JPH0650686A - Latent heat accumulator - Google Patents

Latent heat accumulator

Info

Publication number
JPH0650686A
JPH0650686A JP4219653A JP21965392A JPH0650686A JP H0650686 A JPH0650686 A JP H0650686A JP 4219653 A JP4219653 A JP 4219653A JP 21965392 A JP21965392 A JP 21965392A JP H0650686 A JPH0650686 A JP H0650686A
Authority
JP
Japan
Prior art keywords
heat storage
eutectic
heat
concentration
inorganic salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4219653A
Other languages
Japanese (ja)
Inventor
Shoichi Kuroda
章一 黒田
Soichiro Shibata
宗一郎 柴田
Noriyuki Shimamura
典行 嶋村
Shigetake Kawasaki
成武 川崎
Keisuke Kasahara
敬介 笠原
Seiichi Sakuma
誠一 佐久間
Fujio Komatsu
富士男 小松
Masaya Ishikawa
雅也 石川
Kunio Sugiyama
邦夫 杉山
Mitsuo Masushige
光男 増茂
Minoru Shindo
穣 進藤
Kuniaki Kawamura
邦明 川村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Adeka Corp
Mayekawa Manufacturing Co
Tokyo Electric Power Company Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Mayekawa Manufacturing Co
Asahi Denka Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc, Mayekawa Manufacturing Co, Asahi Denka Kogyo KK filed Critical Tokyo Electric Power Co Inc
Priority to JP4219653A priority Critical patent/JPH0650686A/en
Publication of JPH0650686A publication Critical patent/JPH0650686A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Abstract

PURPOSE:To enhance a load follow-up capacity and heat storage efficiency of brine by setting concentrations of inorganic salts to be dissolved in an aqueous solution to concentration ranges not exceeding component concentration ranges corresponding to an ice point and and a eutectic point and an N component eutectic point of the inorganic salt and water. CONSTITUTION:Capsules 2 sealed with latent heat accumulator 1 are filled in a heat storage tank 23, brine heat exchanged by a load side heat exchanger 22 is charged from above the tank 23, heat exchanged with the capsules 2, and then sent to a load side heat exchanger 22 via a pump 24 and a bypass passage 25. The accumulator sealed in the capsule 2 is obtained by dissolving inorganic salts of (N-1) types with water as three or more N (N>=3) component series, and concentrations of the salts to be dissolved in the solution are set to a concentration range not exceeding component concentration ranges corresponding to an ice point and eutectic point and N component eutectic point of the inorganic salts and water. Thus, a load follow-up capacity and heat storage efficiency of brine can be enhanced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は潛熱蓄熱剤を封入したカ
プセルを用いた潛熱蓄熱装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat storage device using a capsule containing a heat storage agent.

【0002】[0002]

【従来の技術】従来より蓄熱槽内に貯溜した水若しくは
前記ブラインを凝固/融解させながら、その潛熱を利用
した潛熱蓄熱装置は公知であり、かかる蓄熱装置は、顕
熱蓄冷手段に比較して蓄熱密度が高く、しかも一定温度
の冷/熱を取出し容易であり、又システムも小型で、且
つ構成も簡単である事からその利用範囲は大きく、食品
産業を含む民生用等の種々の分野に利用されている。
2. Description of the Related Art Conventionally, there has been known a heat storage device which uses heat generated by solidifying / melting water or brine stored in a heat storage tank, and such a heat storage device is better than sensible heat storage means. It has a high heat storage density, is easy to extract cold / heat at a constant temperature, and has a small system and a simple configuration, so its range of use is wide, and it is used in various fields such as the consumer industry including the food industry. It's being used.

