JPH0824624A - Method for controlling reaction in bubble tower-type loop reactor - Google Patents

Method for controlling reaction in bubble tower-type loop reactor

Info

Publication number
JPH0824624A
JPH0824624A JP6160058A JP16005894A JPH0824624A JP H0824624 A JPH0824624 A JP H0824624A JP 6160058 A JP6160058 A JP 6160058A JP 16005894 A JP16005894 A JP 16005894A JP H0824624 A JPH0824624 A JP H0824624A
Authority
JP
Japan
Prior art keywords
reaction
liq
liquid
flow rate
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6160058A
Other languages
Japanese (ja)
Inventor
Norimichi Minemura
則道 嶺村
Tomika Yamamoto
十三日 山本
Toshihiro Soda
敏弘 祖田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP6160058A priority Critical patent/JPH0824624A/en
Publication of JPH0824624A publication Critical patent/JPH0824624A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To perform stationarily a reaction by a method wherein a liq. flow rate controlling valve is provided in a liq. circulation line and deviation between a set temp. and the reaction temp. is interlocked with the liq. flow rate controlling valve and the reaction temp. is controlled by controlling the liq. flow rate controlling valve in accordance with the reaction temp. CONSTITUTION:In the bubble tower-type loop reactor, a liq. flow rate controlling valve 10 is provided in a liq. circulation line and deviation between a set temp. and the reaction temp. is interlocked with the liq. flow rate controlling valve and the liq. flow rate controlling valve 10 is controlled in accordance with the reaction temp. and the reaction temp. is controlled by increasing and decreasing the amt. of liq. circulation and the amt. of gas-liq. mass transfer. Namely, when the amt. of liq. circulation is decreased by means of the liq. flow rate controlling valve 10, the reaction temp. is elevated by decreasing heat exchange efficiency and at the same time, as the amt. of gas-liq. mass transfer is increased and the amt. of reaction is increased, the reaction temp. is furthermore elevated. On the contrary, when the amt. of liq. circulation is increased, the reaction temp. is decreased by increasing the heat exchange efficiency and at the same time, as the amt. of gas-liq. mass transfer is decreased and the amt. of the reaction is decreased, the reaction temp. is furthermore lowered.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、気泡塔型ループリアク
ターを用いた気液接触反応の反応制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a reaction control method for a gas-liquid catalytic reaction using a bubble column loop reactor.

【0002】[0002]

【従来の技術およびその問題点】気泡塔型ループリアク
ターは、その構造が簡単で、かつ混合、伝熱、物質移動
などの効率がよいため、発酵装置や気液接触反応装置と
して注目されている。この気泡塔型ループリアクターに
は、容器内に上下端を開口させたドラフトチューブを設
け、該ドラフトチューブ下方の容器底部に設けたガス分
散器からガスをドラフトチューブ内に連続的に吹き込
み、容器内の反応液をドラフトチューブの内外部の水圧
差より循環させて気液接触を行う内部循環型のものと、
上昇管と下降管からなり、上昇管にガスを吹き込むこと
により密度差により液循環を行わせる外部循環型のもの
がある。
2. Description of the Related Art A bubble column type loop reactor is attracting attention as a fermentation apparatus or a gas-liquid contact reaction apparatus because of its simple structure and high efficiency of mixing, heat transfer, mass transfer and the like. . This bubble column type loop reactor is provided with a draft tube having upper and lower ends opened in the container, and gas is continuously blown into the draft tube from a gas disperser provided at the bottom of the container below the draft tube so that the inside of the container is closed. An internal circulation type in which the reaction liquid of is circulated from the water pressure difference inside and outside the draft tube to make gas-liquid contact,
There is an external circulation type which is composed of an ascending pipe and a descending pipe, and in which gas is blown into the ascending pipe to perform liquid circulation due to a density difference.

