JPH0582424A - Electron-beam exposing method - Google Patents

Electron-beam exposing method

Info

Publication number
JPH0582424A
JPH0582424A JP24095291A JP24095291A JPH0582424A JP H0582424 A JPH0582424 A JP H0582424A JP 24095291 A JP24095291 A JP 24095291A JP 24095291 A JP24095291 A JP 24095291A JP H0582424 A JPH0582424 A JP H0582424A
Authority
JP
Japan
Prior art keywords
electron beam
substrate
beam exposure
rotation
parallel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP24095291A
Other languages
Japanese (ja)
Inventor
Kinshiro Kosemura
欣司郎 小▲瀬▼村
Shinpei Tsuchiya
真平 土屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP24095291A priority Critical patent/JPH0582424A/en
Publication of JPH0582424A publication Critical patent/JPH0582424A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To provide a processing method by which side edges are not drawn in steps, but in smooth lines when a pattern having the side edges which are inclined against the coordinate axes of an orthogonal coordinate system which is parallel to the outer periphery of the square cross section of an electron beam is plotted with the electron beam having the square cross section. CONSTITUTION:A pattern 2 to be formed is irradiated with an electron beam by rotating a substrate so that the linear side edge of the pattern 2 can become parallel to one side of a square shot 1. The deflecting amount of the electron beam which decides the position of the shot 1 is corrected in accordance with the rotation of the substrate and the electron beam irradiating position is set so that the one side of the shot 1 can be aligned with the linear side edge.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は電子線リソグラフィに於
ける電子線の選択的照射方法に関わる。近年サブミクロ
ンの微細パターン形成技術や原子層単位のエピタキシャ
ル成長技術などの進歩により、様々な種類の機能素子が
開発されている。これ等の素子の製造に於いて、微細パ
ターン形成技術の中核をなすものは電子線リソグラフィ
であるが、現在多用されている電子線露光装置の描画処
理では、一つの照射点に一定ドーズ量の電子線を照射し
た後、照射照準を変えて次の照射点に同様の照射を行
い、これを繰り返して連続した被照射領域を実現してい
る。この連続被照射領域が所定の形状になるように照射
点が設定されるわけで、この1回の電子線照射処理或い
はその被照射領域はショットと呼ばれている。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of selectively irradiating an electron beam in electron beam lithography. In recent years, various types of functional devices have been developed due to advances in submicron fine pattern formation technology and atomic layer unit epitaxial growth technology. In the production of these elements, electron beam lithography is the core of the fine pattern forming technology, but in the drawing process of the electron beam exposure apparatus which is widely used at present, a fixed dose amount is applied to one irradiation point. After irradiating the electron beam, the irradiation aim is changed and the same irradiation is performed on the next irradiation point, and this is repeated to realize a continuous irradiation area. The irradiation point is set so that this continuous irradiation region has a predetermined shape, and this one-time electron beam irradiation process or the irradiation region thereof is called a shot.

【0002】このような処理に用いられる電子線の断面
形状は長方形(通常は正方形)であることが多いが、これ
は上記の処理によって描かれるパターンには直交座標軸
に平行な辺縁を持つものが多いことに因っている。即ち
この種の電子線を用いて直交座標系のパターンを描け
ば、両者の直線辺縁は平行であるから、描かれたパター
ンの辺縁は不要な出入りの無いものとなるのである。
The cross-sectional shape of the electron beam used in such processing is often a rectangle (usually a square), which means that the pattern drawn by the above processing has edges parallel to the orthogonal coordinate axes. Is due to the large number. That is, when a pattern in an orthogonal coordinate system is drawn using this type of electron beam, the straight edges of the two are parallel to each other, so that the drawn edges of the pattern have no unnecessary entry and exit.