【0003】そして、かかる蓄熱装置には、無機塩類の
共晶体組成水溶液その他の潛熱蓄熱剤を封入した多数の
カプセルを蓄熱槽内に装填した後、該カプセルに直接ブ
ラインを接触させながら潛熱蓄熱と冷/熱の取出しを行
う、いわゆるカプセル方式の蓄熱装置と、蓄熱槽内に貯
溜された水又はブラインを直接冷却管を利用して凝固さ
せ、潛熱蓄冷を行った後、該凝固体の融解潛熱を利用し
て冷熱を取出しを行う、いわゆるアイスバンク方式のも
のとに大別されるが、前者の方が蓄熱槽内のブライン中
にカプセルを浸漬した状態で、潛熱蓄熱と冷/熱の取出
しを行う事が出来るために、小型の装置で大容量のブラ
インの循環を行なう事が出来、好ましい。そして、前記
カプセルに封入する潛熱蓄熱剤に言及した具体的な従来
技術として一般に無機炭酸塩、無機硝酸塩、更には有機
ハロゲン炭化水素等の水溶液を用いている。
In this heat storage device, a large number of capsules containing a eutectic composition aqueous solution of an inorganic salt and other heat storage agents are charged in a heat storage tank, and then the brine is directly contacted with brine to perform heat storage. A so-called capsule type heat storage device that takes out cold / heat, and water or brine stored in the heat storage tank is directly solidified by using a cooling pipe to perform hot heat cold storage, and then the molten heat of the solidified body. It is roughly divided into the so-called ice bank type that takes out cold heat by using the former, but the former is the state that the capsule heat is stored in the brine in the heat storage tank, and the heat storage and the cold / heat extraction Since it is possible to circulate, it is possible to circulate a large amount of brine with a small device, which is preferable. In addition, as a specific conventional technique that refers to the heat storage agent to be encapsulated in the capsule, an aqueous solution of an inorganic carbonate, an inorganic nitrate, or an organic halogenated hydrocarbon is generally used.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、かかる
二成分系の潛熱蓄熱剤をそのままカプセル内に封入する
と、次の様な問題が生じる。即ち、本装置においては冷
熱エネルギーの伝達方式が[カプセル]を介在させるも
のである為に、潛熱蓄冷及び取り出し過程にあっては、
[冷凍機の冷却管]→[ブライン]→[カプセル]若し
くはその逆と二段階になり、結果としてその分冷凍機冷
却管の冷媒の蒸発温度を低く設定せねばならず、特に前
記潛熱蓄熱剤をカプセル中で凍結させた場合、融解時カ
プセルの中は自然対流で前記凍結された共晶氷を融解す
る為に、融解温度が遅くなり負荷に対して充分に融解し
きれず、結果として蓄熱槽内の温度が上昇してしまい、
該蓄熱槽より送出されるブライン温度を所定の低い温度
に維持する事が出来ず、結果として蓄熱効率の低下につ
ながる。
However, if such a two-component heat storage agent is enclosed in a capsule as it is, the following problems occur. That is, in this device, since the method of transferring cold energy is through the [capsule], in the process of cold heat storage and removal,
[Refrigerator cooling pipe] → [Brine] → [Capsule] or vice versa, and as a result, the evaporation temperature of the refrigerant in the refrigerator cooling pipe has to be set low, and in particular, the heat storage agent When frozen in a capsule, the frozen eutectic ice melts in the capsule due to natural convection during melting, resulting in a slow melting temperature and insufficient melting under load, resulting in a heat storage tank. The temperature inside has risen,
It is not possible to maintain the brine temperature sent from the heat storage tank at a predetermined low temperature, resulting in a reduction in heat storage efficiency.

【0005】そこで本発明者は、アイスバンク方式の蓄
熱方法に用いる潛熱蓄熱剤を流用する事を検討した。例
えば特開昭62−62192号公報(以下、第1従来技
術と言う。)には、0℃未満の共晶点を持つ2種類の無
機塩類、より具体的にはそれぞれ共晶体を形成する塩化
ナトリウムと塩化カリウムの混合水溶液を潛熱蓄熱剤と
して用いたものを提案している。又特開平2ー2147
93号公報(以下、第2従来技術と言う。)において
は、前記潛熱蓄熱剤に更に検討を加え、硝酸カリウムと
硝酸ナトリウムとを溶解した水溶液を潛熱蓄熱剤として
利用し、この水溶液の凍結解凍時の潛熱を約−5℃の冷
熱として取り出す潛熱蓄熱剤が提案されている。
Therefore, the inventor of the present invention has studied the use of the heat storage agent for heat storage used in the ice bank heat storage method. For example, Japanese Patent Laid-Open No. 62-62192 (hereinafter referred to as “first conventional technology”) discloses two kinds of inorganic salts having a eutectic point of less than 0 ° C., more specifically, chlorides forming eutectic crystals. We have proposed using a mixed aqueous solution of sodium and potassium chloride as a heat storage agent. Also, JP-A-2-2147
In Japanese Patent Laid-Open No. 93 (hereinafter, referred to as the second prior art), the above-mentioned heat storage agent is further investigated, and an aqueous solution in which potassium nitrate and sodium nitrate are dissolved is used as the heat storage agent. A heat storage agent has been proposed that takes out the heat generated by the above as cold heat of about -5 ° C.