【0003】このような気泡塔型ループリアクターを用
いて、例えば触媒含有ガス−液系の発熱反応を行う場
合、原料液供給量の不安定性や触媒活性の不均一性等の
外乱によって、反応が変動するため、特に大量の発熱を
伴う反応では、反応温度が上昇し、好ましくない副生物
の生成や暴走が起こってしまうという問題がある。この
ため、反応を定常的に行わせるためには、反応温度を制
御する必要があり、大量の発熱を伴う反応には気泡塔型
ループリアクターは使用されていないのが現状である。
When an exothermic reaction of a catalyst-containing gas-liquid system is carried out by using such a bubble column type loop reactor, the reaction is caused by disturbances such as instability of the raw material liquid supply amount and nonuniformity of catalyst activity. Because of fluctuations, there is a problem that the reaction temperature rises, particularly in a reaction involving a large amount of heat generation, and undesired by-products are generated or runaway occurs. Therefore, in order to carry out the reaction steadily, it is necessary to control the reaction temperature, and the bubble column type loop reactor is not currently used for the reaction involving a large amount of heat generation.

【0004】[0004]

【発明の目的】本発明の目的は、前記問題点を解決し、
設定温度と反応温度とのずれに応じて、液循環量を調節
することにより、反応温度を制御し、反応を定常的に行
うことができる気泡塔型ループリアクターの反応制御方
法を提供することにある。
The object of the present invention is to solve the above problems,
To provide a reaction control method of a bubble column loop reactor capable of controlling the reaction temperature by adjusting the liquid circulation amount according to the difference between the set temperature and the reaction temperature and performing the reaction steadily. is there.

【0005】[0005]

【問題点を解決するための手段】本発明は、液上昇流
部、塔頂での気液分離部、液下降流部及び液流が反転す
る塔底部から構成される気泡塔型ループリアクターにお
いて、液循環ラインに液流量調節弁を設けるとともに、
設定温度と反応温度とのずれを液流量調節弁と連動さ
せ、反応温度に応じて液流量調節弁を調節することによ
り、反応温度を制御することを特徴とする反応制御方法
に関する。
DISCLOSURE OF THE INVENTION The present invention is a bubble column type loop reactor comprising a liquid upflow part, a gas-liquid separation part at the top of the column, a liquid downflow part and a column bottom part where the liquid flow is reversed. , With the liquid flow control valve in the liquid circulation line,
The present invention relates to a reaction control method characterized in that a reaction temperature is controlled by interlocking a deviation between a set temperature and a reaction temperature with a liquid flow rate control valve and adjusting the liquid flow rate control valve according to the reaction temperature.

【0006】本発明において用いられる気泡塔型ループ
リアクターは、液上昇流部、塔頂での気液分離部、液下
降流部及び液流が反転する塔底部から構成されるもので
あり、主として内部循環型と外部循環型がある。特に大
量の熱を発生する反応に用いる場合には、熱交換の効率
の良い外部循環型が好ましい。本発明の特徴は、この気
泡塔型ループリアクターの液循環ラインに液流量調節弁
を設けるとともに、設定温度と反応温度とのずれを液流
量調節弁と連動させ、反応温度に応じて液流量調節弁を
調節することにより、反応温度を制御することにある。
The bubble column type loop reactor used in the present invention comprises a liquid ascending flow section, a gas-liquid separating section at the top of the tower, a liquid descending flow section, and a tower bottom section at which the liquid flow is reversed. There are internal circulation type and external circulation type. In particular, when used in a reaction that generates a large amount of heat, an external circulation type with high heat exchange efficiency is preferable. A feature of the present invention is that a liquid flow rate control valve is provided in the liquid circulation line of this bubble column loop reactor, and the deviation between the set temperature and the reaction temperature is linked with the liquid flow rate control valve to adjust the liquid flow rate according to the reaction temperature. It is to control the reaction temperature by adjusting the valve.

【0007】これについて、以下、図1を用いて説明す
る。図1は、本発明に用いられる気泡塔型ループリアク
ターの概略図である。図1において、反応ガスは、ガス
供給管5から液上昇流部1に送入される。この液上昇流
部1は、塔底部2及び気液分離部3を経て液下降流部4
に連結している。気泡となって分散されたガスは、気液
分離部3において分離され、そしてガス排出管7から排
出される。液下降流部4は、反応により発生した熱を取
り出すための多管式熱交換器となっている。そして、塔
底部2には液流量調節弁10が設けられている。温度指
示調節計12で反応温度を設定し、この設定温度と実際
の反応温度とのずれに応じて、これと連動させた流量指
示調節計11により、液流量調節弁10を調節して液循
環量を増減することができるようになっている。
This will be described below with reference to FIG. FIG. 1 is a schematic view of a bubble column type loop reactor used in the present invention. In FIG. 1, the reaction gas is fed into the liquid ascending flow section 1 from the gas supply pipe 5. The liquid ascending flow section 1 passes through a column bottom section 2 and a gas-liquid separating section 3 and then a liquid descending flow section 4
Connected to. The gas dispersed as bubbles is separated in the gas-liquid separation unit 3 and is discharged from the gas discharge pipe 7. The liquid downflow section 4 is a multi-tube heat exchanger for taking out heat generated by the reaction. A liquid flow rate control valve 10 is provided on the tower bottom 2. The reaction temperature is set by the temperature indicator controller 12, and according to the difference between the set temperature and the actual reaction temperature, the liquid flow rate regulating valve 10 is adjusted by the flow rate indicator controller 11 which is interlocked with this to circulate the liquid. The amount can be increased or decreased.