【0003】[0003]

【従来の技術と発明が解決しようとする課題】上記の如
く、従来の電子線露光は外周が直交座標軸に平行なパタ
ーンの描画に適したものであるが、パターンの外周線が
座標軸に対し傾いたものである場合に不都合が生じる。
即ち、パターン辺縁を傾斜した線として描画するには、
ショットを斜め方向に連ねることになるのであるが、シ
ョットの形状が方形であるから、この傾斜部分が出入り
の無い滑らかな線となるように描画することはできない
のである。この状況を図面に従って説明する。
As described above, the conventional electron beam exposure is suitable for drawing a pattern whose outer periphery is parallel to the orthogonal coordinate axes, but the outer periphery of the pattern is inclined with respect to the coordinate axes. If this is the case, inconvenience occurs.
That is, to draw the pattern edge as an inclined line,
The shots are arranged in a diagonal direction, but since the shape of the shots is rectangular, it is not possible to draw such a slanted portion as a smooth line with no entrance or exit. This situation will be described with reference to the drawings.

【0004】先ず、X−Y直交座標軸に平行なパターン
の場合は、図4(a)のように、正方形のショット1を配
置することにより、滑らかな辺縁の直線パターンを描く
ことができる。ところが、斜めのパターンの場合には同
図(b)のようにショットを配置することになるので、描
かれたものは同図(c)のような階段状パターンとなって
しまう。各ショットの中心間の距離を狭めればこの階段
は細かくなるが、方形のショットを斜めに配置する方法
をとる限り、完全な直線辺縁は得られない。
First, in the case of a pattern parallel to the XY orthogonal coordinate axes, by arranging a square shot 1 as shown in FIG. 4 (a), a smooth linear pattern of the edge can be drawn. However, in the case of the diagonal pattern, the shots are arranged as shown in FIG. 6B, and the drawn pattern becomes a staircase pattern as shown in FIG. The stairs get finer if the distance between the centers of the shots is reduced, but a perfect straight edge cannot be obtained as long as the square shots are arranged diagonally.

【0005】従来型の素子の形成では、傾斜辺縁を持つ
パターンでも、それが完全に滑らかであることは要求さ
れなかったが、最近開発された或る種の機能素子に於い
ては、傾斜直線がナノメートル程度の精度で平滑である
ことが要求されている。従来の電子線描画法ではこのよ
うな傾斜線を実現することは出来ず、新たな処理方法或
いは装置によってこれに対処することが必要となった。
The formation of conventional devices did not require that the pattern, even with sloping edges, be perfectly smooth, but in some recently developed functional devices, sloping It is required that the straight line be smooth with an accuracy of about nanometer. Such a tilted line cannot be realized by the conventional electron beam drawing method, and it is necessary to cope with this with a new processing method or apparatus.

【0006】電子線描画で完全な傾斜線を引く一つの方
法として、電子線の断面形状を該傾斜線に平行な辺を持
つ形状にしておき、それを用いて傾斜線を描くことが考
えられる。しかし、描くべき直線の傾き角は一定ではな
いから、この方法に依るのであれば、電子線の断面形状
を任意に変形し得るものであることが要求される。
As one method of drawing a completely inclined line in electron beam drawing, it is considered that the sectional shape of the electron beam is made into a shape having a side parallel to the inclined line and the inclined line is drawn by using it. .. However, since the inclination angle of the straight line to be drawn is not constant, if this method is used, it is required that the cross-sectional shape of the electron beam can be arbitrarily changed.

【0007】このような機能を備えた整形ビーム露光装
置も提供されているが、通常型の露光装置に比べて高価
であり、微細パターンの形成精度も十分とは言えない状
況にある。従って、方形ビームを用いる通常の電子線露
光装置によって滑らかな線の傾斜辺縁を持つパターンを
描くことができれば、これを必要とする機能素子の実用
化に資するところ大となる。
A shaped beam exposure apparatus having such a function is also provided, but it is more expensive than a normal type exposure apparatus and the precision of forming a fine pattern is not sufficient. Therefore, if it is possible to draw a pattern having a slanted edge of a smooth line by an ordinary electron beam exposure apparatus that uses a rectangular beam, it will be a great contribution to the practical application of a functional element that requires this.

