JPH0581833B2 - - Google Patents

Info

Publication number
JPH0581833B2
JPH0581833B2 JP60051031A JP5103185A JPH0581833B2 JP H0581833 B2 JPH0581833 B2 JP H0581833B2 JP 60051031 A JP60051031 A JP 60051031A JP 5103185 A JP5103185 A JP 5103185A JP H0581833 B2 JPH0581833 B2 JP H0581833B2
Authority
JP
Japan
Prior art keywords
heat
heat storage
small spherical
latent
storage tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60051031A
Other languages
Japanese (ja)
Other versions
JPS61208494A (en
Inventor
Shigeo Hijikata
Tadashi Matsunaga
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Corp
Mitsubishi Petrochemicals Engineering Co Ltd
Original Assignee
Mitsubishi Corp
Mitsubishi Petrochemicals Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Corp, Mitsubishi Petrochemicals Engineering Co Ltd filed Critical Mitsubishi Corp
Priority to JP60051031A priority Critical patent/JPS61208494A/en
Publication of JPS61208494A publication Critical patent/JPS61208494A/en
Publication of JPH0581833B2 publication Critical patent/JPH0581833B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • F28D20/023Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat the latent heat storage material being enclosed in granular particles or dispersed in a porous, fibrous or cellular structure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Central Heating Systems (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は潜熱利用蓄熱装置に係わり、更に詳し
くは、一定温度で起きる物質の融解、凝固の相変
化現象に基づく潜熱を利用した蓄熱装置に関す
る。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a heat storage device using latent heat, and more particularly to a heat storage device using latent heat based on the phase change phenomenon of melting and solidification of a substance that occurs at a constant temperature. .

〔従来の技術及び発明が解決しようとする問題点〕[Problems to be solved by conventional technology and invention]

周知の通り、潜熱蓄熱材を用いた蓄熱法は、顕
熱利用技術に比して、蓄熱密度が大であつて、か
なりの熱量が得られることや、装置をコンパクト
にまとめることができる等の理由により、近時注
目されている。従つて、従来からも潜熱蓄熱材、
それを使用する蓄熱槽、それらを用いた潜熱蓄熱
方法、装置、システム等の技術開発が成され、特
に太陽熱等の温熱を対象とした潜熱蓄熱材を中心
とした提案が成されている。
As is well known, heat storage methods using latent heat storage materials have higher heat storage density than sensible heat utilization technology, can obtain a considerable amount of heat, and can be made compact. It has been attracting attention recently for a number of reasons. Therefore, conventionally, latent heat storage materials,
Technological developments have been made on heat storage tanks that use them, latent heat storage methods, devices, systems, etc., and proposals centering on latent heat storage materials that specifically target thermal heat such as solar heat have been made.

この内、潜熱蓄熱装置の全体システムについて
みると、例えばエネルギー・資源研究会刊行「エ
ネルギー・資源」Vol.4 No.4(1983)p51〜54の
中で、潜熱蓄熱の試験的な応用例としてソーラシ
ステム、空調装置についての幾つかの報告が成さ
れていて、第14図に示すように、圧縮機A、凝
縮器Bを出た伝熱媒体を蓄熱槽Cに通し、再び元
に循環させる蓄熱モードと、伝熱媒体を蓄熱槽C
と空気冷却器Dの間に循環させる放熱モードを可
能にする蓄熱冷房装置が知られている。これはか
なり有効な技術ではあるが、この従来技術は、放
熱モード時に於いて、常時空気冷却器Dを出た伝
熱媒体の全量が蓄熱槽Cを通り、再び空気冷却器
Dに戻される単純な構造であり、空気冷却器等熱
使用機器側の熱使用条件に合わせて、その条件に
合つた温度の伝熱媒体を当該熱使用機器に制御し
て供給する特段の工夫がないから、この点で試験
的研究の範囲を出ず実用化するには、多くの解決
課題を残している。従つて本願の第1の発明の、
1つの目的は、蓄熱槽を通過する伝熱媒体の流量
を変化させれば、蓄熱槽から伝熱媒体への放熱量
が変化することに着目し、放熱モード時に於い
て、熱使用機器側熱交換器に入る伝熱媒体の実際
温度を検出して、それを動作信号として蓄熱槽を
通る伝熱媒体の流量を操作することによつて、熱
使用機器側の熱交換器に供給される伝熱媒体の温
度を予かじめ定めた熱使用機器側の熱使用条件に
合わせて常時適合制御させることができ、而もそ
の制御が容易簡単に実施できる装置を提供するに
ある。
Of these, if we look at the overall system of the latent heat storage device, for example, in "Energy and Resources" published by the Energy and Resources Study Group, Vol. 4 No. 4 (1983), p. 51-54, there is Several reports have been made regarding solar systems and air conditioners, and as shown in Figure 14, the heat transfer medium exiting the compressor A and condenser B is passed through a heat storage tank C and circulated back to the source. Heat storage mode and heat transfer medium in heat storage tank C
A heat storage cooling device is known that enables a heat radiation mode in which heat is circulated between the air cooler D and the air cooler D. Although this is a fairly effective technique, this conventional technique is simple in that during the heat dissipation mode, the entire amount of the heat transfer medium that leaves the air cooler D always passes through the heat storage tank C and is returned to the air cooler D again. This is because there is no special way to control and supply a heat transfer medium at a temperature that matches the heat usage conditions of the heat-using equipment, such as an air cooler, to the heat-using equipment. However, many issues remain to be resolved in order to put this technology to practical use without going beyond the scope of experimental research. Therefore, the first invention of the present application,
One purpose is to focus on the fact that by changing the flow rate of the heat transfer medium passing through the heat storage tank, the amount of heat released from the heat storage tank to the heat transfer medium changes. By detecting the actual temperature of the heat transfer medium entering the exchanger and using it as an operation signal to manipulate the flow rate of the heat transfer medium passing through the heat storage tank, the flow rate of the heat transfer medium passing through the heat storage tank is controlled. To provide a device which can constantly control the temperature of a heat medium in accordance with predetermined heat usage conditions of a heat usage device, and which can easily carry out the control.

又、これら潜熱利用蓄熱装置又はシステムを効
率的に動作させる上で重要なのは、これらの一部
を構成する蓄熱槽であることはいうまでもない
が、これについて従来の技術をみると、今まで
は、ほとんど槽本体内に、管を通し、その周りに
相変化物質である蓄熱媒体を詰めたシエルアンド
チユーブ型か、又はスパイラルコイル型が用いら
れている。前述した第14図に示される装置の蓄
熱槽Cや、特昭昭53−9596号公報に示される蓄熱
槽がこれに該当する。この他、特開昭53−25939
号公報にみられるように、蓄熱媒体を鋼製の円筒
容器に入れ、その容器をローラ上にのせて小型モ
ーターにより回転して空気と熱交換させるような
ものも提案されている。所が、本出願人等の最近
の研究によると、これらシエルアンドチユーブ型
やスパイラルコイル型の蓄熱槽は、構造上、蓄熱
槽内の蓄熱媒体の体積(蓄熱容量)を向上させる
に一定の限界があること、蓄1放熱時間の短縮化
に困難が多いこと、円管やスパイラルコイルを用
いる為蓄熱容器の形状に制限があり、既存の任意
形状の蓄熱槽に直ちに組み入れられないこと、チ
ユーブのコーナー等にクラツクが生じ耐久性があ
まりないこと…等が判明し、潜熱蓄熱装置を試験
段階から実用段階へ進める為には、これに代わる
蓄熱槽の開発が望まれていた。
In addition, it goes without saying that what is important for the efficient operation of these latent heat storage devices or systems is the heat storage tank that constitutes a part of them. In most cases, a shell-and-tube type or a spiral coil type is used, in which a tube is passed through the tank body and a heat storage medium, which is a phase change material, is packed around the tube. This applies to the heat storage tank C of the device shown in FIG. 14 mentioned above and the heat storage tank shown in Japanese Patent Publication No. 53-9596. In addition, JP-A-53-25939
As seen in the above publication, a method has been proposed in which the heat storage medium is placed in a cylindrical steel container, and the container is placed on a roller and rotated by a small motor to exchange heat with the air. However, according to recent research by the applicant and others, these shell-and-tube type and spiral coil type heat storage tanks have a certain limit in improving the volume of the heat storage medium (heat storage capacity) in the heat storage tank due to their structure. There are many difficulties in shortening the heat storage and heat dissipation time, there are restrictions on the shape of the heat storage container because circular tubes and spiral coils are used, and it cannot be immediately incorporated into existing heat storage tanks of arbitrary shapes. It was discovered that cracks occurred at the corners, etc., and the durability was not very good.In order to advance the latent heat storage device from the testing stage to the practical stage, it was desired to develop a heat storage tank to replace it.

そこで本出願人等は、上記揚請に答えて幾つか
の試験、研究を行なつた結果、相変化物質である
蓄熱媒体を小球の中に充てんした小球状蓄熱体を
用いることが、上記の諸点を解決するものである
との認識に到達し、先に本出願人等は昭和59年特
許願第5297号(特開昭60−196558号公報参照)等
の中で蓄熱槽の中に小球状蓄熱体を収容した技術
を開示した。この発明の装置も、上記の小球状蓄
熱体を収容した蓄熱槽を有し、上述した諸点を解
決できるものであるが、上記の昭和59年特許願第
52974号等の中では、未だ次の未解決部分を残し
ていた。
Therefore, as a result of several tests and studies in response to the above-mentioned request, the present applicant and others have found that it is possible to use a small spherical heat storage body in which a heat storage medium, which is a phase change material, is filled into small spheres. Reaching the recognition that this would solve the problems of A technology containing small spherical heat storage bodies has been disclosed. The device of this invention also has a heat storage tank containing the above-mentioned small spherical heat storage body and can solve the above-mentioned problems, but the device of the above-mentioned patent application filed in 1982
Among issues such as No. 52974, the following unresolved parts were still left.

1つには、安定した動作の為には蓄熱槽を通る
伝熱媒体と小球状蓄熱体とを各部均一に接触せし
める必要があるので、この為の改善手段である。
これは、大別すれば2つあり、その内の1つは、
蓄熱槽の入口から小球状蓄熱体群に向つて伝熱媒
体を通す時に可及的に分散させて通すようにしな
けれならないが、これを確保する為の手段。
One is that for stable operation, it is necessary that the heat transfer medium passing through the heat storage tank and the small spherical heat storage bodies come into uniform contact with each other, so this is an improvement measure for this purpose.
There are two types of this, one of which is:
When passing the heat transfer medium from the entrance of the heat storage tank towards the group of small spherical heat storage bodies, it must be dispersed as much as possible, and this is a means to ensure this.

もう1つは、伝熱媒体が小球状蓄熱体群の間を通
過する時に、ある部分と他の部分とで不均一な対
流が生ずると、各部不均一な熱伝導率となり、各
小球状蓄熱体が等しく熱の授受を行なわないこと
になるので、各部不均一な対流を生ぜしめない為
の改善手段である。
Another problem is that when a heat transfer medium passes between a group of small spherical heat storage bodies, if non-uniform convection occurs between one part and another, the thermal conductivity of each part becomes non-uniform, and each small spherical heat storage body Since the body does not exchange heat equally, this is an improvement measure to prevent uneven convection from occurring in each part.

もう1つには、蓄熱槽内に於ける伝熱媒体の滞
留時間が増せば増す程熱交換の温度効率が向上す
るから、この伝熱媒体の槽内滞溜時間(槽内通過
流速)を最適に定めなければならない所である
が、この槽内通過流速は、流体摩擦による圧力損
失によつて大きく影響を受けるから、この圧力損
失を適度に定めなければならない。従つて槽の直
径と長さを適度に定めなけれならない。更には、
蓄熱槽内に小球状蓄熱体を収容した後の、実用上
極めて重要なドレン抜きの問題等である。
Another reason is that the longer the residence time of the heat transfer medium in the heat storage tank, the higher the temperature efficiency of heat exchange. This must be determined optimally, but since the flow rate through the tank is greatly affected by pressure loss due to fluid friction, this pressure loss must be determined appropriately. Therefore, the diameter and length of the tank must be determined appropriately. Furthermore,
After the small spherical heat storage element is housed in the heat storage tank, there is the problem of draining water, which is extremely important in practice.

従つて本願の第一の発明の他の目的は、一定容
積の槽内に蓄熱容量を最大限にとり得ると共に、
単位体積当りの伝熱量が良好であつて蓄熱/放熱
時間を可及的に短縮設計可能であり、腐食部分が
少くて耐久性を向上させることができ、蓄熱体側
から槽設計の制限を受けない等の利点を備えた蓄
熱槽を有する潜熱利用蓄熱装置を提供すると共
に、特に蓄熱槽内に流入させる伝熱媒体を流入直
後に於いて、その流入方向に直交する断面の各部
に均一に拡散せしめて小球状蓄熱体に均一に接触
させることのできる手段をもつ装置を提供するに
あり、又蓄熱槽自体を水平静置式として、予測し
難い対流を生ぜしめる外力や重力の影響を排除し
て、小球状蓄熱体群の各部で均一な対流が生じ
て、各部均一な熱伝達が実行される蓄熱槽をもつ
装置を提供するにあり、更には蓄熱槽を通る伝熱
媒体の圧力損失を決定する蓄熱槽の直径と長さの
関係を適度に定めることによつて、本出願人の
種々の実験によれば、それは1:3〜6の範囲で
あるが、それにより熱交換の温度効率のよい伝熱
媒体の流速(槽内滞留時間)を確保することので
き槽を有する装置を提供するにある。
Therefore, another object of the first invention of the present application is to maximize the heat storage capacity in a tank of constant volume, and to
It has a good heat transfer amount per unit volume and can be designed to shorten heat storage/radiation time as much as possible, has fewer corroded parts and can improve durability, and is not subject to tank design restrictions from the heat storage body side. To provide a heat storage device utilizing latent heat having a heat storage tank having the following advantages, and in particular, to uniformly diffuse the heat transfer medium flowing into the heat storage tank into each part of the cross section perpendicular to the direction of flow immediately after the flow of the heat transfer medium into the heat storage tank. The purpose of the present invention is to provide a device that has a means for uniformly contacting a small spherical heat storage body, and the heat storage tank itself is of a horizontal stationary type, eliminating the influence of external forces and gravity that cause unpredictable convection. To provide a device having a heat storage tank in which uniform convection occurs in each part of a group of small spherical heat storage bodies, and uniform heat transfer is performed in each part, and further to determine the pressure loss of a heat transfer medium passing through the heat storage tank. By appropriately determining the relationship between the diameter and length of the heat storage tank, which is in the range of 1:3 to 6, according to various experiments of the applicant, it is possible to achieve a temperature-efficient heat exchange. An object of the present invention is to provide an apparatus having a tank that can ensure the flow rate (residence time in the tank) of a heat transfer medium.

且つ小球状蓄熱体群を密に収容した後に、必要
に応じて伝熱媒体のドレンを抜く時に、堆積せる
小球状蓄熱体を下方へ落とすことなくドレンを容
易に抜くことができ、現場での取扱いが便利なる
槽を有する装置を提供するにある。
In addition, when the heat transfer medium is drained as necessary after the group of small spherical heat storage bodies is densely housed, the drain can be easily removed without dropping the accumulated small spherical heat storage bodies downward, making it easy to use on-site. An object of the present invention is to provide a device having a tank that is convenient to handle.