【0008】一般に気泡塔型ループリアクターにおいて
は、例えば、混相流5巻4号(1991)307頁Fi
g.6に記載されているように、液循環速度ULと気液
物質移動量kLaとは図2に示す関係にある。即ち、液
循環速度ULが大きくなると気液物質移動量kLaは減少
し、逆に液循環速度ULが小さくなると気液物質移動量
Laは増加する関係にある。一方、気液物質移動量kL
aが減少すると反応量が減るので反応温度は下がり、逆
に気液物質移動量kLaが増加すると反応量が増えるの
で反応温度は上昇する。また、液循環速度ULが小さく
なると熱交換の効率が下がるので反応温度は上昇し、逆
に液循環速度ULが大きくなると熱交換の効率が上がる
ので反応温度は下がる。
Generally, in a bubble column type loop reactor, for example, mixed-phase flow 5 volume 4 (1991) p. 307 Fi
g. As described in 6, the liquid circulation rate U L gas-liquid mass transfer amount k L a in the relation shown in FIG. That is, the gas-liquid mass transfer amount k L a to decrease the liquid circulation rate U L increases, the reverse to the liquid circulation rate U L is small gas-liquid mass transfer amount k L a in a relationship increases. On the other hand, gas-liquid mass transfer amount k L
When a decreases, the reaction amount decreases, so the reaction temperature decreases, and conversely, when the gas-liquid mass transfer amount k L a increases, the reaction amount increases and the reaction temperature increases. Further, since the liquid circulation rate U L is the efficiency of heat exchange decreases small reaction temperature increased, the reaction temperature because efficiency is improved heat exchange Conversely, when the liquid circulation velocity U L increases decreases.

【0009】そこで、液循環ラインに液流量調節弁を設
けるとともに、設定温度と反応温度とのずれを液流量調
節弁と連動させ、反応温度に応じて液流量調節弁を調節
して、液循環量及び気液物質移動量を増減させることに
より、反応温度を制御することができる。即ち、液流量
調節弁により液循環量を減少させれば、熱交換の効率が
下がることにより反応温度は上昇し、同時に図2の関係
から気液物質移動量も増加して反応量が増えることによ
り、さらに反応温度は上昇することになる。逆に、液流
量調節弁により液循環量を増加させれば、熱交換の効率
が上がることにより反応温度は下がり、同時に図2の関
係から気液物質移動量も減少して反応量が減ることによ
り、さらに反応温度は下がることになる。したがって、
設定温度と反応温度とのずれを液流量調節弁と連動させ
ておくことにより反応温度を一定に保つことができる。
Therefore, a liquid flow rate adjusting valve is provided in the liquid circulation line, and the deviation between the set temperature and the reaction temperature is linked with the liquid flow rate adjusting valve, and the liquid flow rate adjusting valve is adjusted according to the reaction temperature to perform the liquid circulation. The reaction temperature can be controlled by increasing or decreasing the amount and the gas-liquid mass transfer amount. That is, when the liquid circulation amount is reduced by the liquid flow rate control valve, the reaction temperature rises due to a decrease in heat exchange efficiency, and at the same time, the gas-liquid mass transfer amount also increases and the reaction amount increases from the relationship of FIG. This further raises the reaction temperature. On the contrary, if the liquid circulation amount is increased by the liquid flow control valve, the reaction temperature decreases due to the increase in heat exchange efficiency, and at the same time, the gas-liquid mass transfer amount also decreases and the reaction amount decreases from the relationship of FIG. This further lowers the reaction temperature. Therefore,
The reaction temperature can be kept constant by linking the deviation between the set temperature and the reaction temperature with the liquid flow rate control valve.