【0008】本発明の目的は、断面の外周線が直交座標
軸に平行である電子線を用いて、該座標軸に対し傾斜せ
る直線を描き、而も該直線の辺縁を完全な直線となし得
る電子線描画方法を提供することである。
An object of the present invention is to draw a straight line which is inclined with respect to the coordinate axis by using an electron beam whose outer peripheral line of the cross section is parallel to the orthogonal coordinate axis, and the edge of the straight line can be made a complete straight line. It is to provide an electron beam drawing method.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するた
め、本発明の電子線露光方法では、中心軸に垂直な断面
の形状が方形である電子線を照射して基板面に塗布され
たレジストを露光する描画処理に於いて、露光領域が該
方形の辺に平行でない直線状の辺縁を有する場合には、
この露光領域の直線状辺縁が電子線断面の方形の一辺と
平行になるように基板を相対的に回転し、電子線照射位
置をこの直線状辺縁に平行または直交方向に変移させな
がら電子線露光を行う。
In order to achieve the above object, in the electron beam exposure method of the present invention, a resist applied on the surface of a substrate by irradiating an electron beam having a rectangular cross section perpendicular to the central axis. In the drawing process of exposing, when the exposure area has a linear edge that is not parallel to the side of the rectangle,
The substrate is relatively rotated so that the linear edge of this exposure region is parallel to one side of the square of the electron beam cross section, and the electron beam irradiation position is changed parallel or orthogonal to this linear edge. Perform line exposure.

【0010】回転後の基板に電子線を照射する際の偏向
データや、電子線照射位置をこの直線状辺縁に平行また
は直交方向に変移させるのに必要なデータは基板回転前
の露光領域の位置座標と回転角から算出される。
Deflection data when irradiating an electron beam on a substrate after rotation and data necessary for shifting the electron beam irradiation position in a direction parallel or orthogonal to the linear edge are in the exposure area before the substrate is rotated. It is calculated from the position coordinates and the rotation angle.

【0011】[0011]

【作用】図1は本発明の原理を説明する図であって、以
下この図面を参照しながら本発明によって滑らかな傾斜
直線を持つパターンが形成される所以を説明する。
FIG. 1 is a diagram for explaining the principle of the present invention, and the reason why a pattern having a smooth inclined straight line is formed by the present invention will be described below with reference to this drawing.

【0012】同図(a)に示されるように、基板上に設定
された直交座標軸X,Yに対して傾斜した直線パターン
2を形成する場合を考える。該直線パターンの中心軸と
X軸の交角はαである。電子線の方形断面の辺はX',
Y'直交座標の座標軸に平行であって、当初はX',Y'直
交座標はX,Y直交座標と一致している。
As shown in FIG. 1A, consider the case where a linear pattern 2 is formed which is inclined with respect to the orthogonal coordinate axes X and Y set on the substrate. The intersection angle between the central axis of the straight line pattern and the X axis is α. The side of the rectangular cross section of the electron beam is X ',
It is parallel to the coordinate axes of the Y'orthogonal coordinates, and the X ', Y'orthogonal coordinates initially match the X, Y orthogonal coordinates.

【0013】この状態から基板を時計回りにαだけ回転
させると、同図(b)に示されるように、該直線パターン
2の中心線はX',Y'直交座標のX'軸に平行となる。即
ち電子線の断面方形の一辺と、直線パターンの長辺は平
行となり、同図(c)の如くショットを配置することによ
って、X軸に対して傾斜した直線パターンを描くことが
できる。この直線パターンの辺縁には階段状の凹凸は存
在しない。
When the substrate is rotated clockwise by α from this state, the center line of the linear pattern 2 becomes parallel to the X'axis of the X'and Y'orthogonal coordinates, as shown in FIG. Become. That is, one side of the rectangular section of the electron beam is parallel to the long side of the linear pattern, and by arranging the shots as shown in FIG. 7C, a linear pattern inclined with respect to the X axis can be drawn. There are no step-like irregularities at the edges of this straight line pattern.