更に、この種の潜熱利用蓄熱装置にとつて最も
基本的なことは、蓄熱槽の中に収容される蓄熱体
の中に充てんされる蓄熱媒体であるが、これにつ
いては従来から相当の研究開発が進められ幾つも
の技術が提案されているが、そのほとんどは融解
又は凝固点が略5℃以上のものが主である。僅か
に特開昭59−93780号公報等に0℃以下の蓄熱媒
体の数種が提案されている程度である。而もこれ
らは蓄熱媒体自体であるから、その蓄熱媒体を用
いた装置自体についての開示はあまり多くない。
Furthermore, the most fundamental thing for this type of latent heat storage device is the heat storage medium that is filled in the heat storage body housed in the heat storage tank, and a considerable amount of research and development has gone into this. Although many technologies have been proposed, most of them have melting or freezing points of about 5° C. or higher. There are only a few types of heat storage media proposed in JP-A-59-93780 and the like that have temperatures below 0°C. However, since these are heat storage media themselves, there are not many disclosures about the devices themselves using the heat storage media.

従つて本願の第二以下第十四迄の発明の目的は
上記第一の発明の目的に加えて各々次の目的をも
有する。即ち、−3℃、−6℃、−8℃、−10℃を各
融解、凝固点として動作する蓄熱媒体を小球状蓄
熱体に封じた潜熱蓄熱装置を提供するにある。従
つて、ビール工場、清涼飲料水工場等の貯蔵、反
応プロセスの冷熱源として、乳業プラントの低温
反応器用冷熱源として、更には商品、製品陳列ケ
ースの冷凍用冷熱源として、花、果実の流通業の
貯蔵用冷熱源として用いるに好適な潜熱利用蓄熱
装置を提供するにある。
Therefore, the objects of the second to fourteenth inventions of the present application each have the following objects in addition to the object of the first invention. That is, the object of the present invention is to provide a latent heat storage device in which a heat storage medium that operates at melting and freezing points of -3°C, -6°C, -8°C, and -10°C is sealed in a small spherical heat storage body. Therefore, it can be used as a cold source for storage and reaction processes in beer factories, soft drink factories, etc., as a cold source for low-temperature reactors in dairy plants, and as a cold source for freezing products and product display cases, as well as for the distribution of flowers and fruits. An object of the present invention is to provide a heat storage device using latent heat suitable for use as a cold heat source for industrial storage.

更に−15℃、−17℃、−18℃、−21℃を各々融解、
凝固点として動作する蓄熱媒体を小球状蓄熱体に
封入し、これを蓄熱槽に収容した潜熱利用蓄熱装
置を提供するにある。従つて、屠殺場、食肉セン
ター等の食肉貯蔵用冷熱源として、スケート場ア
イスリンク用冷熱源として、更には薬品工場、血
液貯蔵所等の貯蔵所冷熱源として用いるに好適な
潜熱利用蓄熱装置を提供するにある。
Furthermore, melt at -15℃, -17℃, -18℃, and -21℃, respectively.
An object of the present invention is to provide a heat storage device using latent heat, in which a heat storage medium that acts as a freezing point is enclosed in a small spherical heat storage body, and this is housed in a heat storage tank. Therefore, we have developed a heat storage device using latent heat that is suitable for use as a cold source for meat storage in slaughterhouses, meat centers, etc., as a cold source for ice rinks, and as a cold source for storage facilities in drug factories, blood storage facilities, etc. It is on offer.

又、0℃を融解、凝固点として動作する蓄熱媒
体ではあるが、これを特に小球状蓄熱体に封入
し、これを蓄熱槽に収容し、そのような槽を有し
ている業務用ビル冷房等に好適な潜熱利用蓄熱装
置を提供するにある。
In addition, although it is a heat storage medium that operates at 0°C as its melting and freezing point, it is especially sealed in a small spherical heat storage body and housed in a heat storage tank. To provide a heat storage device using latent heat suitable for.

更に−21℃、−28℃、−33℃、−37℃を融解、凝
固点として動作する蓄熱媒体ではあるが、これを
特に小球状蓄熱体に封入し、これを蓄熱槽に収容
し、そのような特徴的な槽をもつている冷凍倉庫
用冷熱源に特に好適な潜熱利用蓄熱装置を提供す
るにある。
Furthermore, although it is a heat storage medium that operates as a melting and freezing point at -21℃, -28℃, -33℃, and -37℃, it is especially encapsulated in a small spherical heat storage body, which is housed in a heat storage tank. It is an object of the present invention to provide a heat storage device using latent heat which is particularly suitable for a cold heat source for a frozen warehouse having a characteristic tank.

併せて、業務用ビル暖房、給湯、温水器、等に
好適な64℃を融解、凝固点として動作する蓄熱媒
体を適用した潜熱利用蓄熱装置を提供することも
目的としている。そして、これら第二以下第十四
迄の発明の潜熱利用蓄熱装置は、融解、凝固の繰
り返えし回数に対しても安定して動作し、安定性
を向上させることも目的としている。
Another objective is to provide a heat storage device using latent heat that uses a heat storage medium that operates at a melting and freezing point of 64°C, which is suitable for commercial building heating, hot water supply, water heaters, etc. It is also an object of the latent heat storage devices of the second to fourteenth inventions to operate stably even after repeated melting and solidification, and to improve stability.

〔問題点を解決する為の手段及び作用〕[Means and actions for solving problems]

上記問題点を解決する為の手段を、実施例に対
応する第1図〜第13図を用いて以下に説明す
る。即ち、本願の第一の発明は、先ず、熱発生機
器側熱交換器1とポンプ2と、蓄熱槽7と、熱使
用機器側熱交換器3とを順次循環的に伝熱媒体伝
熱管によつて接続し、蓄熱槽7と熱使用機器側熱
交換器3との間と、熱使用機器側熱交換器3と熱
発生機器側熱交換器1との間の分岐点9を管8に
て接続すると共に、熱使用機器側熱交換器3と分
岐点9との間と、熱発生機器側熱交換器1とポン
プ2との間を管10で接続し、三方向制御弁1
1,12の切換動作により、熱発生機器側熱交換
器1から出た伝熱媒体をポンプによつて蓄熱槽7
を通して管8を介して再び熱発生機器側熱交換器
1に戻す蓄熱モードと、蓄熱槽7を出た伝熱媒体
をポンプによつて熱使用機器側熱交換器3を通
し、管10を介して再び蓄熱槽7に戻す放熱モー
ドを成すと共に、ポンプ2と蓄熱槽7との間と熱
使用機器側熱交換器3手前位置の間をバイパス管
13にて接続し、このバイパス管13に流量量制
御弁14を配設することにより、熱使用機器側熱
交換器3に入る手前位置15の伝熱媒体の実際検
出温度tが同位置の制御目標設定温度Tを越えた
場合に、その偏差Δtを動作信号として、上記放
熱モード時に於いて、上記流量制御弁14を熱使
用機器側熱交換器3を出た伝熱媒体の一部がバイ
パス管13をも介して再び熱使用機器熱交換器に
戻入せしめられるように開度制御されており、且
つ上記蓄熱槽7は水平静置型として構成されてい
て、円筒形の胴体19と、この左右両端に取着さ
れる、各々接続口22,23が形成された胴体蓋
20,21と、上記各接続口に対向して胴体19
の左右両端付近に配設された流れ拡散部材24,
25と、水平静置される胴体19の下方に形成さ
れたドレン抜き手段33とより成り、この蓄熱槽
7の直径Dと、水平方向長さに相当する全長Lの
比は1:3〜6の範囲に定められていると共に、
上記一方と他方の流れ拡散部材24,25によつ
て区画される槽内部28には、内部に蓄熱媒体3
0が充てんされた小球状蓄熱体29が密に収容さ
れて成り、上記ドレン抜き手段33は、小球状蓄
熱体29の通過を許容せず、該小球状蓄熱体29
相互間の空隙内の伝熱媒体の通過を許容するよう
に胴体の下面に形成された単又は複数のドレン流
隙35を含むドレン管36と、そのドレン管36
を常時は閉じる為の開閉弁37によつて構成され
ていることを特徴とする潜熱利用蓄熱装置であ
る。
Means for solving the above problems will be explained below using FIGS. 1 to 13, which correspond to embodiments. That is, in the first invention of the present application, first, the heat exchanger 1 on the heat generation equipment side, the pump 2, the heat storage tank 7, and the heat exchanger 3 on the heat usage equipment side are sequentially and cyclically connected to the heat transfer medium heat exchanger tube. The branch point 9 between the heat storage tank 7 and the heat exchanger 3 on the heat-using equipment side, and between the heat exchanger 3 on the heat-using equipment side and the heat exchanger 1 on the heat-generating equipment side is connected to the pipe 8. At the same time, a pipe 10 connects between the heat exchanger 3 on the heat-using equipment side and the branch point 9, and between the heat exchanger 1 on the heat-generating equipment side and the pump 2, and the three-way control valve 1
1 and 12, the heat transfer medium discharged from the heat exchanger 1 on the heat generation equipment side is transferred to the heat storage tank 7 by the pump.
In the heat storage mode, the heat transfer medium exiting the heat storage tank 7 is passed through the heat exchanger 3 on the heat-using equipment side by a pump, and is returned via the pipe 10 to the heat exchanger 1 on the heat generating equipment side. At the same time, a bypass pipe 13 is connected between the pump 2 and the heat storage tank 7 and a position in front of the heat exchanger 3 on the heat-using equipment side, and a flow rate is connected to the bypass pipe 13. By disposing the quantity control valve 14, when the actual detected temperature t of the heat transfer medium at the position 15 before entering the heat exchanger 3 on the heat-using equipment side exceeds the control target set temperature T at the same position, the deviation is controlled. Using Δt as an operation signal, in the heat dissipation mode, the flow rate control valve 14 is operated so that a part of the heat transfer medium that has exited the heat exchanger 3 on the heat-using equipment side passes through the bypass pipe 13 again and is transferred to the heat-using equipment for heat exchange. The opening degree is controlled so that the heat storage tank 7 can be returned to the container, and the heat storage tank 7 is configured as a horizontal stationary type, and has a cylindrical body 19 and connection ports 22, which are attached to both left and right ends of the body 19, respectively. 23 are formed on the body lids 20 and 21, and the body 19 faces the respective connection ports.
Flow diffusion members 24 arranged near both left and right ends of the
25 and a draining means 33 formed below the body 19 which is placed horizontally, and the ratio of the diameter D of this heat storage tank 7 to the total length L corresponding to the horizontal length is 1:3 to 6. It is defined within the range of
Inside the tank 28, which is partitioned by the one and the other flow diffusion members 24 and 25, there is a heat storage medium 3 inside.
The small spherical heat storage body 29 filled with 0 is densely housed, and the drain removal means 33 does not allow the small spherical heat storage body 29 to pass through, and the small spherical heat storage body 29 is
A drain pipe 36 including one or more drain gaps 35 formed on the lower surface of the body to allow passage of a heat transfer medium in the gaps therebetween, and the drain pipe 36
This is a heat storage device using latent heat, characterized in that it is constituted by an on-off valve 37 that is normally closed.

このような構成なので、次のような蓄熱・放熱
動作が行なわれる。
With such a configuration, the following heat storage and heat dissipation operations are performed.

蓄熱動作は、三方向制御弁11,12を切換え
て伝熱媒体を熱発生機器側熱交換器1と蓄熱槽7
の間に循環させる。
The heat storage operation is performed by switching the three-way control valves 11 and 12 to transfer the heat transfer medium between the heat exchanger 1 on the heat generating equipment side and the heat storage tank 7.
circulate between.

放熱動作は、三方向制御11,12と切換え
て、伝熱媒体を蓄熱槽と熱使用機器側交換器3の
間に循環させる。この放熱動作に於いて、熱使用
機器側熱交換器の手前位置15を通る伝熱媒体の
実際検出温度をt、同位置の制御目標としての設
定温度をT、tとTとの偏差をΔtとすると、t
がTをを越えた場合、即ち冷熱を対象とする場合
にはt<Tとなつて冷えすぎの場合であり、又温
熱を対象とする場合にはt>Tとなつて温ためす
ぎの場合には、その偏差温度Δtを動作信号とし
て流量制御弁14を開度制御し、熱使用機器側熱
交換器3を出た伝熱媒体の一部をバイパス管13
にも流入入させ、そこを介して該伝熱媒体が熱使
用機器側熱交換器3に戻るようになる。それによ
り、蓄熱槽7を伝熱媒体の流量が減じられ、熱使
用機器側熱交換器3の入口手前位置15の伝熱媒
体の温度が制御目標を基準としてコントロールさ
れる。
The heat dissipation operation is performed by switching between the three-way controls 11 and 12 to circulate the heat transfer medium between the heat storage tank and the exchanger 3 on the heat-using equipment side. In this heat dissipation operation, the actual detected temperature of the heat transfer medium passing through the front position 15 of the heat exchanger on the heat-using equipment side is t, the set temperature as a control target at the same position is T, and the deviation between t and T is Δt. Then, t
exceeds T, that is, when the target is cold heat, t<T, which means it is too cold, and when the target is heat, t>T, which means it is too warm. In this case, the opening of the flow rate control valve 14 is controlled using the deviation temperature Δt as an operating signal, and a part of the heat transfer medium exiting the heat exchanger 3 on the heat-using equipment side is transferred to the bypass pipe 13.
Also, the heat transfer medium returns to the heat exchanger 3 on the heat-using equipment side through there. As a result, the flow rate of the heat transfer medium through the heat storage tank 7 is reduced, and the temperature of the heat transfer medium at the position 15 in front of the inlet of the heat exchanger 3 on the heat-using equipment side is controlled based on the control target.

そして、これらの蓄放熱モードに於いて、この
発明の蓄熱槽7は、小球状蓄熱体を収容した構造
なので、一定容積の槽内に蓄熱容量を65%程度と
ることができ、他の型式に比して格段と大きい蓄
熱容量をとり得ると共に、蓄熱/放熱時間を短縮
化でき、特に伝熱媒体を蓄熱槽7内に拡散させて
流入、通過させることがでるから、これらの良い
点が発揮される。そして腐食による問題点もほと
んど生じない。且つ蓄熱槽自体は水平円筒静置式
なので動源を全く要せず耐久性もあると共に、蓄
熱槽7を通る伝熱媒体に、回転外力による対流
や、重力方向落下を原因とする対流が生ぜず、そ
の対流は大要の一方から他方へ移る流れが主であ
つて、小球状蓄熱体29群の各部に於いて略均し
い熱伝達が実施されるから、装置の蓄放熱特性が
安定すると共に、水平静置の蓄熱槽7の直径Dと
長さLを、1:3〜6の範囲に定めて、その流体
通過時の圧力損失を適度に定めて、熱交換の温度
効率のよい伝熱媒体の流速(槽内滞留時間)を確
保できるものである。且つ小球状蓄熱体29の通
過を許容せず、伝熱媒体のみ通すドレン流隙35
を含むドレン管36があるので、ドレン抜きが容
易である。又本願の第二以下〜第十四迄の発明に
よれば、この装置の蓄熱槽7内の小球状蓄熱体2
9には、各々次の主液が充てんされている。
In these heat storage/dissipation modes, the heat storage tank 7 of the present invention has a structure that accommodates small spherical heat storage bodies, so it can store about 65% of the heat storage capacity in a tank with a constant volume, which makes it different from other types. In addition to being able to have a significantly larger heat storage capacity compared to the heat storage tank 7, the heat storage/radiation time can be shortened, and in particular, the heat transfer medium can be diffused into and passed through the heat storage tank 7, so these advantages are exhibited. be done. And there are almost no problems caused by corrosion. In addition, since the heat storage tank itself is a horizontal cylindrical stationary type, it does not require any movable source and is durable, and the heat transfer medium passing through the heat storage tank 7 does not generate convection due to external rotational force or convection caused by falling in the direction of gravity. The convection is mainly a flow from one side to the other, and the heat transfer is approximately uniform in each part of the small spherical heat storage bodies 29, so the heat storage and release characteristics of the device are stabilized. , the diameter D and length L of the horizontally stationary heat storage tank 7 are set in the range of 1:3 to 6, and the pressure loss when the fluid passes is set appropriately to achieve heat transfer with good temperature efficiency in heat exchange. It is possible to ensure the flow rate of the medium (residence time in the tank). In addition, the drain gap 35 does not allow the passage of the small spherical heat storage body 29 and allows only the heat transfer medium to pass through.
Since there is a drain pipe 36 including the drain pipe 36, draining is easy. Further, according to the second to fourteenth inventions of the present application, the small spherical heat storage body 2 in the heat storage tank 7 of this device
9 are filled with the following main liquids.