【0010】例えば、ブタジエンを三量化してCDT
(シクロドデカトリエン)とし、次いでCDTを水添し
てCDAN(シクロドデカン)とし、CDANを酸化し
てCDON/OL(シクロドデカノン/シクロドデカノ
ール)を製造する工程において、下記反応式に示すCD
Tを水添してCDANを製造する工程は、気液固触媒反
応であるとともに、発熱反応であるので、水素の反応液
中への移動及び大量の反応熱除去が効率的に行われるこ
とが必要であり、そのための反応器としては気泡塔型ル
ープリアクターが適している。上記反応では、特に、高
温でCDTの水素化分解や異性化が起こるので反応温度
の制御が重要となる。したがって、上記反応に、本発明
の反応制御方法を適用することにより、反応温度を一定
に保つことができるので、副生物の生成を防止でき、安
全で経済的にCDANを生産することが可能となる。
For example, CDT obtained by trimerizing butadiene
(Cyclododecatriene), then CDT is hydrogenated to CDAN (cyclododecan), and CDAN is oxidized in the step of producing CDON / OL (cyclododecanone / cyclododecanol).
Since the step of hydrogenating T to produce CDAN is a gas-liquid solid catalytic reaction and an exothermic reaction, transfer of hydrogen into the reaction solution and removal of a large amount of reaction heat can be efficiently performed. It is necessary, and a bubble column loop reactor is suitable as a reactor therefor. In the above reaction, the control of the reaction temperature is important because the hydrogenolysis and isomerization of CDT occur especially at high temperatures. Therefore, by applying the reaction control method of the present invention to the above reaction, the reaction temperature can be kept constant, so that the production of by-products can be prevented and CDAN can be produced safely and economically. Become.

【0011】[0011]

【化1】 Embedded image

【0012】[0012]

【実施例】以下に、実施例を示す。 実施例1 CDTを水添してCDANを合成する水添反応を図1に
示す気泡塔型ループリアクターを用いて行った。図1に
おいて、液上昇流部1は、CDTとH2が反応してCD
ANになる反応部、液下降流部4は、反応により発生し
た熱を取り出すための多管式熱交換器部となっている。
そして、温度指示調節計12で反応温度を設定し、この
設定温度と実際の反応温度とのずれに応じて、これと連
動させた流量指示調節計11により、液流量調節弁10
を調節して液循環量を増減することにより、反応温度を
コントロールすることができるようになっている。反応
部の容積が0.84lのループリアクターへ、CDAN
に対し水素添加触媒(Ni66%担持SiO2−Al2
3触媒)を0.3wt%添加したスラリー溶液を入れ、
2ガスを56.5Nl/hr、4kg/cm2Gでガス
供給管5から送入し、反応部と熱交換器部の間に液循環
を形成させた。次に、原料供給口6からCDTに対し触
媒を0.3wt%添加したスラリー溶液を0.547k
g/hrで供給して反応を開始し、反応液排出管8より
反応液をオーバーフローにより排出させた。温度指示調
節計12で各温度に設定し、定常状態に達したときの反
応器内温度の設定温度からのずれ、出口反応率及び液循
環量を表1に示す。なお、各設定温度への移行はスムー
ズに行うことができた。
EXAMPLES Examples will be shown below. Example 1 A hydrogenation reaction in which CDT was hydrogenated to synthesize CDAN was carried out using the bubble column loop reactor shown in FIG. In FIG. 1, the liquid upflow portion 1 reacts with CDT and H 2 to cause CD
The reaction section serving as AN and the liquid downflow section 4 are multitubular heat exchanger sections for taking out heat generated by the reaction.
Then, the reaction temperature is set by the temperature indicating controller 12, and according to the difference between the set temperature and the actual reaction temperature, the liquid flow adjusting valve 10 is operated by the flow rate indicating controller 11 which is interlocked with this.
The reaction temperature can be controlled by increasing or decreasing the liquid circulation amount by adjusting. To a loop reactor with a reaction volume of 0.84 l, CDAN
On the other hand, a hydrogenation catalyst (Ni 66% supported SiO 2 —Al 2 O
(3 catalyst) 0.3 wt% added slurry solution,
H 2 gas was introduced at 56.5 Nl / hr and 4 kg / cm 2 G through the gas supply pipe 5 to form a liquid circulation between the reaction section and the heat exchanger section. Next, from the raw material supply port 6, 0.547 k of a slurry solution in which 0.3 wt% of a catalyst is added to CDT
The reaction liquid was supplied by g / hr to start the reaction, and the reaction liquid was discharged from the reaction liquid discharge pipe 8 by overflow. Table 1 shows the deviation of the internal temperature of the reactor from the set temperature, the outlet reaction rate, and the liquid circulation amount when the temperature is set to each temperature by the temperature indicating controller 12 and the steady state is reached. The transition to each set temperature could be performed smoothly.