【0014】[0014]

【実施例】現在実用に供されている電子線露光装置で
は、電子線の断面が方形の場合、その一辺は0.1〜1μm
であり、偏向電極によって照射位置を変移し得る範囲
(フィールド)は3mm×3mm程度である。一方、基板にマ
トリックス状に配置されるチップのサイズは高集積のI
Cでは一辺8〜10mmであるが、本発明によって形成され
るような傾斜パターンを持つ機能素子は、現状ではより
小型のチップに形成されることが多いから、1チップの
パターン形成領域は1フィールドに収まるものとして、
即ちステップアンドリピートの周期はチップ配置の周期
に一致するものとして実施例を説明する。なお、チップ
サイズがこれより大きい場合には、基板を平行移動して
1チップ分の描画を行い、見掛け上フィールドが拡大さ
れたように扱うことで、以下の如きチップ周期に合わせ
た処理が可能になる。
[Embodiment] In an electron beam exposure apparatus currently in practical use, if the electron beam has a rectangular cross section, one side is 0.1 to 1 μm.
Is the range in which the irradiation position can be changed by the deflection electrode.
The (field) is about 3 mm x 3 mm. On the other hand, the size of the chips arranged in a matrix on the substrate is I
In C, the length is 8 to 10 mm on a side, but since the functional element having the inclined pattern as formed according to the present invention is often formed on a smaller chip at present, the pattern formation area of one chip is one field. To fit in
That is, the embodiment will be described assuming that the cycle of step and repeat matches the cycle of chip arrangement. If the chip size is larger than this, move the substrate in parallel and perform drawing for one chip, and treat it as if the field was apparently enlarged, so that the processing according to the following chip cycle is possible. become.

【0015】図2は請求項2及び請求項6に対応する第
1の実施例の工程を示すフロー図である。ここでは電子
線露光処理に関わる処理工程だけが図示されているが、
それ以外の工程は通常の半導体装置の製造工程である。
以下この図面に示された処理の流れの内容を説明する。
FIG. 2 is a flow chart showing steps of a first embodiment corresponding to claims 2 and 6. Although only the processing steps related to the electron beam exposure processing are shown here,
The other steps are normal semiconductor device manufacturing steps.
The contents of the processing flow shown in this drawing will be described below.

【0016】既に述べたように、電子線を偏向させて描
画し得る範囲は3mm平方程度であるから、基板全域に描
画するためには基板位置をチップ配置周期だけ移動させ
る処理と描画処理を交互に繰り返すことが必要である。
これに加えて、本発明では基板を回転させる処理も行わ
れ、この実施例では基板を平行移動させる周期の中で基
板の回転と復元を伴う処理が実行される。なお、支持台
の機械構造によって基板を平行移動させる方向は直交座
標系のX軸或いはY軸に平行であり、電子線の方形断面
の各辺もこのいずれかに平行である。
As described above, the range in which the electron beam can be deflected to draw is about 3 mm square. Therefore, in order to draw on the entire substrate, the process of moving the substrate position by the chip arrangement cycle and the drawing process are alternately performed. Need to be repeated.
In addition to this, the process of rotating the substrate is also performed in the present invention, and in this embodiment, the process involving the rotation and restoration of the substrate is executed in the period of parallel movement of the substrate. The direction in which the substrate is moved in parallel by the mechanical structure of the support is parallel to the X axis or Y axis of the orthogonal coordinate system, and each side of the rectangular cross section of the electron beam is also parallel to either of these.

【0017】先ず通常の電子線露光処理と同様に、レジ
ストの塗布された半導体基板が露光装置の所定位置にセ
ットされる。最初に前記X軸或いはY軸に平行な辺縁を
持つパターンの描画が行われる。これは通常の電子線露
光処理であるから、電子線偏向データを加工することは
必要ない。
First, similarly to the ordinary electron beam exposure process, the semiconductor substrate coated with the resist is set at a predetermined position of the exposure apparatus. First, a pattern having a side edge parallel to the X axis or the Y axis is drawn. Since this is a normal electron beam exposure process, it is not necessary to process the electron beam deflection data.

【0018】一つのチップに対しこの種のパターンの描
画が終わったら、そのチップの中心点をフィールドの中
心点に一致させ、これを中心に基板を角度αだけ回転す
る。αはこれから描画しようとする傾斜パターンの直線
辺縁とX軸またはY軸との交角であり、この回転によっ
て該直線辺縁はX軸またはY軸と平行になる。
When the drawing of this kind of pattern is completed on one chip, the center point of the chip is made to coincide with the center point of the field, and the substrate is rotated by the angle α about this. α is an intersection angle between the straight line edge of the tilt pattern to be drawn and the X axis or the Y axis, and this rotation makes the straight line edge parallel to the X axis or the Y axis.