即ち、各々炭酸ナトリウム(Na2CO3)水溶液
の共融混合体、炭酸水素カリウム(KHCO3)水
溶液の共融混合体、塩化バリウム(BaCl2)水溶
液の共融混合体、塩化カリウム(KCl)水溶液の
共融混合体、塩化アンモニウム(NH4Cl)水溶
液の共融混合体、硝酸アンモニウム(NH4NO3
水溶液の共融混合体、硝酸ナトリウム(NaNO3
水溶液の共融混合体、塩化ナトリウム(NaCl)
水溶液の共融混合体、臭化ナトリウム(NaBr)
水溶液の共融混合体、塩化マグネシウム
(MgCl2)水溶液の共融混合体、炭酸カリウム
(K2CO3)水溶液の共融混合体、水酸化ナトリウ
ム(NaOH)水溶液、水(H2O)に硫酸
(H2SO4)が微量添加されている溶液の何れかが
充てんされている。これらによつて、各々−3
℃、−6℃、−8℃、−10℃、−15℃、−17℃、−18
℃、−21℃、−28℃、−33℃、−37℃、64℃、0℃の
温度を融解、凝固点として動作する潜熱利用装置
が提供される。
That is, a eutectic mixture of sodium carbonate (Na 2 CO 3 ) aqueous solution, a eutectic mixture of potassium hydrogen carbonate (KHCO 3 ) aqueous solution, a eutectic mixture of barium chloride (BaCl 2 ) aqueous solution, and a potassium chloride (KCl) aqueous solution, respectively. Eutectic mixture of aqueous solutions, ammonium chloride (NH 4 Cl) eutectic mixture of aqueous solutions, ammonium nitrate (NH 4 NO 3 )
Eutectic mixture in aqueous solution, sodium nitrate (NaNO 3 )
Eutectic mixture in aqueous solution, sodium chloride (NaCl)
Eutectic mixture in aqueous solution, sodium bromide (NaBr)
Eutectic mixture of aqueous solution, eutectic mixture of magnesium chloride (MgCl 2 ) aqueous solution, eutectic mixture of potassium carbonate (K 2 CO 3 ) aqueous solution, sodium hydroxide (NaOH) aqueous solution, water (H 2 O) It is filled with a solution containing a trace amount of sulfuric acid (H 2 SO 4 ). By these, each -3
℃, -6℃, -8℃, -10℃, -15℃, -17℃, -18
A latent heat utilizing device is provided that operates at temperatures of 0°C, -21°C, -28°C, -33°C, -37°C, 64°C, and 0°C as melting and freezing points.

〔実施例〕〔Example〕

次に添付図面に従い本発明の好適な実施例を詳
細に説明する。
Next, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

以下この実施例では熱使用機器として冷房、冷
凍装置に適用した場合を説明する。
In this embodiment, a case where the present invention is applied to a cooling or freezing device as a heat-using device will be described below.

1は熱発生機器側熱交換器としての蒸発器、2
はポンプ、3は熱使用機器側熱交換器としての冷
却器であり、蒸発器1とポンプ2は管4により、
ポンプ2と冷却器3は管5により、冷却器3と蒸
発器1は管6により各々接続されている。これに
より、蒸発器1で冷却された伝熱媒体が管4、ポ
ンプ2、管5、冷却器3、管6を通つて再び蒸発
器1に戻る通常の冷却ループが構成される。
1 is an evaporator as a heat exchanger on the heat generating equipment side; 2
is a pump, 3 is a cooler as a heat exchanger on the heat-using equipment side, and evaporator 1 and pump 2 are connected by pipe 4.
The pump 2 and the cooler 3 are connected by a pipe 5, and the cooler 3 and the evaporator 1 are connected by a pipe 6, respectively. This constitutes a normal cooling loop in which the heat transfer medium cooled in the evaporator 1 returns to the evaporator 1 again through the pipe 4, pump 2, pipe 5, cooler 3, and pipe 6.

そして、管5の中途に蓄熱槽7が配設され、こ
の下流と管6の中途の間に管8が接続されること
により、蒸発器1で冷却された伝熱媒体が管4、
ポンプ2、管5、蓄熱槽7、管8、分岐点9を通
つて再び蒸発器1に戻る蓄熱時ループが構成され
る。
A heat storage tank 7 is disposed in the middle of the pipe 5, and a pipe 8 is connected between the downstream side and the middle of the pipe 6, so that the heat transfer medium cooled by the evaporator 1 can be transferred to the pipe 4,
A heat storage loop returns to the evaporator 1 through the pump 2, the pipe 5, the heat storage tank 7, the pipe 8, and the branch point 9.

そして、管6に於ける分岐点9の上流位置と管
4の間に管10が接続されることにより、蓄熱槽
7を出た伝熱媒体が、冷却器3、管10、ポンプ
2、管5を通つて、再び蓄熱槽7に戻る放熱時ル
ープが構成される。
By connecting the pipe 10 between the upstream position of the branch point 9 in the pipe 6 and the pipe 4, the heat transfer medium leaving the heat storage tank 7 is transferred to the cooler 3, the pipe 10, the pump 2, and the pipe 4. 5 and returns to the heat storage tank 7 again, forming a heat dissipation loop.

これらの通常冷却運転モード、蓄熱モード、放
熱モードを可能にする為に管5と管8の接続点に
三方向切換弁11が接続され、管6と管10の接
続点に三方向切換弁12が接続されている。
In order to enable these normal cooling operation mode, heat storage mode, and heat radiation mode, a three-way switching valve 11 is connected to the connection point between the pipes 5 and 8, and a three-way switching valve 12 is connected to the connection point between the pipes 6 and 10. is connected.

そして、ポンプ2と蓄熱槽7の間の管5からバ
イパス管13を分岐して蓄熱槽7と冷却器3の間
に接続し、このバイパス管13の中途に流量制御
弁14を配する。この制御弁14は、冷却器3の
手前位置15を通る伝熱媒体の検出温度を動作信
号として調節器により比例制御の下、開閉動作せ
しめられるもので、図中16は温度発信器、17
は調節器、18は設定器を示している。
A bypass pipe 13 is branched from the pipe 5 between the pump 2 and the heat storage tank 7 and connected between the heat storage tank 7 and the cooler 3, and a flow rate control valve 14 is disposed in the middle of the bypass pipe 13. The control valve 14 is opened and closed under proportional control by a regulator using the detected temperature of the heat transfer medium passing through the front position 15 of the cooler 3 as an operating signal.
18 indicates a controller, and 18 indicates a setting device.

上記に於いて、三方向切換弁11と12の動作
条件は次のように設定されている。 通常冷却
運転操作時 三方向制御弁11の入口a閉、出口b閉、出
口c開、 三方向制御弁12の入口d開、出口e閉、出
口f開 蓄熱運転操作時 三方向制御弁11の入口a開、出口b開、出
口c閉、 三方向制御弁12の入口d閉、出口e閉、出
口f開、 蓄熱運転操作時 三方向制御弁11の入口a開、24b閉、出
口c開、 三方向制御弁12の入口d開、出口e開、出
口f閉、 バツクアツプ運転時 三方向制御弁11の入口a開、出口b閉、出
口c開、及び三方向制御弁12の入口d開、出
口e閉、出口f開、 又、流量制御弁14の動作条件は次の通りであ
る。
In the above, the operating conditions of the three-way switching valves 11 and 12 are set as follows. During normal cooling operation Inlet a of the three-way control valve 11 is closed, outlet b is closed, and outlet c is open; Inlet d of the three-way control valve 12 is open, outlet e is closed, and outlet f is open. During heat storage operation, the three-way control valve 11 is closed. Inlet a open, outlet b open, outlet c closed, three-way control valve 12 inlet d closed, outlet e closed, outlet f open, during heat storage operation, three-way control valve 11 inlet a open, 24b closed, outlet c open , Inlet d of three-way control valve 12 is open, outlet e is open, outlet f is closed, during backup operation Inlet a of three-way control valve 11 is open, outlet b is closed, outlet c is open, and inlet d of three-way control valve 12 is open. , outlet e is closed, outlet f is open, and the operating conditions of the flow rate control valve 14 are as follows.

即ち、t=冷却器3手前の検出位置15を通る
伝熱媒体の実際検出温度 T=冷却器3手前の検出位置15を通る
伝熱媒体の制御目標としての設定温度 Δt=tとTの偏差、とした場合、 t=Tの時は閉、t<Tの時は開であつて、こ
の開度はΔtに応じて比例的に制御される。但し、
通常冷却運転時には操作信号によつて開かれる。
That is, t = actual detected temperature of the heat transfer medium passing through the detection position 15 before the cooler 3 T = set temperature as a control target of the heat transfer medium passing through the detection position 15 before the cooler 3 Δt = deviation between t and T , when t=T, it is closed, and when t<T, it is open, and this opening degree is proportionally controlled according to Δt. however,
During normal cooling operation, it is opened by an operation signal.

次に、この装置を構成する蓄熱槽7について詳
述する。
Next, the heat storage tank 7 constituting this device will be described in detail.

蓄熱槽7は水平静置型として構成されていて、
円筒形の胴体19と、この左右両端に取着された
胴体蓋20,21を有している。
The heat storage tank 7 is configured as a horizontal stationary type,
It has a cylindrical body 19 and body covers 20 and 21 attached to both left and right ends of the body.

上記胴体蓋20,21の中央には各々接続口2
2,23が形成され、この接続口22,23を介
して管5に接続されている。上記胴体19の左右
両端付近には、上記の接続口22,23に対向し
て胴体内に仕切壁状に流れ拡散部材24,25が
取設されており、この部材24,25には複数の
流口26が形成されている。即ち流口26は、部
材24又は25によつて仕切られた仕切室27と
槽内部28の間を連通する為に形成されていて、
その形成態様は中心から周方向へ放射状に形成さ
れ、単位面積当りの形成個数が各部略均しくなる
ように周方向へ行くに従い形成個数が増大するよ
うにするのが望ましい。そして、この蓄熱槽7の
槽内部28には、小球状蓄熱体29の多数の槽い
つぱいに密に収容されている。この小球状蓄熱体
29は、凝固温度で液相から固相に変わる時に、
固化の潜熱として冷熱を蓄熱し、固相から液相に
変わる時に先に蓄熱した冷熱を放出する蓄熱媒体
30を球状のシエル31内に充てんしたものであ
る。
Connection ports 2 are provided in the center of the body lids 20 and 21, respectively.
2 and 23 are formed, and are connected to the pipe 5 via these connection ports 22 and 23. Near both left and right ends of the body 19, flow diffusion members 24, 25 are installed in the body in the form of partition walls, facing the connection ports 22, 23. A flow port 26 is formed. That is, the flow port 26 is formed to communicate between the partition chamber 27 partitioned by the member 24 or 25 and the tank interior 28,
It is preferable that they are formed radially from the center to the circumferential direction, and that the number of formed pieces increases in the circumferential direction so that the number of formed pieces per unit area is approximately equal in each part. In the tank interior 28 of the heat storage tank 7, a large number of small spherical heat storage bodies 29 are densely housed in the tank. When this small spherical heat storage body 29 changes from liquid phase to solid phase at solidification temperature,
A spherical shell 31 is filled with a heat storage medium 30 that stores cold heat as latent heat of solidification and releases the previously stored cold heat when changing from a solid phase to a liquid phase.

上記小球状蓄熱体29の個々の大きさは、直径
20mm〜200mmの範囲、例えば65mm程度であるが、
この事は冷房、冷凍装置の条件、蓄放熱運転条件
等によつて必要な蓄熱槽全体の蓄、放熱量が決定
されるから、その必要蓄、放熱量を確保するに十
分な伝熱面積を確保することを基準として定めれ
ばよい。望ましくは同時に、蓄熱槽7の一定容積
中に収容する数が多くなればなるほど、即ち個々
の小球状蓄熱体29の直径が小さくなればなるほ
ど製作費が高くなるから、上記の条件を満すと同
時に、この製作上の条件を満すようにして加工す
るとよい。
The individual size of the small spherical heat storage body 29 is the diameter
The range is 20mm to 200mm, for example about 65mm,
This means that the required amount of heat storage and heat release for the entire heat storage tank is determined by the conditions of the cooling and refrigeration equipment, heat storage and release operating conditions, etc. It is sufficient to set the standard based on ensuring the above. Preferably, at the same time, the manufacturing cost increases as the number of small spherical heat storage bodies 29 that are accommodated in a certain volume of the heat storage tank 7 increases, that is, the diameter of each small spherical heat storage body 29 decreases. At the same time, it is preferable to process the product so as to satisfy these manufacturing conditions.

又、上記球状シエル31の材質としては、金
属、合成樹脂等種々あり、外力及び内力に抗して
球状を保持できる点や、耐熱性の点、生産加工上
の点等から選んで用いられるが、この発明では、
蓄熱媒体30が液相の時に、シエル31内に蓄熱
媒体30の非占有の空間32が形成されるように
シエル31の大きさを定めるものである。同時に
蓄熱媒体の凝固による体積膨張時の膨張量を、上
記空間32とシエル31の膨張によつて、吸収す
るように空間32の大きさを定めるものである。
シエル31の膨張は凝固蓄熱媒体の膨張時の圧力
時によつて可能にされ、又蓄熱媒体が固相からら
液相に変わつた時には、シエル31も収縮するが
シエル31は当初設定した大きさの空間32を残
して収縮を止める。例えば蓄熱媒体30が凝固し
た時に、液体の時の体重の1.08倍、即ち8%膨張
したとすると、空間32で5.5%、シエル31の
膨張で2.5%その膨張量を吸収するように空間3
2の大きさを定めるものである。換言すれば蓄熱
媒体30を、中空成型法、真空成型法等で加工し
た球状シエル31内に注入等により充てんする際
は、当然のように蓄熱媒体30は液体であるが、
その液体の蓄熱媒体30を充てんする際に、空間
32として上記の例では5.5%相当を残して充て
んするものである。
There are various materials for the spherical shell 31, such as metal and synthetic resin, and the material is selected based on the ability to maintain the spherical shape against external and internal forces, heat resistance, production processing, etc. , in this invention,
The size of the shell 31 is determined so that a space 32 not occupied by the heat storage medium 30 is formed within the shell 31 when the heat storage medium 30 is in a liquid phase. At the same time, the size of the space 32 is determined so that the amount of expansion caused by the volumetric expansion due to solidification of the heat storage medium is absorbed by the expansion of the space 32 and the shell 31.
Expansion of the shell 31 is made possible by the pressure during expansion of the solidified heat storage medium, and when the heat storage medium changes from a solid phase to a liquid phase, the shell 31 also contracts, but the shell 31 remains at the initially set size. The contraction is stopped leaving a space 32. For example, when the heat storage medium 30 solidifies, it expands by 1.08 times its weight when it is a liquid, that is, by 8%.The space 32 absorbs the expansion by 5.5% and the shell 31 expands by 2.5%.
This determines the size of 2. In other words, when the heat storage medium 30 is filled by injection or the like into the spherical shell 31 processed by a hollow molding method, a vacuum molding method, etc., the heat storage medium 30 is of course a liquid;
When filling the liquid heat storage medium 30, the space 32 is filled with a space equivalent to 5.5% in the above example.

