5 and 6. .. This SiO 2 film is easily obtained by the thermal oxidation method,
This is performed for the purpose of preventing the channeling during the subsequent ion implantation and recovering the damage on the surface of the Si substrate during the etch back in the previous step. The film thickness of SiO 2 as the secondary insulating film is about 20 nm on the surface of the Si substrate.

【0014】最後に、第七工程として、図7に示す如
く、前記垂直層8,9、導電層2及び絶縁膜10をマス
クとして、イオン注入により二次拡散層13,14が形
成される。本実施例では、膜11,12を突き抜け、
又、導電層2を突き抜けず、さらに拡散層の抵抗値を充
分に下げられる様、ヒ素を70keV、5E15cm−2
イオン注入した。このあと、N900℃,30分程度
のアニール工程を通し、不純物を活性化している。この
ようにして、MOSLDDのトランジスタが製造され
る。
Finally, as a seventh step, as shown in FIG. 7, secondary diffusion layers 13 and 14 are formed by ion implantation using the vertical layers 8 and 9, the conductive layer 2 and the insulating film 10 as a mask. In this embodiment, the films 11 and 12 are penetrated,
Arsenic was ion-implanted at 70 keV and 5E15 cm −2 so that the resistance value of the diffusion layer could be sufficiently lowered without penetrating the conductive layer 2. After that, an impurity is activated through an annealing process of N 2 at 900 ° C. for about 30 minutes. In this way, a MOSLDD transistor is manufactured.

【0015】上記の如き本発明の方法で製造したトラン
ジスタと従来のトランジスタを比較すると、本発明の一
次,二次の絶縁層を設けたトランジスタのリーク電流
が、従来のものより減少している結果が出ている。
When the transistor manufactured by the method of the present invention as described above is compared with the conventional transistor, the result is that the leakage current of the transistor provided with the primary and secondary insulating layers of the present invention is smaller than that of the conventional transistor. Is coming out.

【0016】上記実施例に示す如く、本発明にかかる半
導体の製造方法は、半導体基板の上面に突出して設けた
ゲート電極の上面のみを一次絶縁膜で被覆してのち、前
記半導体基板の全面から該基板の中へ一次の不純物を拡
散導入し、次に前記ゲート電極の側面にCVD膜を形成
すると共に、前記ゲート電極の上面のみを二次絶縁膜で
被覆してのち、前記半導体基板の全面から該基板の中へ
二次の不純物を導入拡散するようにしたものであり、製
造されたトランジスタは、一次及び二次の絶縁膜の存在
によって、ソース・ドレインインプラのチャンネルへの
イオンの突き抜けを防止することが出来ると共に、トラ
ンジスタのVthの低下を防止出来て歩留りの向上を望め
るものであり、又、ソース・ドレインインプラのゲート
電極への注入を低減することが出来る為に、ゲート電極
の抵抗を低く保つことができると共に、Poly-Si抵抗
の上昇を低減出来て高速化に対応出来る利点をも有する
ものである。
As shown in the above embodiments, in the method of manufacturing a semiconductor according to the present invention, after covering only the upper surface of the gate electrode projecting on the upper surface of the semiconductor substrate with the primary insulating film, the entire surface of the semiconductor substrate is covered. A primary impurity is diffused and introduced into the substrate, then a CVD film is formed on the side surface of the gate electrode, and only the upper surface of the gate electrode is covered with a secondary insulating film. The secondary transistor is formed by introducing and diffusing secondary impurities into the substrate, and the manufactured transistor prevents the penetration of ions into the channel of the source / drain implanter due to the presence of the primary and secondary insulating films. It is possible to prevent the decrease of the Vth of the transistor and to improve the yield as well as to prevent the injection of the source / drain implanter into the gate electrode. For it is possible to, it is possible to keep the resistance of the gate electrode lower, but also has an advantage that can correspond to high speed and can be reduced to increase the Poly-Si resistor.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明にかかる製造方法の第一工程を示す断
面図である。
FIG. 1 is a sectional view showing a first step of a manufacturing method according to the present invention.

【図2】 図1につづく第二工程を示す断面図である。FIG. 2 is a sectional view showing a second step following FIG.

【図3】 図2につづく第三工程を示す断面図である。FIG. 3 is a sectional view showing a third step following FIG.

【図4】 図3につづく第四工程を示す断面図である。FIG. 4 is a cross-sectional view showing a fourth step following FIG.

【図5】 図4につづく第五工程を示す断面図である。5 is a sectional view showing a fifth step following FIG. 4. FIG.

【図6】 図5につづく第六工程を示す断面図である。6 is a sectional view showing a sixth step following FIG. 5. FIG.

【図7】 図6につづく第七工程を示す断面図である。7 is a sectional view showing a seventh step following FIG. 6. FIG.