【0019】その際、該パターンの位置座標も回転によ
って変化するから、回転後の位置座標を求め、その値に
従って電子線を偏向させ、描画処理を行う。新しい位置
座標は回転前の位置座標と回転角から簡単な計算によっ
て求めることが出来る。更に異なる傾斜角の辺縁を持つ
パターンの描画が必要な時は、回転角を修正して同様の
処理を行う。
At this time, since the position coordinates of the pattern also change due to the rotation, the position coordinates after the rotation are obtained, the electron beam is deflected according to the value, and the drawing process is performed. New position coordinates can be obtained by simple calculation from the position coordinates before rotation and the rotation angle. When it is necessary to draw a pattern having edges with different inclination angles, the rotation angle is corrected and the same processing is performed.

【0020】傾斜辺縁を持つパターンの描画が終了した
ら、基板を反対方向に回転して元の角度位置に戻し、次
のチップ位置まで基板をX軸或いはY軸に平行に移動さ
せて上記2通りの描画処理を行う。これを繰り返して基
板の全チップの描画が終わった後、これを現像処理して
所定のレジストパターンを得る。
When the drawing of the pattern having the inclined edges is completed, the substrate is rotated in the opposite direction to return to the original angular position, and the substrate is moved to the next chip position in parallel with the X-axis or the Y-axis, and the above-mentioned 2 is performed. Perform the street drawing process. After this is repeated and drawing of all the chips on the substrate is completed, this is developed to obtain a predetermined resist pattern.

【0021】この実施例ではチップ毎に基板を回転して
元に戻すことを行っているので、一見煩瑣に見えるが、
回転後に描画すべきパターンの位置が回転中心に近接し
ているため、回転の際の角度誤差の影響を受けることが
少なく、その調整精度に対する要求は比較的緩やかであ
って、実際のスループットが非実用的なほど長くなるこ
とはない。
In this embodiment, since the substrate is rotated and returned to the original for each chip, it looks complicated at first sight.
Since the position of the pattern to be drawn after rotation is close to the center of rotation, it is unlikely to be affected by the angular error during rotation, and the demand for adjustment accuracy is relatively lenient, and the actual throughput is It will never be as long as it is practical.

【0022】図3は請求項3及び請求項7に対応する第
2の実施例の工程を示すフロー図である。以下これを説
明するが、この図でも通常の半導体装置の製造工程と共
通する部分は省略されている。
FIG. 3 is a flow chart showing steps of a second embodiment corresponding to claims 3 and 7. This will be described below, but in this figure as well, the parts common to the normal semiconductor device manufacturing process are omitted.

【0023】基板が所定位置にセットされ、一つのチッ
プに対しX−Y座標に平行な辺縁を持つパターンの描画
が行われるところから始まるのは第1の実施例と同じで
ある。本実施例ではこの描画が終わった後、基板をX方
向或いはY方向にチップ周期だけ平行移動して次のチッ
プを描画位置に進め、このチップに対してもX−Y座標
に平行な辺縁を持つパターンの描画を行う。
As in the first embodiment, the process is started from the point where the substrate is set at a predetermined position and a pattern having a side edge parallel to the XY coordinates is drawn on one chip. In the present embodiment, after this drawing is completed, the substrate is moved in parallel in the X direction or the Y direction by the chip period to advance the next chip to the drawing position, and the edge parallel to the XY coordinates is also applied to this chip. Draw a pattern with.

【0024】これを繰り返して全チップの同種パターン
の描画が終わった後、基板をαだけ回転して傾斜パター
ンの直線辺縁をX軸またはY軸に平行とする。αで示さ
れる角度は第1の実施例と同じである。この時の回転中
心は基板のほゞ中央に設定された基準点であり、基板に
設けられた位置合わせマークを利用して回転角度を精度
良く所定値に合わせる。
After this is repeated to draw the same type pattern on all chips, the substrate is rotated by α so that the straight line edges of the inclined pattern are parallel to the X axis or the Y axis. The angle indicated by α is the same as in the first embodiment. At this time, the center of rotation is a reference point set almost at the center of the substrate, and the rotation angle is accurately adjusted to a predetermined value by using the alignment mark provided on the substrate.