球状シエル31自体は固い球殻であるが、薄肉
に形成されるので、凝固蓄熱媒体の膨張時の内圧
によつて、蓄熱媒体の膨張に応じて膨張し、蓄熱
媒体が液相に変化した時には当初の空間を残して
自然に原状に復するから、材質的には金属、合成
樹脂等種々選択できるが、上記のシエル膨張をよ
り容易にする為に膨張、収縮性に富むものがよ
く、軟化点90℃以上の合成樹脂中でも他の耐力
性、耐熱性、加工性をも考慮するとポリプロピレ
ン、高密度ポリエチレンが好適である。更にシエ
ル31の上記の膨張に関しては、設計上次の事を
考慮する。即ち、凝固蓄熱媒体30の体積膨張時
の内部圧力によつてシエル31を膨張させるもの
であるが、その際材料破壊を生じない程度のシエ
ル31の膨張度合を定め得るように、用いる蓄熱
媒体の体積膨張量を考慮して空間32の大きさを
定める。この為には、シエル31の膨張、収縮を
シエル31の材質、半径、薄い肉厚の厚さ等によ
つて定まる弾性域の範囲にとどめるとか、シエル
31の材質等によつて定まる引つ張強さ(極限強
さ)に安全率を見込んだ範囲内で膨張を可能なら
しめるとかの種々の工学的手法を用いるものであ
る。
The spherical shell 31 itself is a hard spherical shell, but because it is formed with a thin wall, it expands according to the expansion of the heat storage medium due to the internal pressure when the solidified heat storage medium expands, and when the heat storage medium changes to a liquid phase. Since it naturally returns to its original state while leaving the original space, a variety of materials can be selected, such as metal and synthetic resin, but in order to make the above shell expansion easier, it is best to use a material that has high expansion and contraction properties. Among synthetic resins with a temperature of 90° C. or higher, polypropylene and high-density polyethylene are preferred considering other stress resistance, heat resistance, and processability. Furthermore, regarding the above-mentioned expansion of the shell 31, the following considerations should be taken into consideration in the design. That is, the shell 31 is expanded by the internal pressure when the solidified heat storage medium 30 expands in volume, and the heat storage medium used is adjusted so that the degree of expansion of the shell 31 can be determined to a degree that does not cause material destruction. The size of the space 32 is determined in consideration of the amount of volumetric expansion. For this purpose, it is necessary to keep the expansion and contraction of the shell 31 within the elastic range determined by the material of the shell 31, its radius, the thickness of the thin wall, etc., or to maintain the tensile strength determined by the material of the shell 31, etc. Various engineering methods are used to make expansion possible within a range that takes into account the safety factor (ultimate strength).

さて、このような小球状蓄熱体29の多数を収
容した槽7の底部には、ドレン抜き手段33が設
けられていて、このドレン抜き手段33は、小球
状蓄熱体29の通過を許容せず、この小球状蓄熱
体相互間の空隙内の伝熱媒体の通過を許容するよ
うに胴体19の下面34に形成された単又は複数
のドレン流隙35を含むドレン管36と、そのド
レン管36を常時は閉じる為の開閉弁37と、そ
れらの囲りに着装された保温材38より成る。こ
れらのドレン抜き手段の具体例を幾つか説明する
と、第4図、第5図に示す如く、1つには、胴体
19に開口する、小球状蓄熱体29の直径dより
小さい単円孔のドレン流隙35であつて、該小球
状蓄熱体29がそこに座して閉塞しないように単
円孔の流隙を水平に横切る単又は複数の筋部材3
9が取設されているものより成る。又、もう1つ
には第6図に示す如く、胴体19に開口する、小
球状蓄熱体の直径dより小さい円孔の複数より成
るドレン流隙35であり、小球状蓄熱体群の各々
の小球状蓄熱体29がそれら複数の小円孔の各々
に座して閉塞しないように、小円孔の形成ピツチ
Pが小球状蓄熱体の直径dより小に設定されてい
るものより成る。
Now, a drain removal means 33 is provided at the bottom of the tank 7 that accommodates a large number of such small spherical heat storage bodies 29, and this drain removal means 33 does not allow the small spherical heat storage bodies 29 to pass through. , a drain pipe 36 including one or more drain gaps 35 formed in the lower surface 34 of the body 19 to allow passage of a heat transfer medium in the gaps between the small spherical heat storage bodies, and the drain pipe 36. It consists of an on-off valve 37 that is normally closed, and a heat insulating material 38 attached around them. To explain some specific examples of these draining means, as shown in FIGS. 4 and 5, one is a single circular hole opening in the body 19 and having a diameter smaller than the diameter d of the small spherical heat storage body 29. One or more strip members 3 horizontally across the drain gap 35 and the single circular hole so that the small spherical heat storage body 29 does not sit there and block it.
9 is installed. The other is the drain gap 35, which opens in the body 19 and consists of a plurality of circular holes smaller than the diameter d of the small spherical heat storage bodies, as shown in FIG. The formation pitch P of the small circular holes is set to be smaller than the diameter d of the small spherical heat storage bodies so that the small spherical heat storage bodies 29 do not sit in each of the plurality of small circular holes and block them.

更に、別の例は、第7図に示す如く、胴体19
に開口する、小球状蓄熱体29の直径dより幅狭
の単一の溝の流隙35より成るものが考へられ
る。更に、もう1つの別の例は第8図に示す如
く、胴体19に開口する、小球状蓄熱体29の直
径dより幅狭の複数の溝のドレン流隙35より成
るものが考へられる。その他図示せざるも胴体1
9に開口する、小球状蓄熱体29の直径dより小
さい辺を有する角穴を格子状に配列したものでも
よい。さて、このような蓄熱槽7は、その直径を
D、一方の胴体蓋20と他方の胴体蓋21間の長
さをLとした場合に、D:Lを1:3〜6の範囲
に設定する。
Furthermore, another example is as shown in FIG.
It is conceivable to have a single groove opening 35 narrower than the diameter d of the small spherical heat storage element 29. Furthermore, another example, as shown in FIG. 8, may consist of a plurality of drain gaps 35 opening into the body 19 and having a width narrower than the diameter d of the small spherical heat storage element 29. Other body parts not shown 1
It may be one in which rectangular holes opening at 9 and having sides smaller than the diameter d of the small spherical heat storage body 29 are arranged in a grid pattern. Now, for such a heat storage tank 7, when its diameter is D and the length between one body cover 20 and the other body cover 21 is L, D:L is set in the range of 1:3 to 6. do.

幾つかの具体例を上げると、D=950mm、L=
3000mmの組合わせ、D=1250mm、L=4200mmの組
合わせ、D=1600mm、L=5300mmの組わせ、D=
1800mm、L=6000mmの組合わせ、D=1900mm、L
=7100の組合わせ、D=2100mm、L=9100mmの組
合わせ、D=2500mm、L=10780mmの組合わせ、
D=3000mm、L=11200mmの組合わせ、D=3000
mm、L=14800mmの組合わせ等である。
To give some specific examples, D=950mm, L=
3000mm combination, D=1250mm, L=4200mm combination, D=1600mm, L=5300mm combination, D=
1800mm, L=6000mm combination, D=1900mm, L
= 7100 combination, D = 2100mm, L = 9100mm combination, D = 2500mm, L = 10780mm combination,
Combination of D=3000mm, L=11200mm, D=3000
mm, a combination of L=14800 mm, etc.

この主たる理由は、伝熱媒体が槽内を通過する
時の流速が小さければ小さいほど、即ち槽内での
滞溜時間が増せば増すほど熱交換の温度効率は大
となるものであるが、他方流速が小さければ小さ
いほど熱伝達率は低下する。この為、この双方を
最適に満す適当な流速に決定しなければならな
い。そこで本出願人等は多くの実験によつて、そ
れを求めた所最低2.5m3/hの移動量が確保され
ればよいことが判つた。そして、この最低2.5
m3/h程度の移動量を決定するのは、ポンプによ
つて与えられる伝熱媒体の速度水頭と、槽通過時
に於ける圧力損失であり、この圧力損失は、槽の
長さLに比例して大となり、直径Dに反比例す
る。従つて速度水頭を一定とした場合、DとLを
最適に求めることによつて上記の流速を決定でき
るが、その為のDとLが上記のようであることが
望ましいのであり、Dの1に対し、Lを3〜6の
範囲の中で選択するのは小球状蓄熱体の数の大小
による流体摩擦から結果する圧力損失の大小があ
るからである。
The main reason for this is that the lower the flow rate when the heat transfer medium passes through the tank, that is, the longer the residence time in the tank, the higher the temperature efficiency of heat exchange. On the other hand, the lower the flow rate, the lower the heat transfer coefficient. Therefore, it is necessary to determine an appropriate flow rate that optimally satisfies both conditions. Therefore, the applicants of the present invention have determined through many experiments that it is sufficient to secure a movement amount of at least 2.5 m 3 /h. And this minimum 2.5
The amount of movement of approximately m 3 /h is determined by the velocity head of the heat transfer medium given by the pump and the pressure loss when passing through the tank, and this pressure loss is proportional to the length L of the tank. It becomes large and is inversely proportional to the diameter D. Therefore, when the velocity head is constant, the above flow velocity can be determined by optimally finding D and L, but it is desirable that D and L are as above, and 1 of D On the other hand, L is selected within the range of 3 to 6 because the pressure loss resulting from fluid friction varies depending on the number of small spherical heat storage bodies.

上述の構成に基き一連の動作を説明する。 A series of operations will be explained based on the above configuration.

第9図は通常冷却運転時の動作を示している。 FIG. 9 shows the operation during normal cooling operation.

この時、温度制御弁14は開動作され、三方向
制御弁11の入口aは閉、出口bは閉、出口cは
開、三方向制御弁12の入口dは開、出口eは
閉、出口fは開なので、矢示40のように蒸発器
1を出た伝熱媒体はポンプ2によつてバイパス管
13を通り、冷却器3に送られて負荷に応じ、再
び蒸発器1に戻る。
At this time, the temperature control valve 14 is operated to open, the inlet a of the three-way control valve 11 is closed, the outlet b is closed, and the outlet c is open, the inlet d of the three-way control valve 12 is open, the outlet e is closed, and the outlet Since f is open, the heat transfer medium leaving the evaporator 1 as shown by the arrow 40 passes through the bypass pipe 13 by the pump 2, is sent to the cooler 3, and returns to the evaporator 1 again depending on the load.

第10図は蓄熱蒸発器時の動作を示している。
この時、温度制御弁14は閉動作され、三方向制
御弁11の入口aは開、出口bは開、出口cは
閉、三方向制御弁12の入口d閉、出口e閉、出
口fは開なので、矢示41のように蒸発器1を出
た伝熱媒体がポンプによつて、蓄熱槽7を通り、
管8を介して再び蒸発器1に戻る。
FIG. 10 shows the operation of the heat storage evaporator.
At this time, the temperature control valve 14 is closed, the inlet a of the three-way control valve 11 is open, the outlet b is open, the outlet c is closed, the inlet d of the three-way control valve 12 is closed, the outlet e is closed, and the outlet f is closed. Since it is open, the heat transfer medium leaving the evaporator 1 is passed through the heat storage tank 7 by the pump as shown by the arrow 41.
It returns to the evaporator 1 via the pipe 8.

伝熱媒体が蓄熱槽7を通過する時に蓄熱槽7内
の多数の小球状蓄熱体29と伝熱媒体が接触する
ことにより、小球状蓄熱体29内の蓄熱媒体30
が凝固点に於いて凝固する。凝固時に固化の潜熱
としての冷熱が小球状蓄熱体29の蓄熱媒体30
中に蓄熱される。
When the heat transfer medium passes through the heat storage tank 7, the heat transfer medium comes into contact with a large number of small spherical heat storage bodies 29 in the heat storage tank 7, so that the heat storage medium 30 in the small spherical heat storage bodies 29
solidifies at the freezing point. During solidification, cold heat as latent heat of solidification is transferred to the heat storage medium 30 of the small spherical heat storage body 29.
heat is stored inside.

第11図はt=Tの時の第1の放熱モードを示
している。通常、この放熱動作は負荷需要の多い
時に放熱される。この時図示せざる制御系統の制
御を介して熱発生機器側蒸発器1は停止され、三
方向制御弁11は入口aが開、入口bが閉、出口
cが開、三方向制御弁12は入口d開、出口e
開、出口f閉に切換えられているので、矢示42
のように伝熱媒体をポンプ2により、蓄熱槽7と
冷却器3の間に循環させるものである。冷却器3
を経由した後の伝熱媒体が蓄熱槽7中を通過する
と、蓄熱槽7内の小球状蓄熱体29に伝えられ、
融解点に至ると、それを融解し、先に蓄熱した冷
熱を融解の潜熱として伝熱媒体に放出する。従つ
て伝熱媒体が冷却されて、冷房、冷凍負荷に応ず
る。
FIG. 11 shows the first heat dissipation mode when t=T. Usually, this heat dissipation operation is performed when the load demand is high. At this time, the heat generating equipment side evaporator 1 is stopped under the control of a control system (not shown), the inlet a of the three-way control valve 11 is open, the inlet b is closed, the outlet c is open, and the three-way control valve 12 is closed. Entrance d open, exit e
Since the switch is open and exit f is closed, arrow 42
A heat transfer medium is circulated between a heat storage tank 7 and a cooler 3 by a pump 2 as shown in FIG. Cooler 3
When the heat transfer medium passes through the heat storage tank 7, it is transferred to the small spherical heat storage body 29 in the heat storage tank 7,
When it reaches its melting point, it melts and releases the previously stored cold heat to the heat transfer medium as latent heat of melting. Therefore, the heat transfer medium is cooled to meet the cooling and refrigeration load.