【0013】[0013]

【表1】 [Table 1]

【図面の簡単な説明】[Brief description of drawings]

【図1】 図1は、本発明に用いられる気泡塔型ループ
リアクターの概略図である。
FIG. 1 is a schematic view of a bubble column type loop reactor used in the present invention.

【図2】 図2は、本発明の実施例における液循環速度
Lと気液物質移動量kLaとの関係を示す図である。
FIG. 2 is a diagram showing a relationship between a liquid circulation speed U L and a gas-liquid mass transfer amount k L a in an example of the present invention.

【符号の説明】[Explanation of symbols]

1 液上昇流部 2 塔底部 3 気液分離部 4 液下降流部 5 ガス供給管 6 原料供給口 7 ガス排出管 8 反応液排出管 9 ガス分散板 10 液流量調節弁 11 流量指示調節計 12 温度指示調節計 13 冷却液出口 14 冷却液入口 1 Liquid Upflow Part 2 Tower Bottom 3 Gas-Liquid Separation Part 4 Liquid Downflow Part 5 Gas Supply Pipe 6 Raw Material Supply Port 7 Gas Discharge Pipe 8 Reactant Discharge Pipe 9 Gas Dispersion Plate 10 Liquid Flow Control Valve 11 Flow Indicator 12 Temperature indicator controller 13 Coolant outlet 14 Coolant inlet

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 液上昇流部、塔頂での気液分離部、液下
降流部及び液流が反転する塔底部から構成される気泡塔
型ループリアクターにおいて、液循環ラインに液流量調
節弁を設けるとともに、設定温度と反応温度とのずれを
液流量調節弁と連動させ、反応温度に応じて液流量調節
弁を調節することにより、反応温度を制御することを特
徴とする反応制御方法。
1. A bubble column type loop reactor comprising a liquid ascending flow section, a gas-liquid separating section at the top of the tower, a liquid descending flow section, and a tower bottom at which the liquid flow is reversed, and a liquid flow control valve in a liquid circulation line. And the reaction temperature is controlled by interlocking the deviation between the set temperature and the reaction temperature with the liquid flow rate control valve and adjusting the liquid flow rate control valve according to the reaction temperature.
JP6160058A 1994-07-12 1994-07-12 Method for controlling reaction in bubble tower-type loop reactor Pending JPH0824624A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6160058A JPH0824624A (en) 1994-07-12 1994-07-12 Method for controlling reaction in bubble tower-type loop reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6160058A JPH0824624A (en) 1994-07-12 1994-07-12 Method for controlling reaction in bubble tower-type loop reactor

Publications (1)

Publication Number Publication Date
JPH0824624A true JPH0824624A (en) 1996-01-30

Family

ID=15707000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6160058A Pending JPH0824624A (en) 1994-07-12 1994-07-12 Method for controlling reaction in bubble tower-type loop reactor

Country Status (1)

Country Link
JP (1) JPH0824624A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100464832C (en) * 2006-12-30 2009-03-04 中国石油大学(北京) Air lift type external loop reactor with two spray nozzles
JP2010131590A (en) * 2008-10-30 2010-06-17 Shinshu Univ Chemical reaction apparatus and stirring mechanism
JP2016536349A (en) * 2013-09-26 2016-11-24 ダウ テクノロジー インベストメンツ リミティド ライアビリティー カンパニー Hydroformylation process
CN106582460A (en) * 2017-01-20 2017-04-26 南京工业大学 Novel air-lift external-circulation reactor device and process
KR20220009397A (en) 2019-05-16 2022-01-24 닛소 엔지니아링 가부시키가이샤 Chemical reaction systems and devices suitable for low flow flow reactions