【0025】これと並行して、回転によって変化するチ
ップ配列の方向と周期を算出しておき、回転した基板を
この算出値に従って移動させ、最初のチップの描画基準
点を電子線の偏向フィールド内の所定位置に合わせる。
更に、第1の実施例と同様に算出した傾斜パターンの位
置座標に従って、直線辺縁をもつ傾斜パターンの描画を
行う。1つのチップの傾斜パターンの描画がおわった
ら、前記算出値に従って斜め方向に基板を移動させ、次
のチップの描画基準点を電子線の偏向フィールド内の所
定位置に合わせ、傾斜パターンの描画を行う。
In parallel with this, the direction and period of the chip array which changes by rotation are calculated, the rotated substrate is moved according to this calculated value, and the drawing reference point of the first chip is set in the electron beam deflection field. To the specified position of.
Further, according to the position coordinates of the tilt pattern calculated as in the first embodiment, a tilt pattern having a straight edge is drawn. After the drawing of the tilt pattern of one chip is completed, the substrate is moved diagonally according to the calculated value, the drawing reference point of the next chip is aligned with a predetermined position in the deflection field of the electron beam, and the tilt pattern is drawn. ..

【0026】この作業を繰り返して全チップに傾斜パタ
ーンの描画を行い、これを現像処理して所定のレジスト
パターンを得る。この実施例では基板の回転は1度だけ
であるが、回転後の基板の平行移動は回転が正しく行わ
れることを前提として算出されたデータに基づいて行わ
れるので、角度調整に誤差があると、位置ずれ量は回転
中心から離れるほど大となる。従って、基板上に十分な
距離をおいて設けられた位置合わせマークを利用する等
の方法で正確に回転角を調整することが望ましい。
By repeating this operation, an inclined pattern is drawn on all the chips, and this is developed to obtain a predetermined resist pattern. In this embodiment, the substrate is rotated only once, but since the parallel movement of the substrate after the rotation is performed based on the data calculated on the assumption that the rotation is correctly performed, there is an error in the angle adjustment. The amount of positional deviation increases as the distance from the center of rotation increases. Therefore, it is desirable to accurately adjust the rotation angle by a method such as using an alignment mark provided at a sufficient distance on the substrate.

【0027】[0027]

【発明の効果】以上説明したように、本発明によれば方
形断面を持つ電子線を用いても、該方形の辺に平行でな
い辺縁を持つパターンのの描画に於いて、該辺縁を滑ら
かなものとして形成することが可能となる。この平滑度
はSEMを用いた観察によってはじめて識別が可能とな
る程度に緻密とすることもできる。
As described above, according to the present invention, even when an electron beam having a rectangular cross section is used, when drawing a pattern having an edge that is not parallel to the side of the rectangle, It can be formed as a smooth one. This smoothness can be made so dense that it can be identified only by observation using an SEM.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の原理を説明する図FIG. 1 is a diagram illustrating the principle of the present invention.

【図2】 第1の実施例の工程を示すフロー図FIG. 2 is a flowchart showing the steps of the first embodiment.

【図3】 第2の実施例の工程を示すフロー図FIG. 3 is a flowchart showing the steps of the second embodiment.

【図4】 方形ショットで描いたパターンのミクロな形
状を示す図
FIG. 4 is a diagram showing a microscopic shape of a pattern drawn by a square shot.