第12図は、第11図の放熱モード時に於い
て、t<Tに経過した時の第2の放熱モードを示
している。この時流量制御弁14がΔtに比例し
てその開度を開くので、冷却器3を出た伝熱媒体
の一部がバイパス管13も介して矢示43のよう
に流れ、蓄熱槽7を出た伝熱媒体を合流して再び
冷却器3に循環する。この場合Δtに比例してバ
イパス管13を通る流量が増す。従つて蓄熱槽7
を通る伝熱媒体の流量がΔtに比例して少くなる
ので、放熱量が少くなり制御位置15に於ける伝
熱媒体の温度が制御目標温度にコントロールされ
ていく。
FIG. 12 shows the second heat dissipation mode when t<T in the heat dissipation mode of FIG. 11. At this time, the flow rate control valve 14 opens its opening in proportion to Δt, so a part of the heat transfer medium leaving the cooler 3 also flows through the bypass pipe 13 as shown by the arrow 43 and flows through the heat storage tank 7. The heat transfer medium that has come out is combined and circulated to the cooler 3 again. In this case, the flow rate passing through the bypass pipe 13 increases in proportion to Δt. Therefore, the heat storage tank 7
Since the flow rate of the heat transfer medium passing through decreases in proportion to Δt, the amount of heat radiation decreases and the temperature of the heat transfer medium at the control position 15 is controlled to the control target temperature.

第13図はバツクアツプ運転時を示している。
この時、流量制御弁14は開かれ、三方向制御弁
11は、入口a開、出口b閉、出口c開であり、
又三方向制御弁12は入口d開、出口e閉、出口
f開なので、蓄熱槽7を出た伝熱媒体は矢示44
のように蒸発器1に戻り、そこから出た伝熱媒体
はバイパス管13と蓄熱槽7の双方を通つて冷却
器3に向かうものである。
FIG. 13 shows the backup operation.
At this time, the flow rate control valve 14 is opened, and the three-way control valve 11 has an inlet a open, an outlet b closed, and an outlet c open.
Furthermore, since the three-way control valve 12 has an inlet d open, an outlet e closed, and an outlet f open, the heat transfer medium leaving the heat storage tank 7 is as shown by the arrow 44.
The heat transfer medium returns to the evaporator 1 as shown in FIG.

上記の蓄・放熱モードに於いて、伝熱媒体が蓄
熱槽7を通る時に次の特徴が発揮される。1つ
は、伝熱媒体が蓄熱槽7の接続口22又は23か
ら槽内へ流入した時、先ず区画室27に案内され
るが、その後流れ拡散部材24又は25の各流口
26によつて、流れ方向に直交する断面の各部に
均一に拡散されて槽内部に流入するので、槽内部
に配された小球状蓄熱体29に各部均しく伝熱媒
体が接触し易い。従つて小球状蓄熱体群の各部で
略均しく伝熱が実施され、装置の伝熱特性が安定
し、信頼性が得られる。
In the heat storage/radiation mode described above, when the heat transfer medium passes through the heat storage tank 7, the following characteristics are exhibited. One is that when the heat transfer medium flows into the tank from the connection port 22 or 23 of the heat storage tank 7, it is first guided into the compartment 27, and then is guided through the respective flow ports 26 of the flow diffusion member 24 or 25. Since the heat transfer medium is uniformly diffused in each part of the cross section perpendicular to the flow direction and flows into the tank, the heat transfer medium easily contacts the small spherical heat storage bodies 29 disposed inside the tank evenly in each part. Therefore, heat transfer is performed approximately evenly in each part of the small spherical heat storage body group, and the heat transfer characteristics of the device are stabilized and reliability is achieved.

もう1つには、この槽は水平円筒静置式なの
で、この槽7内を通過する伝熱媒体に回転外力や
重力方向落下を原因とする対流が生じない。その
対流な一方の流れ拡散部材24又25から他方の
流れ拡散部材24又は25の方へ水平に移る流れ
が主であつて、小球状蓄熱体群の各部に於いて略
均しい熱伝達が実施される。この為、各部に於け
る熱伝達率がが不均一となることはないので、装
置の伝熱特性が安定し、信頼性が得られる。そう
1つには、この槽7のDとLは1:3〜6の範囲
に定められている。従つて、過剰又は過少の圧力
損失を生ずることなくこの槽内を通る時の伝熱媒
体の速度を最低2.5m3/h程度の移動量が確保さ
れる程度とすることができ、伝熱媒体の槽内滞留
時間が適度となり熱伝達率と熱交換の温度効率を
良い所で確保できた。
Another reason is that since this tank is of a horizontal cylindrical stationary type, no convection occurs in the heat transfer medium passing through the tank 7 due to rotational external force or falling in the direction of gravity. The convection is mainly a flow that moves horizontally from one flow diffusion member 24 or 25 to the other flow diffusion member 24 or 25, and approximately uniform heat transfer is carried out in each part of the small spherical heat storage body group. be done. Therefore, the heat transfer coefficient in each part will not be non-uniform, so the heat transfer characteristics of the device will be stable and reliability will be achieved. For one thing, D and L of this tank 7 are set in the range of 1:3 to 6. Therefore, the speed of the heat transfer medium when passing through this tank can be set to a level that ensures a minimum movement of about 2.5 m 3 /h without causing excessive or insufficient pressure loss. The residence time in the tank was appropriate, and the heat transfer coefficient and temperature efficiency of heat exchange were ensured at a good location.

更に、槽7の胴体19下部にドレン流隙35を
形成してあるので、必要に応じてドレンのみを抜
くことが容易にできた。通常、この槽には、小球
状蓄熱体群を槽内に投入したり、そこから排出す
る為のマンホール45,46が設けられるが、こ
のマンホール46を開けてドレン抜きをすると、
小球状蓄熱体の多数が一緒になつて落下してきて
しまい、実際問題大きなトラブルを生ずる。所が
このように流隙35が形成されていて、その流隙
35は小球状蓄熱体によつて閉塞されず、且つ小
球状蓄熱体を通過させず、他方ドレンのみ流すの
で、安全にドレンを抜くことができた。
Furthermore, since the drain gap 35 is formed in the lower part of the body 19 of the tank 7, it is possible to easily drain only the drain if necessary. Normally, this tank is provided with manholes 45 and 46 for introducing and discharging the small spherical heat storage bodies into the tank, but when the manhole 46 is opened and drained,
A large number of small spherical heat storage bodies fall together, causing a real problem. However, since the flow gap 35 is formed in this way, the flow gap 35 is not blocked by the small spherical heat storage body, and does not allow the small spherical heat storage body to pass through, and only the drain is allowed to flow, so that the drain can be safely drained. I was able to pull it out.

而して上述の実施例に於いては、この装置を冷
房、冷凍装置に適用した例を示し、熱使用機器に
於ける熱交換器としての冷却器3へ冷熱を伝える
場合を示したが、本発明の潜熱利用蓄熱装置はこ
の例に限定されることなく、他の冷熱利用装置に
も適用できる他、熱使用機器を太陽熱装置や、暖
房熱源供給装置として、そこから熱使用機器に於
ける熱交換器3へ温熱を伝えるような装置にも、
この潜熱利用蓄熱装置を適用でき、蓄熱時には、
蓄熱槽内に温熱が蓄熱され、放熱時には熱使用機
器の熱交換器へ温熱が放熱される。この場合に
は、上述の流量制御弁14はt>Tに経過した時
に開となるように設定され、熱使用機器熱交換器
の手前の位置15の伝熱媒体の実際温度tが、制
御目標温度Tを越えて温かくなりすぎた時に流量
制御弁14が開き、伝熱媒体をΔtに比例してバ
イパス管13へ流す。
In the above-mentioned embodiment, an example was shown in which this device was applied to a cooling or freezing device, and a case was shown in which cold heat was transmitted to the cooler 3 as a heat exchanger in a heat-using device. The latent heat utilization heat storage device of the present invention is not limited to this example, and can also be applied to other cold energy utilization devices. For devices that transfer heat to the heat exchanger 3,
This heat storage device using latent heat can be applied, and when storing heat,
Warm heat is stored in the heat storage tank, and at the time of heat release, the heat is released to the heat exchanger of the heat-using equipment. In this case, the above-mentioned flow rate control valve 14 is set to open when t>T, and the actual temperature t of the heat transfer medium at the position 15 before the heat exchanger of the heat-using equipment is set to the control target. When the temperature exceeds the temperature T and becomes too warm, the flow rate control valve 14 opens and allows the heat transfer medium to flow into the bypass pipe 13 in proportion to Δt.

勿論、この温熱を対象とする場合には、小球状
蓄熱体29内に充てんされる蓄熱媒体30は、融
解、凝固温度が融解した時に蓄熱し、凝固した時
に蓄熱を放熱する。
Of course, when this heat is targeted, the heat storage medium 30 filled in the small spherical heat storage body 29 stores heat when it melts and solidifies, and radiates the stored heat when it solidifies.

次にこの潜熱利用蓄熱装置に用いる小球状蓄熱
体に封入する蓄熱媒体について詳述する。
Next, the heat storage medium sealed in the small spherical heat storage body used in this latent heat utilization heat storage device will be described in detail.

上述した通り、潜熱蓄熱媒体については従来か
らも種々の研究が行なわれている。それは主とし
て、資源的に入手が容易であり、安価であるこ
と、化学的に安定であること。融点が所望の
動作温度範囲にあること。体積当りの融解熱が
大きいこと。融解−凝固のサイクルの長期の繰
返しに対して、確実に且つ安定に動作すること。
等の条件を満すものの追及として行なわれてい
る。この意味では従来の蓄熱媒体も幾つかの成果
を上げており、この発明の潜熱利用蓄熱装置にも
それらの幾つかを適用できる。然しながら、前記
した通り、従来の潜熱利用蓄熱装置は、太陽熱利
用蓄熱装置等として研究が進められてきたことも
あつて、実用可能なものとして提案されている潜
熱蓄熱媒体自体も+5℃以上のものであり、この
発明の一つの例としての冷房、冷凍装置に適用で
きる潜熱利用蓄熱装置の場合には、それらはほと
んど不適である。そこで、以下には主として0℃
以下の融解、凝固点を有し、装置の作動温度が0
℃以下の蓄熱媒体として好適なものを開示する。
As mentioned above, various studies have been conducted on latent heat storage media. The main reasons are that it is easily available as a resource, cheap, and chemically stable. Melting point within the desired operating temperature range. High heat of fusion per volume. To operate reliably and stably against long-term repetition of melting-solidification cycles.
This is being carried out to pursue those who meet the following conditions. In this sense, conventional heat storage media have achieved some results, and some of these can be applied to the latent heat utilization heat storage device of the present invention. However, as mentioned above, conventional heat storage devices using latent heat have been researched as heat storage devices using solar heat, and the latent heat storage medium itself that has been proposed as a practical device has a temperature of +5℃ or higher. Therefore, in the case of a heat storage device using latent heat that can be applied to an air conditioner or a refrigeration device as an example of the present invention, they are almost unsuitable. Therefore, the following is mainly 0℃
It has a melting and freezing point below and the operating temperature of the device is 0.
Disclosed is a heat storage medium suitable for temperatures below °C.

1つには、H2O(水)にH2SO4(硫酸)を微量
添加した組成物を主液とする蓄熱媒体を上げるこ
とができる。これは、装置の作動温度を0℃程度
に定める場合には好適であり、1m3当りの潜熱は
48.4wh/m3である。
One example is a heat storage medium whose main liquid is a composition in which a small amount of H 2 SO 4 (sulfuric acid) is added to H 2 O (water). This is suitable when the operating temperature of the device is set at around 0℃, and the latent heat per 1 m3 is
It is 48.4wh/ m3 .

もう1つには、塩類水溶液の共融混合体を主液
とする蓄熱媒体が望ましい。
Another preferred is a heat storage medium whose main liquid is a eutectic mixture of an aqueous salt solution.

即ち、塩類の水溶液は一定の温度で最低の凝固
温度が得られるが、その最も低温度が得られると
きの濃度の溶液を用いるものである。この共融濃
度の共融混合体によれば、最も低温度で、塩類と
水があたかも単一の物質のように凝固する。従つ
て融解−凝固のサイクルに対して確実に且つ安定
して動作する。この時凝固の潜熱として蓄熱媒体
30が熱を蓄熱する。
That is, an aqueous solution of salts can obtain the lowest coagulation temperature at a certain temperature, and a solution with a concentration that provides the lowest temperature is used. According to the eutectic mixture with this eutectic concentration, salts and water solidify as if they were a single substance at the lowest temperature. Therefore, it operates reliably and stably in the melting-solidification cycle. At this time, the heat storage medium 30 stores heat as latent heat of solidification.

以下にこのような塩類水溶液の共融混合体の望
ましい例を示す。
Desirable examples of such a eutectic mixture of aqueous salt solutions are shown below.

(1) 蓄熱装置の作動温度を−3℃に定める場合に
は、Na2CO3(炭酸ナトリウム)水溶液の共融
混合体。この場合の共融濃度は37.1%、共融温
度は−3℃であり、潜熱は48.3kwh/m3であ
る。
(1) If the operating temperature of the heat storage device is set at -3°C, a eutectic mixture of Na 2 CO 3 (sodium carbonate) aqueous solution. In this case, the eutectic concentration is 37.1%, the eutectic temperature is -3°C, and the latent heat is 48.3 kwh/m 3 .

(2) 蓄熱装置の作動温度を−6℃に定める場合に
は、KHCO3(炭酸水素カリウム)水溶液の共
融混合体。この場合の共融濃度は14.2%、共融
温度は−6℃であり、潜熱は44.6kwh/m3であ
る。
(2) A eutectic mixture of KHCO 3 (potassium bicarbonate) aqueous solution if the operating temperature of the heat storage device is set at -6°C. In this case, the eutectic concentration is 14.2%, the eutectic temperature is -6°C, and the latent heat is 44.6 kwh/m 3 .

(3) 蓄熱装置の作動温度を−8℃に定める場合に
は、BaCl2(塩化バリウム)水溶液の共融混合
体。この場合の共融濃度に於ける共融温度は−
8℃であり、潜熱は50.5kwh/m3である。
(3) A eutectic mixture of BaCl 2 (barium chloride) aqueous solution if the operating temperature of the heat storage device is set at -8°C. In this case, the eutectic temperature at the eutectic concentration is −
The temperature is 8°C, and the latent heat is 50.5kwh/ m3 .

(4) 蓄熱装置の作動温度を−10℃に定める場合に
は、KCl(塩化カリウム)水溶液の共融混合体。
この場合の共融濃度は19.7%、共融温度は−10
℃であり、潜熱は49.9Kwh/m3である。
(4) If the operating temperature of the heat storage device is set at -10℃, a eutectic mixture of KCl (potassium chloride) aqueous solution.
In this case, the eutectic concentration is 19.7% and the eutectic temperature is −10
℃, and the latent heat is 49.9Kwh/ m3 .

(5) 蓄熱装置の作動温度を−15℃に定める場合に
は、NH4Cl(塩化アンモニウム)水溶液の共融
混合体。この場合の共融濃度は18.9%、共融温
度は−15℃であり、潜熱は46.4Kwh/m3であ
る。
(5) If the operating temperature of the heat storage device is set at -15°C, a eutectic mixture of aqueous NH 4 Cl (ammonium chloride) solution. In this case, the eutectic concentration is 18.9%, the eutectic temperature is -15°C, and the latent heat is 46.4 Kwh/ m3 .

(6) 蓄熱装置の作動温度を−17℃に定める場合に
は、NH4NO3(硝酸アンモニウム)水溶液の共
融混合体。この場合の共融濃度は42.0%、共融
温度は−17℃である。
(6) A eutectic mixture of aqueous NH 4 NO 3 (ammonium nitrate) solution if the operating temperature of the heat storage device is set at -17°C. In this case, the eutectic concentration is 42.0% and the eutectic temperature is -17°C.