【0006】しかしながら、前記各従来技術のように3
元共晶点を有する潛熱蓄熱剤をカプセル内に封入する構
成を取ると、無機塩の初期濃度が共晶点の濃度を超える
場合は、冷却の際、無機塩自身の無機塩結晶若しくは該
無機塩の水和物が析出するが、これら析出物は前記カプ
セル内に沈殿し、冷熱取出しに当って再び析出物が該溶
液に溶解する際、潛熱蓄熱剤が低温であることも手伝っ
て、潛熱蓄熱剤溶液に再溶解する速度は制限される。
However, as in each of the above-mentioned prior arts, 3
When the heat storage agent having a primary eutectic point is enclosed in a capsule, when the initial concentration of the inorganic salt exceeds the concentration of the eutectic point, the inorganic salt crystal or the inorganic salt of the inorganic salt itself is cooled during cooling. Salt hydrates precipitate, but these precipitates precipitate in the capsules, and when the precipitates are dissolved again in the solution during cold heat removal, the heat storage agent for heat transfer is also at a low temperature, and the heat transfer The rate of redissolution in the heat storage agent solution is limited.

【0007】本発明は、かかる従来技術の欠点に鑑みカ
プセル内で凝固した潛熱蓄熱剤の融解速度を早くする事
により、カプセル蓄熱剤の伝熱特性を向上させ、これに
よりブラインの負荷追従能力と蓄熱効率の高度化を図る
事を目的とする。本発明の他の目的は、目的とする温度
冷熱を容易に且つ精度よく取り出し可能に構成した潛熱
蓄熱装置を提供する事にある。
In view of the above-mentioned drawbacks of the prior art, the present invention improves the heat transfer characteristics of the capsule heat storage agent by increasing the melting rate of the heat storage agent stored in the capsule, thereby improving the load followability of brine. The purpose is to improve the heat storage efficiency. Another object of the present invention is to provide a heat storage device for heat storage, which is configured to easily and accurately take out desired temperature cold heat.

【0008】[0008]

【課題を解決する為の手段】本発明は、潛熱蓄熱剤を封
入したカプセルを充填した蓄熱槽を冷却媒体の循環回路
の一部に設けてなる潛熱蓄熱装置において、前記カプセ
ル内に、少くとも3以上のN(N≧3)成分系として
(N−1)種類の無機塩を水に溶解して得られる潛熱蓄
熱剤を封入すると共に、該水溶液に溶解される夫々の無
機塩の濃度を、氷点及び前記無機塩と水との共晶点、及
びN成分共晶点に対応する各成分濃度範囲を超えない濃
度領域に設定した事を特徴とする潛熱蓄熱装置を提案す
る。
DISCLOSURE OF THE INVENTION The present invention provides a heat storage apparatus in which a heat storage tank filled with a capsule containing a heat storage agent is provided in a part of a circulation circuit for a cooling medium, and at least the capsule contains at least the heat storage tank. A heat storage agent obtained by dissolving (N-1) kinds of inorganic salts in water as 3 or more N (N ≧ 3) component system is enclosed, and the concentration of each inorganic salt dissolved in the aqueous solution is adjusted. , A freezing point, a eutectic point of the inorganic salt and water, and a concentration region that does not exceed the concentration range of each component corresponding to the N-component eutectic point are proposed.