【符号の説明】[Explanation of symbols]

1 ショット 2 パターン 1 shot 2 pattern

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 中心軸に垂直な断面形状が方形であり且
つ該方形の各辺が直交座標系の座標軸に平行である電子
線を選択的に基板に照射し、該基板に塗布されたレジス
トを感光させる電子線露光処理に於いて、 電子線照射によって形成されるべき描画領域が、該座標
軸の何れにも平行でない直線辺縁を有する場合には、該
基板を該座標軸に対し相対的に回転させて該描画領域の
該直線辺縁を該座標軸の一に平行とし、 該回転処理によって変移した該描画領域の位置座標を、
回転前の位置座標と回転角から算出し、 該算出された位置座標から、該描画領域に該電子線を照
射するための電子線偏向データを算出し、 該算出された偏向データに従って電子線を偏向させなが
ら該描画領域に電子線を照射する処理を包含して成るこ
とを特徴とする電子線露光方法。
1. A resist applied to a substrate by selectively irradiating the substrate with an electron beam having a rectangular cross-sectional shape perpendicular to the central axis and each side of the rectangle being parallel to the coordinate axes of an orthogonal coordinate system. In the electron beam exposure process for exposing the substrate, if the drawing area to be formed by electron beam irradiation has a straight side edge which is not parallel to any of the coordinate axes, the substrate is relatively moved with respect to the coordinate axes. The position coordinates of the drawing area shifted by the rotation process are made by rotating the straight line edge of the drawing area parallel to one of the coordinate axes.
The electron beam deflection data for irradiating the drawing area with the electron beam is calculated from the position coordinates before rotation and the rotation angle, and the electron beam is calculated according to the calculated deflection data. An electron beam exposure method comprising a process of irradiating the drawing area with an electron beam while deflecting.
【請求項2】 請求項1の電子線露光処理を包含する電
子線露光方法であって、前記基板上に同一パターンが前
記直交座標系の座標軸方向に繰り返し配置されている場
合、 該繰り返しの周期に従って基板を該座標軸方向に所定距
離だけ平行移動させ、該座標軸方向及びその直交方向に
電子線を偏向させる描画を行った後、該基板を所定角度
回転させて請求項1の電子線露光処理を行い、更にその
後、基板を該回転とは反対方向に回転して元の位置に戻
し、 該平行移動/描画/回転/斜め描画/復元回転の処理を
反復することを特徴とする電子線露光方法。
2. An electron beam exposure method including the electron beam exposure process according to claim 1, wherein the same pattern is repeatedly arranged in the coordinate axis direction of the orthogonal coordinate system on the substrate, the repeating cycle. The electron beam exposure process according to claim 1, wherein the substrate is translated in the coordinate axis direction by a predetermined distance in accordance with the above-mentioned steps, and drawing is performed to deflect the electron beam in the coordinate axis direction and the direction orthogonal thereto, and then the substrate is rotated by a predetermined angle. The electron beam exposure method, wherein the substrate is rotated in the opposite direction to the rotation, returned to the original position, and the parallel movement / drawing / rotation / oblique drawing / restoring rotation are repeated. ..
【請求項3】 請求項1の電子線露処理を包含する電子
線露光光方法であって、前記基板上に同一パターンが前
記直交座標系の座標軸方向に繰り返し配置されている場
合、前記直交座標系の座標軸に対し傾斜した辺縁を持つ
描画領域への電子線照射は、 該基板の中心を、非偏向時の電子線照射位置にほゞ一致
させて該傾斜辺縁が該座標軸の一に平行になるように基
板を回転させ、 該回転前の繰り返し配列に関わる位置座標から、該回転
後の繰り返し配列に関わる位置座標を算出し、該算出値
に基づいて基板を斜め方向に繰り返し移動させながら行
うことを特徴とする電子線露光方法。
3. The electron beam exposure light method including the electron beam exposure treatment according to claim 1, wherein the same pattern is repeatedly arranged in the coordinate axis direction of the orthogonal coordinate system on the substrate, the orthogonal coordinate system. The electron beam irradiation to the drawing area having an edge inclined with respect to the coordinate axis of the system is performed so that the center of the substrate is almost coincident with the electron beam irradiation position at the time of non-deflection so that the inclined edge becomes one of the coordinate axes. The substrate is rotated so as to be parallel, the position coordinates related to the repeated array after the rotation are calculated from the position coordinates related to the repeated array before the rotation, and the substrate is repeatedly moved diagonally based on the calculated value. And an electron beam exposure method.
【請求項4】 請求項3の電子線露光方法であって、 前記基板の回転は、該基板に設けられた位置合わせマー
クを用いて所定角度の回転を行うものであることを特徴
とする電子線露光方法。
4. The electron beam exposure method according to claim 3, wherein the substrate is rotated by a predetermined angle using an alignment mark provided on the substrate. Line exposure method.
【請求項5】 請求項1の処理を行う電子線露光装置で
あって、請求項1の露光処理を実施する際に前記演算処
理を実行する演算処理装置を備えて成る電子線露光装
置。
5. An electron beam exposure apparatus which performs the process of claim 1, wherein the electron beam exposure device comprises an arithmetic processing device that executes the arithmetic process when the exposure process of claim 1 is performed.
【請求項6】 請求項2の処理を行う電子線露光装置で
あって、請求項2の露光処理を実施する際に前記演算処
理を実行する演算処理装置を備えて成る電子線露光装
置。
6. An electron beam exposure apparatus that performs the process of claim 2, wherein the electron beam exposure device includes an arithmetic processing device that executes the arithmetic process when performing the exposure process of claim 2.
【請求項7】 請求項3の処理を行う電子線露光装置で
あって、請求項3の露光処理を実施する際に前記演算処
理を実行する演算処理装置を備えて成る電子線露光装
置。
7. An electron beam exposure apparatus that performs the process of claim 3, wherein the electron beam exposure device comprises an arithmetic processing device that executes the arithmetic process when performing the exposure process of claim 3.
JP24095291A 1991-09-20 1991-09-20 Electron-beam exposing method Withdrawn JPH0582424A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24095291A JPH0582424A (en) 1991-09-20 1991-09-20 Electron-beam exposing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24095291A JPH0582424A (en) 1991-09-20 1991-09-20 Electron-beam exposing method