(7) 蓄熱装置の作動温度を−18℃に定める場合に
は、NaNO3(硝酸ナトリウム)水溶液の共融混
合体。この場合の共融濃度は38.5%、共融温度
は−18℃であり、潜熱は47.65Kwh/m3である。
(7) A eutectic mixture of NaNO 3 (sodium nitrate) aqueous solution if the operating temperature of the heat storage device is set at -18°C. In this case, the eutectic concentration is 38.5%, the eutectic temperature is -18°C, and the latent heat is 47.65 Kwh/ m3 .

(8) 蓄熱装置の作動温度を−21℃に定める場合に
は、NaCl(塩化ナトリウム)水溶液の共融混合
体。この場合の共融濃度23.0%、共融温度−21
℃であり、潜熱は39.4Kwh/m3である。
(8) A eutectic mixture of NaCl (sodium chloride) aqueous solution if the operating temperature of the heat storage device is set at -21°C. In this case, eutectic concentration is 23.0%, eutectic temperature is −21
℃, and the latent heat is 39.4Kwh/ m3 .

(9) 蓄熱装置の作動温度を−28℃に定める場合に
は、NaBr(臭化ナトリウム)水溶液の共融混
合体。この場合の共融濃度40.1%、共融温度−
28℃であり、潜熱は39.3Kwh/m3である。
(9) A eutectic mixture of NaBr (sodium bromide) aqueous solution if the operating temperature of the heat storage device is set at -28°C. In this case, the eutectic concentration is 40.1%, the eutectic temperature is −
The temperature is 28℃, and the latent heat is 39.3Kwh/ m3 .

(10) 蓄熱装置の作動温度を−33℃程度に定める場
合には、MgCl2(塩化マグネシウム)水溶液の
共融混合体。この場合の共融濃度は20.6%、共
融温度は−33.6℃であり、潜熱は44.6Kwh/m3
である。
(10) If the operating temperature of the heat storage device is set at around -33°C, a eutectic mixture of MgCl 2 (magnesium chloride) aqueous solution. In this case, the eutectic concentration is 20.6%, the eutectic temperature is -33.6℃, and the latent heat is 44.6Kwh/m 3
It is.

(11) 蓄熱装置の作動温度を−37℃程度に定める場
合には、K2CO3(炭酸カリウム)水溶液の共融
混合体。この場合の共融濃度は44.8%、共融温
度は−36.8℃であり、潜熱は40.0Kwh/m3であ
る。勿論、これらの共融混合体を主液とする蓄
熱媒体中に必要に応じて過冷却を防止する為の
発核剤が微量添加される。その内の幾つかを次
に記すと、酸化マグネシウム(MgO)、水酸化
マグネシウム(Mg(OH)2)、炭酸マグネシウ
ム(MgCO3)、硫酸マグネシウム(MgSO4)、
塩化マグネシウム(MgCl2)、臭化マグネシウ
ム(MgBr2)、酸化カルシウム(CaO)水酸化
カルシウム(Ca(OH)2)、炭酸カルシウム
(CaCO3)、硫酸カルシウム(CaSO4)、硫酸銅
(CuSO4)、硫酸ニツケル(NiSO4)、硫酸亜鉛
(ZnSO4)、水酸化ストロンチウム(Sr
(OH)2)、炭酸ストロンチウム(SrCO3)、水酸
化バリウム(Ba(OH)2)、酸化バリウム
(BaO)、炭酸バリウム(BaCO3)、硫酸ナトリ
ウム(Na2SO4)、四ほう酸ナトリウム
(Na2B4O7)ケイ酸ソーダ(Na2SiO3)、水酸化
カリウム(KOH)、硝酸カリウム(KNO3)、
塩化ニツケル(NiCl2)から選ばれる少なくと
も1つ以上の発核剤である。
(11) If the operating temperature of the heat storage device is set at around -37°C, a eutectic mixture of K 2 CO 3 (potassium carbonate) aqueous solution. In this case, the eutectic concentration is 44.8%, the eutectic temperature is -36.8°C, and the latent heat is 40.0 Kwh/ m3 . Of course, a small amount of a nucleating agent is added to the heat storage medium containing these eutectic mixtures as the main liquid, if necessary, to prevent overcooling. Some of them are listed below: magnesium oxide (MgO), magnesium hydroxide (Mg(OH) 2 ), magnesium carbonate (MgCO 3 ), magnesium sulfate (MgSO 4 ),
Magnesium chloride ( MgCl2 ), magnesium bromide ( MgBr2 ), calcium oxide (CaO), calcium hydroxide (Ca(OH) 2 ), calcium carbonate ( CaCO3 ), calcium sulfate ( CaSO4 ), copper sulfate ( CuSO4) ), nickel sulfate (NiSO 4 ), zinc sulfate (ZnSO 4 ), strontium hydroxide (Sr
(OH) 2 ), strontium carbonate (SrCO 3 ), barium hydroxide (Ba(OH) 2 ), barium oxide (BaO), barium carbonate (BaCO 3 ), sodium sulfate (Na 2 SO 4 ), sodium tetraborate ( Na 2 B 4 O 7 ) Sodium silicate (Na 2 SiO 3 ), Potassium hydroxide (KOH), Potassium nitrate (KNO 3 ),
The nucleating agent is at least one selected from nickel chloride (NiCl 2 ).

而して上述に於いては、冷房、冷凍用に好適な
ものとして示したが、これらをより具体的に記述
すると、H2OにH2SO4を微量添加したものを主
液とする蓄熱媒体を用いた蓄熱装置は業務用ビル
冷房、地域冷暖房装置に適用できる。
In the above, we have shown that it is suitable for cooling and freezing, but to describe these more specifically, it is a heat storage device whose main liquid is H 2 O with a small amount of H 2 SO 4 added. Heat storage devices using media can be applied to commercial building cooling and district heating and cooling systems.

Na2CO3,KHCO3,BaCl2水溶液の共融混合体
及びKCl水溶液の共融混合体を主液とする蓄熱媒
体を用いた蓄熱装置は、ビール、清涼飲料水工場
の貯蔵用又は反応器用熱源として、及び乳業プラ
ントの低温反応器用熱源として、並びに陳列ケー
スの冷凍用熱源として、更には冷凍食品、果実、
花等の流通業の貯蔵用熱源として好適である。
A heat storage device using a heat storage medium whose main liquid is a eutectic mixture of Na 2 CO 3 , KHCO 3 , BaCl 2 aqueous solution and a eutectic mixture of KCl aqueous solution is suitable for storage or reactor use in beer and soft drink factories. As a heat source, and as a heat source for low-temperature reactors in dairy plants, and as a heat source for freezing display cases, as well as for frozen foods, fruits,
It is suitable as a storage heat source for the flower distribution industry.

NH4Cl,NaNO3水溶液の共融混合体及び
NH4NO3水溶液の共融混合体を用いた蓄熱装置
は、屠殺場、食肉センターの貯蔵用熱源として、
及びスケート場アイスリンク用熱源として、並び
に薬品工場貯蔵用熱源として、更には血液貯蔵所
の熱源として各々好適である。NaCl,NaBr,
MgCl2,K2CO3の水溶液の共融混合体を用いた蓄
熱装置は、主として冷凍倉庫の熱源として好適で
ある。
Eutectic mixture of NH 4 Cl, NaNO 3 aqueous solution and
A heat storage device using a eutectic mixture of NH 4 NO 3 aqueous solution can be used as a storage heat source in slaughterhouses and meat centers.
It is suitable as a heat source for skating rinks, ice rinks, drug factory storage, and blood storage. NaCl, NaBr,
A heat storage device using a eutectic mixture of an aqueous solution of MgCl 2 and K 2 CO 3 is suitable mainly as a heat source for a frozen warehouse.

この他、本願の第一の発明の装置は、温熱を対
象とする場合にも適用できるものであり、この場
合の装置に用いる蓄熱媒体は従来からも多くの提
案があり、それらを用いてもよいが、例えば
CaCl2・6H2O水溶液(作動温度、即ち融解、凝
固温度27℃)又はMgCl2・6H2O+Mg(NO32
6H2O(作動温度57℃)、Mg(NO32・6H2O(作動
温度87℃)等を用いてもよいが、この他業務用ビ
ル暖房、給湯、温水器、地域暖房等の熱源として
用いる潜熱利用蓄熱装置の為のものとして、
NaOH(水酸化ナトリウム)水溶液を主液とする
蓄熱材が好適である。
In addition, the device of the first invention of the present application can also be applied to cases where the object is heat, and there have been many proposals for the heat storage medium used in the device in this case, and even if they are used. Good, but for example
CaCl 2 6H 2 O aqueous solution (operating temperature, i.e. melting, solidification temperature 27°C) or MgCl 2 6H 2 O + Mg(NO 3 ) 2
6H 2 O (operating temperature: 57℃), Mg (NO 3 ) 2.6H 2 O (operating temperature: 87℃), etc. may be used, but other materials such as commercial building heating, hot water supply, water heaters, district heating, etc. As a heat storage device using latent heat used as a heat source,
A heat storage material whose main liquid is an aqueous solution of NaOH (sodium hydroxide) is suitable.

これは濃度68.97%、作動温度64℃であり、1
m3当りの潜熱は68kwh/m3とかなり高いものであ
り、これについても前述した発核剤の中から少く
とも1種以上のものが選択されて添加される。
This has a concentration of 68.97%, an operating temperature of 64℃, and 1
The latent heat per m 3 is quite high at 68 kwh/m 3 , and for this as well, at least one nucleating agent selected from the above-mentioned nucleating agents is added.

〔発明の効果〕〔Effect of the invention〕

以上詳述した通り、本願の第一の発明によれ
ば、潜熱利用蓄熱装置に於いて、熱使用機器側熱
交換器に入る伝熱媒体の実際温度を検出して、そ
れを動作信号として、蓄熱槽を通る伝熱媒体の流
量を操作することによつて、熱使用機器側の熱交
換器に供給される伝熱媒体の温度を、予かじめ定
めた熱使用機器側の熱使用条件に合わせて常時適
合制御させることができる装置を提供できる。
As detailed above, according to the first invention of the present application, in the latent heat storage device, the actual temperature of the heat transfer medium entering the heat exchanger on the heat-using equipment side is detected, and this is used as an operation signal. By manipulating the flow rate of the heat transfer medium passing through the heat storage tank, the temperature of the heat transfer medium supplied to the heat exchanger on the heat-using equipment side can be adjusted to the predetermined heat usage conditions on the heat-using equipment side. In addition, it is possible to provide a device that can perform adaptive control at all times.

又、一定容積の槽内に蓄熱容量を最大限にとる
ことができると共に、単位体積当りの伝熱量が良
好であつて蓄熱/放熱時間を可及的に短縮設計で
き、腐食部分が少くて耐久性を向上させることが
でき、蓄熱体側から槽設計の制限を受けない等の
利点を備えた蓄熱槽を有する潜熱利用蓄熱装置を
提供できると共に、特に蓄熱槽内に流入させる伝
熱媒体を流入直後に於いて、その流入方向に直交
する断面の各部に均一に拡散せしめて小球状蓄熱
体に均一に接触させることのできる手段をもつ装
置を提供でき、又蓄熱槽自体を水平静置式とし
て、予測し難い対流を生ぜしめる外力や重力の影
響を排除して、小球状蓄熱体群の各部で均一な対
流が生じて、各部均一な熱伝達が実行される蓄熱
槽をもつ装置を提供できる。更には蓄熱槽を通る
伝熱媒体の圧力損失を決定する蓄熱槽の直径と長
さの関係を本出願人の種々の実験によつて1:3
〜6の範囲に定めることにより熱交換の温度効率
のよい伝熱媒体の流速(槽内滞留時間)を確保す
ることのできる槽を有する装置を提供できる。
In addition, the heat storage capacity can be maximized within a tank of a certain volume, the amount of heat transfer per unit volume is good, the heat storage/heat release time can be shortened as much as possible, and there are few corroded parts, making it durable. It is possible to provide a heat storage device using latent heat that has a heat storage tank that has advantages such as improved performance and is not subject to restrictions on tank design from the heat storage body side. In this case, it is possible to provide a device that has a means for uniformly dispersing the heat to each part of the cross section perpendicular to the inflow direction and uniformly contacting the small spherical heat storage body, and also allows the heat storage tank itself to be a horizontally stationary type. It is possible to provide a device having a heat storage tank in which uniform convection occurs in each part of a small spherical heat storage body group and uniform heat transfer is performed in each part by eliminating the effects of external force and gravity that cause difficult convection. Furthermore, the relationship between the diameter and length of the heat storage tank, which determines the pressure loss of the heat transfer medium passing through the heat storage tank, was determined to be 1:3 by the applicant's various experiments.
By setting the temperature within the range of 6 to 6, it is possible to provide an apparatus having a tank that can ensure a flow rate (residence time in the tank) of the heat transfer medium with good temperature efficiency for heat exchange.

且つ小球状蓄熱体群を密に収容した後に、必要
に応じて伝熱媒体のドレンを抜く時に、堆積せる
小球状蓄熱体を下方へ落とすことなくドレンを容
易に抜くことがき、現場での取扱いが便利なる槽
を有する装置を提供できる。
In addition, when draining the heat transfer medium as necessary after accommodating a group of small spherical heat storage bodies densely, the drain can be easily removed without dropping the accumulated small spherical heat storage bodies downward, making it easy to handle on site. It is possible to provide an apparatus having a tank that is convenient.

又本願の第二以下第十四迄の発明によれば、
各々−3℃,−6℃,−8℃,−10℃を各々融解、
凝固点として動作する蓄熱媒体を小球蓄熱体に封
した潜熱利用蓄熱装置を提供できる。従つて、ビ
ール上場、清涼飲料水工場等の貯蔵、反応プロセ
スの冷熱源として、乳業プラントの低温反応器用
冷熱源として、更には商品、製品陳列ケースの冷
凍用冷熱源として、花、果実の流通業の貯蔵用冷
熱源として用いるに好適な潜熱利用蓄熱装置を提
供できる。
Also, according to the second to fourteenth inventions of the present application,
Melt at -3℃, -6℃, -8℃, -10℃ respectively,
It is possible to provide a heat storage device using latent heat in which a heat storage medium that operates as a freezing point is sealed in a small ball heat storage body. Therefore, it can be used as a cold source for storage and reaction processes in beer listings, soft drink factories, etc., as a cold source for low-temperature reactors in dairy plants, and as a cold source for freezing products and product display cases, as well as for the distribution of flowers and fruits. It is possible to provide a heat storage device using latent heat suitable for use as a cold heat source for industrial storage.