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5513295A (en) * 1978-07-13 1980-01-30 Ugine Kuhlmann Hydroformylation chemical reactor
JPS58238A (en) * 1981-06-06 1983-01-05 ヘキスト・アクチエンゲゼルシヤフト Improvement of reaction control in gas lift loop type reactor
JPS61208494A (en) * 1985-03-14 1986-09-16 Mitsubishi Corp Latent heat utilizing heat storage device
JPS62197140A (en) * 1986-02-25 1987-08-31 Idemitsu Petrochem Co Ltd Method for controlling internal temperature of reactor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5513295A (en) * 1978-07-13 1980-01-30 Ugine Kuhlmann Hydroformylation chemical reactor
JPS58238A (en) * 1981-06-06 1983-01-05 ヘキスト・アクチエンゲゼルシヤフト Improvement of reaction control in gas lift loop type reactor
JPS61208494A (en) * 1985-03-14 1986-09-16 Mitsubishi Corp Latent heat utilizing heat storage device
JPS62197140A (en) * 1986-02-25 1987-08-31 Idemitsu Petrochem Co Ltd Method for controlling internal temperature of reactor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100464832C (en) * 2006-12-30 2009-03-04 中国石油大学(北京) Air lift type external loop reactor with two spray nozzles
JP2010131590A (en) * 2008-10-30 2010-06-17 Shinshu Univ Chemical reaction apparatus and stirring mechanism
JP2016536349A (en) * 2013-09-26 2016-11-24 ダウ テクノロジー インベストメンツ リミティド ライアビリティー カンパニー Hydroformylation process
JP2019059765A (en) * 2013-09-26 2019-04-18 ダウ テクノロジー インベストメンツ リミティド ライアビリティー カンパニー Hydroformylation process
CN106582460A (en) * 2017-01-20 2017-04-26 南京工业大学 Novel air-lift external-circulation reactor device and process
KR20220009397A (en) 2019-05-16 2022-01-24 닛소 엔지니아링 가부시키가이샤 Chemical reaction systems and devices suitable for low flow flow reactions

Similar Documents

Publication Publication Date Title
EP0985446B1 (en) Two stage reactor for continuous three phase slurry hydrogenation and method of operation
US5961933A (en) Process and apparatus for operation of a slurry bubble column with application to the fischer-tropsch synthesis
CN106554298B (en) A kind of method that ethylbenzene oxidation prepares ethylbenzene hydroperoxide
US6169120B1 (en) Extended catalyst life two stage hydrocarbon synthesis process
US11628415B2 (en) Built-in micro interfacial enhanced reaction system and process for PTA production with PX
US5779995A (en) Sludge phase reactor and process for performing sludge phase reactions
CN106552577B (en) A kind of multilayer guide shell bubbling reactor and its application method
KR970061346A (en) Reactor
JPH02263713A (en) Production of hydrogen peroxide
JP2000093784A (en) Catalytic gas phase oxidation method and multitubular reactor
JPH0638906B2 (en) Exothermic reaction processes and equipment
JPS6120531B2 (en)
JP5154730B2 (en) Fischer-Tropsch method
CN111153782A (en) Method for preparing high-carbon aldehyde by hydroformylation of high-carbon olefin
JPH0824624A (en) Method for controlling reaction in bubble tower-type loop reactor
JPS58238A (en) Improvement of reaction control in gas lift loop type reactor
JPH045487B2 (en)
CA2087077A1 (en) Thermosyphonic reaction of oxygen with isobutane and reactor
CN206103913U (en) Reaction unit of benzene part hydrogenation synthesis cyclohexene
US6174927B1 (en) Exothermic catalytic chemical process
CN107497374A (en) A kind of cyclohexane oxidation device and its application method
CN110052222A (en) A kind of process of cold shock formula mercury-free catalysis VCM synthesis
CN111569799B (en) External micro-interface unit enhanced reaction system and process for producing PTA (pure terephthalic acid) by PX (para-xylene)
CN212246823U (en) System for isoflurane ketone hydrogenation production 3,3, 5-trimethyl cyclohexanol
CN213376525U (en) Oxidation reactor for continuous liquid phase oxidation of o-chlorotoluene