Publications (1)

Publication Number Publication Date
JPH0582424A true JPH0582424A (en) 1993-04-02

Family

ID=17067099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24095291A Withdrawn JPH0582424A (en) 1991-09-20 1991-09-20 Electron-beam exposing method

Country Status (1)

Country Link
JP (1) JPH0582424A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008300830A (en) * 2007-05-29 2008-12-11 Advanced Mask Technology Center Gmbh & Co Kg Method for forming structure on resist material, and electron beam exposure apparatus used for the method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008300830A (en) * 2007-05-29 2008-12-11 Advanced Mask Technology Center Gmbh & Co Kg Method for forming structure on resist material, and electron beam exposure apparatus used for the method

Similar Documents

Publication Publication Date Title
JP3206143B2 (en) Charged particle beam exposure method
US7714308B2 (en) Variable shaped electron beam lithography system and method for manufacturing substrate
US6333138B1 (en) Exposure method utilizing partial exposure stitch area
AU5479200A (en) Supercritical fluid-assisted nebulization and bubble drying
JPH0536595A (en) Electron beam exposure method
JPH02125609A (en) Semiconductor manufacturing equipment
TWI286266B (en) Mask, exposure method and manufacturing method for semiconductor apparatus
US6455863B1 (en) Apparatus and method for forming a charged particle beam of arbitrary shape
US6433347B1 (en) Charged-particle-beam projection-exposure methods and apparatus that selectively expose desired exposure units of a reticle pattern
US6182369B1 (en) Pattern forming apparatus
JPH0582424A (en) Electron-beam exposing method
JP2874688B2 (en) Mask and electron beam exposure method using the same
EP0654813B1 (en) Electron beam drawing apparatus and method of drawing with such an apparatus
JPH04252016A (en) Pattern drawing method
EP0098177B1 (en) Scanning electron-beam exposure system
JP2000340492A (en) Mask for electron beam exposure and manufacture of semiconductor device using the same
JP2001015428A (en) Electron beam exposure system
JPH0669112A (en) Transparent mask plate
JP2003086496A (en) Transfer mask and manufacturing method, and projection exposure method
JP2910439B2 (en) Electron beam exposure method
JPS6152973B2 (en)
JPH04302132A (en) Scanning type projection electron beam exposure system and method
JPH06140309A (en) Method for electron beam expoure
JPH03104112A (en) Electron beam exposure device
JPH04297016A (en) Preparing method of x-ray mask

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19981203