更に−15℃,−17℃,−18℃,−21℃を各々融解、
凝固点として動作する蓄熱媒体を小球状蓄熱体に
封入し、これを蓄熱槽に収容した潜熱利用蓄熱装
置を提供できる。従つて、屠殺場、食肉センター
等の食肉貯蔵用冷熱源として、スケート場アイス
リンク用熱源として、更には薬品工場、血液貯蔵
所等の貯蔵所冷熱源として用いるに好適な潜熱利
用蓄熱装置を提供できる。又、0℃を融解、凝固
点として動作する蓄熱媒体を小球状蓄熱体に封入
し、これを蓄熱槽に収容し、そのような槽を有し
ていて業務用ビル冷房等に好適な潜熱利用蓄熱装
置を提供できる。
Furthermore, melt at −15℃, −17℃, −18℃, and −21℃, respectively.
A heat storage device using latent heat can be provided in which a heat storage medium that acts as a freezing point is enclosed in a small spherical heat storage body and this is housed in a heat storage tank. Therefore, we provide a heat storage device using latent heat that is suitable for use as a cold source for meat storage in slaughterhouses, meat centers, etc., as a heat source for ice skating rinks, and as a cold source for storage in drug factories, blood storage facilities, etc. can. In addition, a heat storage medium that melts and operates at 0°C as its freezing point is sealed in a small spherical heat storage body, and this is housed in a heat storage tank. equipment can be provided.

更に−21℃,−28℃,−33℃,−37℃を融解、凝
固点として動作する蓄熱媒体を小球状蓄熱体に封
入し、これを蓄熱槽に収容し、そのような特徴的
な槽をもつている冷凍倉庫用冷熱源に特に好適な
潜熱利用蓄熱装置を提供できる。
Furthermore, a heat storage medium that acts as a melting and freezing point at -21℃, -28℃, -33℃, and -37℃ is sealed in a small spherical heat storage body, and this is housed in a heat storage tank. It is possible to provide a heat storage device using latent heat that is particularly suitable for cold sources for cold storage warehouses.

併せて、業務用ビル暖房、給湯、温水器等に好
適な64℃を融解、凝固点として動作する蓄熱媒体
を適用した潜熱利用蓄熱装置を提供できる。
In addition, it is possible to provide a heat storage device using latent heat that uses a heat storage medium that operates as a melting and freezing point of 64°C, which is suitable for commercial building heating, hot water supply, water heaters, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

添付図面第1図〜第13図は本発明の実施例を
示し、第1図は全体図、第2図は部分破断面を含
む蓄熱槽の図、第3図は第2図のA−A線に沿う
端面図、第4図はドレン抜き手段の一例を示す
図、第5図は第4図と同じ例のドレン抜き手段を
示し、小球状蓄熱体群の上方からみた図、第6図
はドレン抜き手段の他の例を示す図、第7図、第
8図は各々更に他のドレン抜き手段を示したもの
であつて、小球状蓄熱体群の上方からみた図、第
9図〜第13図は各々蓄・放熱モード時の説明図
であり、次いで第14図は従来例図である。 図中、1…熱発生機器側熱交換器としての蒸発
機、2…ポンプ、3…熱使用機器側熱交換器とし
ての冷却器、7…蓄熱槽、8…管、11,12…
三方向切換弁、13…バイパス管、14…流量制
御弁、15…伝熱媒体の温度検出位置、19…胴
体、22,23…接続口、24,25…流れ拡散
部材、26…流口、29…小球状蓄熱体、30…
蓄熱媒体、35…ドレン流隙、36…ドレン管、
37…開閉弁。
The attached drawings, FIGS. 1 to 13, show embodiments of the present invention, in which FIG. 1 is an overall view, FIG. 2 is a view of the heat storage tank including a partially broken surface, and FIG. 3 is a view taken along A-A of FIG. 2. An end view taken along the line, FIG. 4 is a diagram showing an example of the drain removal means, FIG. 5 is a view showing the same example of the drain removal means as in FIG. 4, and a view seen from above the group of small spherical heat storage bodies. is a diagram showing another example of the drain removal means, FIGS. 7 and 8 are views showing still other drain removal means, respectively, and are views seen from above the group of small spherical heat storage bodies, and FIGS. FIG. 13 is an explanatory diagram of the heat storage and heat dissipation modes, respectively, and FIG. 14 is a diagram of a conventional example. In the figure, 1... Evaporator as a heat exchanger on the heat generation equipment side, 2... Pump, 3... Cooler as a heat exchanger on the heat usage equipment side, 7... Heat storage tank, 8... Pipes, 11, 12...
Three-way switching valve, 13... Bypass pipe, 14... Flow rate control valve, 15... Temperature detection position of heat transfer medium, 19... Body, 22, 23... Connection port, 24, 25... Flow diffusion member, 26... Flow port, 29...Small spherical heat storage body, 30...
Heat storage medium, 35... Drain gap, 36... Drain pipe,
37...Opening/closing valve.

Claims (1)