【符号の説明】[Explanation of symbols]

1 一次絶縁膜 2 導電層 3 絶縁膜 4 半導体基板 5,6 一次拡散層 7,8,9 CVD膜 10,11,12 二次絶縁膜 13,14 二次拡散層 1 Primary Insulation Film 2 Conductive Layer 3 Insulation Film 4 Semiconductor Substrate 5,6 Primary Diffusion Layer 7,8,9 CVD Film 10, 11, 12 Secondary Insulation Film 13,14 Secondary Diffusion Layer

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板の上面にゲート電極を設け、
該ゲート電極の上面のみを絶縁膜で被覆してのち、前記
半導体基板の全面から該基板の中へソース・ドレインの
不純物の導入するようにしたことを特徴とする半導体装
置の製造方法。
1. A gate electrode is provided on the upper surface of a semiconductor substrate,
A method for manufacturing a semiconductor device, characterized in that only an upper surface of the gate electrode is covered with an insulating film, and then impurities of source / drain are introduced into the substrate from the entire surface of the semiconductor substrate.
【請求項2】 半導体基板の上面に設けたゲート電極の
上面のみを一次絶縁膜で被覆してのち、前記半導体基板
の全面から該基板の中へ一次の不純物を拡散導入し、次
に前記ゲート電極の側面に垂直層を形成すると共に、前
記ゲート電極の上面のみを二次絶縁膜で被覆してのち、
前記半導体基板の全面から該基板の中へ二次の不純物を
導入拡散するようにしたことを特徴とする半導体装置の
製造方法。
2. A primary insulating film is formed only on the upper surface of a gate electrode provided on the upper surface of a semiconductor substrate, and then primary impurities are diffused and introduced into the substrate from the entire surface of the semiconductor substrate. After forming a vertical layer on the side surface of the electrode and covering only the upper surface of the gate electrode with a secondary insulating film,
A method of manufacturing a semiconductor device, wherein secondary impurities are introduced and diffused into the substrate from the entire surface of the semiconductor substrate.
JP3210792A 1991-08-22 1991-08-22 Manufacture of semiconductor device Pending JPH0582542A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP3210792A JPH0582542A (en) 1991-08-22 1991-08-22 Manufacture of semiconductor device
US07/924,840 US6489209B1 (en) 1991-08-22 1992-08-04 Manufacturing method of LDD-type MOSFET

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3210792A JPH0582542A (en) 1991-08-22 1991-08-22 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH0582542A true JPH0582542A (en) 1993-04-02

Family

ID=16595212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3210792A Pending JPH0582542A (en) 1991-08-22 1991-08-22 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH0582542A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63227060A (en) * 1987-03-17 1988-09-21 Fujitsu Ltd Manufacture of semiconductor device
JPS6448460A (en) * 1987-08-19 1989-02-22 Nec Corp Manufacture of semiconductor device
JPH01134972A (en) * 1987-10-05 1989-05-26 Philips Gloeilampenfab:Nv Manufacture of semiconductor device
JPH01245557A (en) * 1988-03-28 1989-09-29 Toshiba Corp Manufacture of semiconductor device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63227060A (en) * 1987-03-17 1988-09-21 Fujitsu Ltd Manufacture of semiconductor device
JPS6448460A (en) * 1987-08-19 1989-02-22 Nec Corp Manufacture of semiconductor device
JPH01134972A (en) * 1987-10-05 1989-05-26 Philips Gloeilampenfab:Nv Manufacture of semiconductor device
JPH01245557A (en) * 1988-03-28 1989-09-29 Toshiba Corp Manufacture of semiconductor device

Similar Documents

Publication Publication Date Title
US6362038B1 (en) Low and high voltage CMOS devices and process for fabricating same
US5998849A (en) Semiconductor device having highly-doped source/drain regions with interior edges in a dislocation-free state
JPH06275636A (en) Manufacture of semiconductor device
JPH0744275B2 (en) Method for manufacturing high breakdown voltage MOS semiconductor device
JP2802263B2 (en) Method for manufacturing semiconductor device
US6124187A (en) Method of fabricating semiconductor device
JPH09246403A (en) Manufacture of semiconductor device
US6489209B1 (en) Manufacturing method of LDD-type MOSFET
JPH07283400A (en) Semiconductor device and its manufacture
KR100311498B1 (en) Method for forming dual gate of semiconductor device
JP3371875B2 (en) Method for manufacturing semiconductor device
JPH05206454A (en) Manufacture of mis-type semiconductor device
JPH02153538A (en) Manufacture of semiconductor device
JP3546789B2 (en) Method for manufacturing semiconductor device
JPH0582542A (en) Manufacture of semiconductor device
JPH04715A (en) Manufacture of semiconductor device
JPH0582541A (en) Manufacture of semiconductor device
JP3423081B2 (en) Method for manufacturing semiconductor device
JPH06252345A (en) Manufacture of semiconductor integrated circuit
JP3231462B2 (en) Method for manufacturing semiconductor device
JP2803925B2 (en) Method for manufacturing semiconductor device
JP2865931B2 (en) Method for manufacturing MOS transistor
JP3061892B2 (en) Method for manufacturing semiconductor device
JPS6142171A (en) Manufacture of nonvolatile semiconductor memory device
JP2626485B2 (en) Method for manufacturing semiconductor device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20081024

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20091024

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20091024

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101024

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20101024

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 14

Free format text: PAYMENT UNTIL: 20111024

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111024

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121024

Year of fee payment: 15

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121024

Year of fee payment: 15