【特許請求の範囲】 1 熱発生機器側熱交換器1とポンプ2と、蓄熱
槽7と、熱使用機器側熱交換器3とを順次循環的
に伝熱媒体伝熱管によつて接続し、蓄熱槽7と熱
使用機器側熱交換器3との間に三方向制御弁11
を介設して該部と、熱使用機器側熱交換器3と熱
発生機器側熱交換器1との間の分岐点9を管8に
て接続すると共に、熱使用機器側熱交換器3と分
岐点9との間に三方向制御弁12を介設して該部
と、熱発生機器側熱交換器1とポンプ2との間を
管10で接続し、三方向制御弁11,12の切換
動作により、熱発生機器側熱交換器1から出た伝
熱媒体をポンプによつて蓄熱槽7を通して管8を
介して再び熱発生機器側熱交換器1に戻す蓄熱モ
ードと、蓄熱槽7を出た伝熱媒体をポンプによつ
て熱使用機器側熱交換器3を通し、管10を介し
て再び蓄熱槽7に戻す放熱モードを成すと共に、
ポンプ2と蓄熱槽7との間と熱使用機器側熱交換
器3の手前位置の間をバイパス管13にて接続
し、このバイパス管13に流量制御弁14を配設
することにより、熱使用機器側熱交換器3に入る
手前位置15の伝熱媒体の実際検出温度tが同位
置の制御目標設定温度Tを越えた場合に、その偏
差Δtを動作信号として、上記放熱モード時に於
いて、上記流量制御弁14を熱使用機器側熱交換
器3を出た伝熱媒体の一部がバイパス管13をも
介して再び熱使用機器熱交換器に戻入せしめられ
るように開度制御されており、且つ上記蓄熱槽7
は水平静置型として構成されていて、円筒形の胴
体19と、この左右両端に取着される、各々接続
口22,23が形成された胴体蓋20,21と、
上記各接続口に対向して胴体19の左右両端付近
に配設された流れ拡散部材24,25と、水平静
置される胴体19の下方に形成されたドレン抜き
手段33とより成り、この蓄熱槽7の直径Dと、
水平方向長さに相当する全長Lの比は1:3〜6
の範囲に定められていると共に、上記一方と他方
の流れ拡散部材24,25によつて区画される槽
内部28には、内部に蓄熱媒体30が充てんされ
た小球状蓄熱体29が密に収容されて成り、上記
ドレン抜き手段33は、小球状蓄熱体29の通過
を許容せず、該小球状蓄熱体29相互間の空隙内
の伝熱媒体の通過を許容するように胴体の下面に
形成された単又は複数のドレン流隙35を含むド
レン管36と、そのドレン管36を常時は閉じる
為の開閉弁37によつて構成されていることを特
徴とする潜熱利用蓄熱装置。 2 上記熱発生機器は冷熱発生手段であると共
に、上記熱使用機器は冷熱利用装置として構成さ
れ、 熱使用機器側熱交換器3の手前位置15を通る
伝熱媒体の実際検出温度をt、同位置の制御目標
としての設定温度をT,tとTとの偏差をΔtと
すると、 放熱モード時、t<Tに経過した場合には、流
量制御弁14を、熱使用機器側熱交換器3を出た
伝熱媒体の一部がバイパス管13をも介して熱使
用機器側熱交換器3に戻入せしめられるように開
度制御され、蓄熱槽7を通る伝熱媒体の流量が
Δtに比例して調節されるよう構成されているこ
とを特徴とする特許請求の範囲第1項記載の潜熱
利用蓄熱装置。 3 上記熱発生機器は温熱発生手段であると共
に、上記熱使用機器は温熱利用装置として構成さ
れ、 熱使用機器側熱交換器3の手前位置15を通る
伝熱媒体の実際検出温度をt、同位置の制御目標
としての設定温度をT,tとTとの偏差をΔtと
すると放熱モード時、t>Tに経過した場合に
は、流量制御弁14を、熱使用機器側熱交換器3
から出た伝熱媒体の一部がバイパス管13をも介
して熱使用機器側熱交換器3に戻入せしめられる
ように開度制御され、蓄熱槽7を通る伝熱媒体の
流量がΔtに比例して調節されるように構成され
ていることを特徴とする特許請求の範囲第1項記
載の潜熱利用蓄熱装置。 4 上記ドレン抜き手段33のドレン流隙35
は、胴体19に開口する、小球状蓄熱体29の直
径dより小さい単円孔であつて、該小球状蓄熱体
29がそこに座して閉塞しないように単円孔を水
平に横切る単又は複数の筋部材39が取設されて
いることを特徴とする特許請求の範囲第1項記載
の潜熱利用蓄熱装置。 5 上記ドレン抜き手段33のドレン流隙35
は、胴体19に開口する、小球状蓄熱体29の直
径dより小さい円孔の複数より成り、小球状蓄熱
体群の各々の小球状蓄熱体29がそれら複数の小
円孔の各々に座して閉塞しないように、小円孔の
形成ピツチpが小球状蓄熱体の直径dより小に設
定されていることを特徴とする特許請求の範囲第
1項記載の潜熱利用蓄熱装置。 6 上記ドレン抜き手段33のドレン流隙35
は、胴体19に開口する、小球状蓄熱体29の直
径dより幅狭の溝を単又は複数に形成したもので
あることを特徴とする特許請求の範囲第1項記載
の潜熱利用蓄熱装置。 7 上記ドレン抜き手段33のドレン流隙35
は、胴体に開口する、小球状蓄熱体29の直径d
より小さい辺を有する角穴を格子状に配列したも
のであることを特徴とする特許請求の範囲第1項
記載の潜熱利用蓄熱装置。 8 上記接続口22,23に対向して胴体19の
左右両端付近に配設される流れ拡散部材24,2
5は、円板に複数の流口26を放射状に形成した
ものであることを特徴とする特許請求の範囲第1
項記載の潜熱利用蓄熱装置。 9 上記静置式水平円筒形の蓄熱槽7内には、内
部に炭酸ナトリウム(Na2CO3)水溶液の共融混
合体を主液とする蓄熱媒体が充てんされた小球状
蓄熱体29の複数が密に収容されていることを特
徴とする特許請求の範囲第1項記載の潜熱利用蓄
熱装置。 10 上記静置式水平円筒形の蓄熱槽7内には、
内部に炭酸水素カリウム(KHCO3)水溶液の共
融混合体を主液とする蓄熱媒体が充てんされた小
球状蓄熱体29の複数が密に収容されていること
を特徴とする特許請求の範囲第1項記載の潜熱利
用蓄熱装置。 11 上記静置式水平円筒形の蓄熱槽7内には、
内部に塩化バリウム(BaCl2)水溶液の共融混合
体を主液とする蓄熱媒体が充てんされた小球状蓄
熱体29の複数が密に収容されていることを特徴
とする特許請求の範囲第1項記載の潜熱利用蓄熱
装置。 12 上記静置式水平円筒形の蓄熱槽7内には、
内部に塩化カリウム(KCl)水溶液の共融混合体
を主液とする蓄熱媒体が充てんされた小球状蓄熱
体29の複数が密に収容されていることを特徴と
する特許請求の範囲第1項記載の潜熱利用蓄熱装
置。 13 上記静置式水平円筒形の蓄熱槽7内には、
内部に塩化アンモニウム(NH4Cl)水溶液の共
融混合体を主液とする蓄熱媒体が充てんされた小
球状蓄熱体29の複数が密に収容されていること
を特徴とする特許請求の範囲第1項記載の潜熱利
用蓄熱装置。 14 上記静置式水平円筒形の蓄熱槽7内には、
内部に硝酸アンモニウム(NH4NO3)水溶液の
共融混合体を主液とする蓄熱媒体が充てんされた
小球状蓄熱体29の複数が密に収容されているこ
とを特徴とする特許請求の範囲第1項記載の潜熱
利用蓄熱装置。 15 上記静置式水平円筒形の蓄熱槽7内には、
内部に硝酸ナトリウム(NaNO3)水溶液の共融
混合体を主液とする蓄熱媒体が充てんされた小球
状蓄熱体29の複数が密に収容されていることを
特徴とする特許請求の範囲第1項記載の潜熱利用
蓄熱装置。 16 上記静置式水平円筒形の蓄熱槽7内には、
内部に塩化ナトリウム(NaCl)水溶液の共融混
合体を主液とする蓄熱媒体が充てんされた小球状
蓄熱体29の複数が密に収容されていることを特
徴とする特許請求の範囲第1項記載の潜熱利用蓄
熱装置。 17 上記静置式水平円筒形の蓄熱槽7内には、
内部に臭化ナトリウム(NaBr)水溶液の共融混
合体を主液とする蓄熱媒体が充てんされた小球状
蓄熱体29の複数が密に収容されていることを特
徴とする特許請求の範囲第1項記載の潜熱利用蓄
熱装置。 18 上記静置式水平円筒形の蓄熱槽7内には、
内部に塩化マグネシウム(MgCl2)水溶液の共融
混合体を主液とする蓄熱媒体が充てんされた小球
状蓄熱体29の複数が密に収容されていることを
特徴とする特許請求の範囲第1項記載の潜熱利用
蓄熱装置。 19 上記静置式水平円筒形の蓄熱槽7内には、
内部に炭酸カリウム(K2CO3)水溶液の共融混
合体を主液とする蓄熱媒体が充てんされた小球状
蓄熱体29の複数が密に収容されていることを特
徴とする特許請求の範囲第1項記載の潜熱利用蓄
熱装置。 20 上記静置式水平円筒形の蓄熱槽7内には、
内部に水酸化ナトリウム(NaOH)水溶液を主
液とする蓄熱媒体が充てんされた小球状蓄熱体2
9の複数が密に収容されていることを特徴とする
特許請求の範囲第1項記載の潜熱利用蓄熱装置。 21 上記静置式水平円筒形の蓄熱槽7内には、
内部に水(H2O)に硫酸(H2SO4)が微量添加
されているものを主液とする蓄熱媒体が充てんさ
れた小球状蓄熱体29の複数が密に収容されてい
ることを特徴とする特許請求の範囲第1項記載の
潜熱利用蓄熱装置。 22 上記小球状蓄熱体内部に充てんされる主液
に対して、酸化マグネシウム(MgO)、水酸化マ
グネシウム(Mg(OH)2)、炭酸マグネシウム
(MgCO3)、硫酸マグネシウム(MgSO4)、塩化
マグネシウム(MgCl2)、臭化マグネシウム
(MgBr2)、酸化カルシウム(CaO)、水酸化カル
シウム(Ca(OH)2)、炭酸カルシウム(CaCO3)、
硫酸カルシウム(CaSO4)、硫酸銅(CuSO4)、硫
酸ニツケル(NiSO4)、硫酸亜鉛(ZnSO4)、水酸
化ストロンチウム(Sr(OH)2)、炭酸ストロンチ
ウム(SrCO3)、水酸化バリウム(Ba(OH)2)、
酸化バリウム(BaO)、炭酸バリウム(BaCO3)、
硫酸ナトリウム(Na2SO4)、四ほう酸ナトリウ
ム(Na2B4O7)、ケイ酸ソーダ(Na2SiO3)、水酸
化カリウム(KOH)、硝酸カリウム(KNO3)、
塩化ニツケル(NiCl2)、から選ばれる少なくと
も1つ以上の発核剤が微量添加されていることを
特徴とする特許請求の範囲第9項、第10項、第
11項、第12項、第13項、第14項、第15
項、第16項、第17項、第18項、第19項、
第20項、または第21項記載の潜熱利用蓄熱装
置。
[Scope of Claims] 1. The heat exchanger 1 on the heat generation equipment side, the pump 2, the heat storage tank 7, and the heat exchanger 3 on the heat usage equipment side are sequentially and cyclically connected by a heat transfer medium heat exchanger tube, A three-way control valve 11 is provided between the heat storage tank 7 and the heat exchanger 3 on the heat-using equipment side.
The branch point 9 between the heat exchanger 3 on the heat-using equipment side and the heat exchanger 1 on the heat-generating equipment side is connected by a pipe 8 to the branch point 9 between the heat exchanger 3 on the heat-using equipment side and the heat exchanger 3 on the heat-using equipment side. A three-way control valve 12 is interposed between the branch point 9 and the heat exchanger 1 on the heat generating equipment side and the pump 2 through a pipe 10, and the three-way control valves 11, 12 With the switching operation, there is a heat storage mode in which the heat transfer medium discharged from the heat exchanger 1 on the heat generation equipment side is returned to the heat exchanger 1 on the heat generation equipment side via the heat storage tank 7 by the pump, and the heat exchanger 1 on the heat generation equipment side via the pipe 8. 7 is passed through the heat exchanger 3 on the heat-using equipment side by a pump, and is returned to the heat storage tank 7 via the pipe 10, forming a heat radiation mode.
A bypass pipe 13 connects between the pump 2 and the heat storage tank 7 and a position in front of the heat exchanger 3 on the heat-using equipment side, and a flow rate control valve 14 is installed in the bypass pipe 13. When the actual detected temperature t of the heat transfer medium at the position 15 before entering the equipment side heat exchanger 3 exceeds the control target set temperature T at the same position, the deviation Δt is used as an operation signal, and in the heat radiation mode, The opening degree of the flow rate control valve 14 is controlled so that a part of the heat transfer medium that has exited the heat exchanger 3 on the heat-using equipment side is returned to the heat exchanger on the heat-using equipment via the bypass pipe 13. , and the heat storage tank 7
is configured as a horizontal stationary type, and includes a cylindrical body 19, body lids 20 and 21 attached to both left and right ends thereof, each having connection ports 22 and 23 formed therein,
It consists of flow diffusion members 24 and 25 disposed near both left and right ends of the body 19 facing each of the above connection ports, and a draining means 33 formed below the body 19 which is placed horizontally. The diameter D of the tank 7,
The ratio of the total length L corresponding to the horizontal length is 1:3 to 6
A small spherical heat storage body 29 filled with a heat storage medium 30 is densely housed in the tank interior 28, which is defined within a range of The drain removal means 33 is formed on the lower surface of the body so as not to allow the passage of the small spherical heat storage bodies 29, but to allow the passage of the heat transfer medium in the gaps between the small spherical heat storage bodies 29. A heat storage device using latent heat, comprising a drain pipe 36 including one or more drain gaps 35, and an on-off valve 37 for normally closing the drain pipe 36. 2 The heat generating device is a cold heat generating means, and the heat using device is configured as a cold heat utilization device, and the actual detected temperature of the heat transfer medium passing through the front position 15 of the heat exchanger 3 on the heat using device side is t and the same. Assuming that the set temperature as a position control target is T, and the deviation between t and T is Δt, in the heat radiation mode, if t<T, the flow rate control valve 14 is switched to the heat exchanger 3 on the heat-using equipment side. The opening degree is controlled so that a part of the heat transfer medium that has exited the heat storage tank 7 is returned to the heat exchanger 3 on the heat-using equipment side via the bypass pipe 13, and the flow rate of the heat transfer medium passing through the heat storage tank 7 is proportional to Δt. 2. A heat storage device using latent heat according to claim 1, wherein said latent heat storage device is configured to be adjusted as follows. 3 The heat generating device is a heat generating means, and the heat using device is configured as a heat utilizing device, and the actual detected temperature of the heat transfer medium passing through the front position 15 of the heat exchanger 3 on the heat using device side is t and the same. Assuming that the set temperature as a position control target is T, and the deviation between t and T is Δt, in the heat radiation mode, if t>T, the flow rate control valve 14 is closed to the heat exchanger 3 on the heat-using equipment side.
The opening degree is controlled so that a part of the heat transfer medium coming out of the tank is returned to the heat exchanger 3 on the heat-using equipment side via the bypass pipe 13, and the flow rate of the heat transfer medium passing through the heat storage tank 7 is proportional to Δt. 2. A heat storage device using latent heat according to claim 1, wherein said latent heat storage device is configured to be adjusted as follows. 4 Drain gap 35 of the drain removal means 33
is a single circular hole that opens in the body 19 and is smaller than the diameter d of the small spherical heat storage body 29, and a single circular hole that horizontally crosses the single circular hole so that the small spherical heat storage body 29 does not sit there and block it. A heat storage device using latent heat according to claim 1, characterized in that a plurality of striation members 39 are installed. 5 Drain gap 35 of the drain removal means 33
consists of a plurality of circular holes smaller than the diameter d of the small spherical heat storage bodies 29 that open in the body 19, and each small spherical heat storage body 29 of the small spherical heat storage body group is seated in each of the plurality of small circular holes. 2. A heat storage device using latent heat according to claim 1, wherein the formation pitch p of the small circular holes is set to be smaller than the diameter d of the small spherical heat storage body so as not to block the small circular holes. 6 Drain gap 35 of the drain removal means 33
A heat storage device using latent heat according to claim 1, wherein one or more grooves having a width narrower than the diameter d of the small spherical heat storage body 29 are formed in the body 19. 7 Drain gap 35 of the drain removal means 33
is the diameter d of the small spherical heat storage body 29 that opens into the body.
2. A heat storage device using latent heat according to claim 1, wherein square holes having smaller sides are arranged in a grid pattern. 8 Flow diffusion members 24 and 2 disposed near both left and right ends of the body 19 facing the connection ports 22 and 23
Claim 5 is characterized in that a plurality of flow ports 26 are formed radially in a disc.
A heat storage device using latent heat as described in . 9 In the stationary horizontal cylindrical heat storage tank 7, there are a plurality of small spherical heat storage bodies 29 filled with a heat storage medium whose main liquid is a eutectic mixture of sodium carbonate (Na 2 CO 3 ) aqueous solution. A heat storage device utilizing latent heat according to claim 1, characterized in that the device is tightly housed. 10 In the stationary horizontal cylindrical heat storage tank 7,
Claim 1, characterized in that a plurality of small spherical heat storage bodies 29 are closely housed, each of which is filled with a heat storage medium whose main liquid is a eutectic mixture of potassium hydrogen carbonate (KHCO 3 ) aqueous solution. The latent heat utilization heat storage device according to item 1. 11 Inside the stationary horizontal cylindrical heat storage tank 7,
Claim 1, characterized in that a plurality of small spherical heat storage bodies 29 are closely housed, each of which is filled with a heat storage medium whose main liquid is a eutectic mixture of barium chloride (BaCl 2 ) aqueous solution. A heat storage device using latent heat as described in . 12 In the stationary horizontal cylindrical heat storage tank 7,
Claim 1, characterized in that a plurality of small spherical heat storage bodies 29 are closely housed, each of which is filled with a heat storage medium whose main liquid is a eutectic mixture of potassium chloride (KCl) aqueous solution. The described latent heat utilization heat storage device. 13 Inside the stationary horizontal cylindrical heat storage tank 7,
Claim 1, characterized in that a plurality of small spherical heat storage bodies 29 are closely housed, each of which is filled with a heat storage medium whose main liquid is a eutectic mixture of ammonium chloride (NH 4 Cl) aqueous solution. The latent heat utilization heat storage device according to item 1. 14 In the stationary horizontal cylindrical heat storage tank 7,
Claim 1, characterized in that a plurality of small spherical heat storage bodies 29 are closely housed, each of which is filled with a heat storage medium whose main liquid is a eutectic mixture of ammonium nitrate (NH 4 NO 3 ) aqueous solution. The latent heat utilization heat storage device according to item 1. 15 In the stationary horizontal cylindrical heat storage tank 7,
Claim 1, characterized in that a plurality of small spherical heat storage bodies 29 are closely housed, each of which is filled with a heat storage medium whose main liquid is a eutectic mixture of sodium nitrate (NaNO 3 ) aqueous solution. A heat storage device using latent heat as described in . 16 In the stationary horizontal cylindrical heat storage tank 7,
Claim 1, characterized in that a plurality of small spherical heat storage bodies 29 are closely housed, each of which is filled with a heat storage medium whose main liquid is a eutectic mixture of an aqueous sodium chloride (NaCl) solution. The described latent heat utilization heat storage device. 17 In the stationary horizontal cylindrical heat storage tank 7,
Claim 1 characterized in that a plurality of small spherical heat storage bodies 29 are closely housed, each of which is filled with a heat storage medium whose main liquid is a eutectic mixture of an aqueous sodium bromide (NaBr) solution. A heat storage device using latent heat as described in . 18 In the stationary horizontal cylindrical heat storage tank 7,
Claim 1, characterized in that a plurality of small spherical heat storage bodies 29 are closely housed, each of which is filled with a heat storage medium whose main liquid is a eutectic mixture of magnesium chloride (MgCl 2 ) aqueous solution. A heat storage device using latent heat as described in . 19 In the stationary horizontal cylindrical heat storage tank 7,
Claims characterized in that a plurality of small spherical heat storage bodies 29 are closely housed, each of which is filled with a heat storage medium whose main liquid is a eutectic mixture of potassium carbonate (K 2 CO 3 ) aqueous solution. The latent heat utilization heat storage device according to item 1. 20 In the stationary horizontal cylindrical heat storage tank 7,
A small spherical heat storage body 2 filled with a heat storage medium whose main liquid is an aqueous sodium hydroxide (NaOH) solution.
9. A heat storage device utilizing latent heat according to claim 1, wherein a plurality of latent heat storage devices 9 are closely housed. 21 Inside the stationary horizontal cylindrical heat storage tank 7,
It is noted that a plurality of small spherical heat storage bodies 29 are tightly housed, each of which is filled with a heat storage medium whose main liquid is water (H 2 O) to which a small amount of sulfuric acid (H 2 SO 4 ) is added. A heat storage device using latent heat according to claim 1. 22 Magnesium oxide (MgO), magnesium hydroxide (Mg(OH) 2 ), magnesium carbonate (MgCO 3 ), magnesium sulfate (MgSO 4 ), and magnesium chloride are added to the main liquid filled inside the small spherical heat storage body. (MgCl 2 ), magnesium bromide (MgBr 2 ), calcium oxide (CaO), calcium hydroxide (Ca(OH) 2 ), calcium carbonate (CaCO 3 ),
Calcium sulfate (CaSO 4 ), copper sulfate (CuSO 4 ), nickel sulfate (NiSO 4 ), zinc sulfate (ZnSO 4 ), strontium hydroxide (Sr(OH) 2 ), strontium carbonate (SrCO 3 ), barium hydroxide ( Ba(OH) 2 ),
Barium oxide (BaO), barium carbonate (BaCO 3 ),
Sodium sulfate (Na 2 SO 4 ), sodium tetraborate (Na 2 B 4 O 7 ), sodium silicate (Na 2 SiO 3 ), potassium hydroxide (KOH), potassium nitrate (KNO 3 ),
Claims 9, 10, 11, 12, and 12 contain a trace amount of at least one nucleating agent selected from nickel chloride (NiCl 2 ). Section 13, Section 14, Section 15
Section 16, Section 17, Section 18, Section 19,
The latent heat utilization heat storage device according to item 20 or 21.
JP60051031A 1985-03-14 1985-03-14 Latent heat utilizing heat storage device Granted JPS61208494A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60051031A JPS61208494A (en) 1985-03-14 1985-03-14 Latent heat utilizing heat storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60051031A JPS61208494A (en) 1985-03-14 1985-03-14 Latent heat utilizing heat storage device

Publications (2)

Publication Number Publication Date
JPS61208494A JPS61208494A (en) 1986-09-16
JPH0581833B2 true JPH0581833B2 (en) 1993-11-16

Family

ID=12875439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60051031A Granted JPS61208494A (en) 1985-03-14 1985-03-14 Latent heat utilizing heat storage device

Country Status (1)

Country Link
JP (1) JPS61208494A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0650686A (en) * 1992-07-28 1994-02-25 Tokyo Electric Power Co Inc:The Latent heat accumulator
JPH0824624A (en) * 1994-07-12 1996-01-30 Ube Ind Ltd Method for controlling reaction in bubble tower-type loop reactor
JP2004324995A (en) * 2003-04-25 2004-11-18 Mitsubishi Chemical Engineering Corp Heat accumulator utilizing latent heat
JP4938323B2 (en) * 2006-03-14 2012-05-23 大阪瓦斯株式会社 Method for producing heat exchange reactor
JP2012072931A (en) * 2010-09-28 2012-04-12 Panasonic Corp Heat storage device and air conditioner using the same
DK201570281A1 (en) 2015-05-13 2016-11-28 Nel Hydrogen As Cooling of a fluid with a refrigerant at triple point

Also Published As

Publication number Publication date
JPS61208494A (en) 1986-09-16

Similar Documents

Publication Publication Date Title
JPH0581832B2 (en)
Al-Shannaq et al. Cold energy storage in a packed bed of novel graphite/PCM composite spheres
Bédécarrats et al. Phase-change thermal energy storage using spherical capsules: performance of a test plant
Bedecarrats et al. Study of a phase change energy storage using spherical capsules. Part I: Experimental results
Saito Recent advances in research on cold thermal energy storage
Chen et al. An experimental investigation of cold storage in an encapsulated thermal storage tank
WO2001038811A1 (en) Thermal storage material using hydrate and thermal storage device therefor, and production method of the thermal storage material
Chandrasekaran et al. Influence of the size of spherical capsule on solidification characteristics of DI (deionized water) water for a cool thermal energy storage system–An experimental study
EP3189294B1 (en) Refrigeration or thermal energy storage system by phase change materials
JPH0581833B2 (en)
Yanadori et al. Heat transferential study on a heat storage container with phase change material
JP2008020177A (en) Heat storage system
Farid et al. Performance of direct contact latent heat storage unit
Li et al. Dynamic heat transfer characteristics of ice storage in smooth-tube and corrugated-tube heat exchangers
Samah et al. Review on ice crystallization and adhesion to optimize ice slurry generators without moving components
Ryu et al. Heat transfer characteristics of cool-thermal storage systems
EP0497827A1 (en) Thermal storage medium.
PT890065E (en) REFRIGERATION CAPACITY ACCUMULATOR
NAING et al. Reduction of the solidification height of phase-change material in direct-contact latent heat storage vessel
JPH065536Y2 (en) Device for releasing supercooled water
JPH08270989A (en) Regenerator and operating method for the same
Hossain Ice slurry storage system in district cooling application for air-conditioning
Amin et al. Experimental investigation of PCM spheres in thermal energy storage system
Zakharov et al. Reversible process of heat exchange in layer with phase transition
JP3337017B2 (en) Heat storage device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term