【0009】この場合、前記水溶液中における各無機塩
の濃度を、前記水と各無機塩との共晶点とN元共晶点と
を結ぶ共晶線の濃度の50〜98%の範囲に設定するの
がよく、更に前記水溶液中における少なくとも一の前記
無機塩の含有量を、該一の無機塩と水との共晶体の濃度
の60〜98%の範囲に設定し、且つ前記水溶液中の無
機塩の全含有量を、前記潛熱蓄熱剤のN成分共晶体の濃
度以下に設定するのがよい。
In this case, the concentration of each inorganic salt in the aqueous solution is in the range of 50 to 98% of the concentration of the eutectic line connecting the eutectic point of the water and each inorganic salt and the N-element eutectic point. The content of the at least one inorganic salt in the aqueous solution is preferably set in the range of 60 to 98% of the concentration of the eutectic crystal of the one inorganic salt and water, and in the aqueous solution. It is preferable that the total content of the inorganic salt is set to be equal to or lower than the concentration of the N component eutectic of the heat storage agent.

【0010】[0010]

【作用】次に本発明の作用を詳細に説明する。前記潛熱
蓄熱剤は、水と少なくとも2種類の水溶性無機塩類とか
らなるN成分溶液(N≧3)で、前記潛熱蓄熱剤におけ
る無機塩の濃度は、氷点、水と各無機塩の共晶点、及び
N成分共晶点に対応する各成分濃度範囲を超えない濃度
領域に設定した為に、図2に示すように、該潛熱蓄熱剤
封入したカプセルを投入した蓄熱槽内に冷凍サイクルに
おけるブラインを循環させて氷点以下に冷却すると、当
初、該無機塩による氷点降下効果によって水溶液の状態
を保ちながらカプセル内の蓄熱剤が冷却されるが、該氷
点降下効果以下に冷却されると氷及び(N−1)種類の
無機塩の各2元共晶点の高い順に2成分共晶体が析出
し、2成分共晶体と前記無機塩混合水溶液の2相状態と
なる。この状態を更に冷却を進め、N元共晶点に達する
と、前記潛熱蓄熱剤は氷・2成分共晶体に加えてN成分
共晶体が析出し、最終的には氷・2成分共晶体・N成分
共晶体の固相混合物1相となる。前記過程において、氷
の析出に伴って氷の凝固潛熱を吸収し、共晶体に変化す
る際にあっても共晶潛熱を吸収する。従って、単に一の
無機塩と水からなる二成分共晶体をカプセルに封入して
冷却するときに比較して、前記凝固物の析出に伴う凝固
潛熱吸収の為に、温度変化は緩衝される。
Next, the operation of the present invention will be described in detail. The heat storage agent is an N component solution (N ≧ 3) consisting of water and at least two types of water-soluble inorganic salts, and the concentration of the inorganic salt in the heat storage agent is a freezing point, water and a eutectic of each inorganic salt. Points and the concentration range not exceeding each component concentration range corresponding to the N component eutectic point, as shown in FIG. 2, in the heat storage tank in which the capsule containing the heat storage agent is put in the refrigeration cycle. When the brine is circulated and cooled below the freezing point, initially, the heat storage agent in the capsule is cooled while keeping the state of the aqueous solution by the freezing point lowering effect of the inorganic salt, but when cooled below the freezing point lowering effect, ice and A binary eutectic crystal is precipitated in the descending order of the binary eutectic point of each of the (N-1) types of inorganic salts, resulting in a two-phase state of the binary eutectic material and the inorganic salt mixed aqueous solution. When cooling is further advanced in this state to reach the N-ary eutectic point, the heat storage agent for precipitation contains N-component eutectic crystals in addition to ice / binary eutectic crystals, and finally ice / binary eutectic It becomes one phase of a solid phase mixture of N component eutectic. In the above process, the solidification heat of the ice is absorbed as the ice precipitates, and the eutectic heat is absorbed even when the ice is transformed into a eutectic. Therefore, the temperature change is buffered due to the absorption of solidification heat associated with the precipitation of the solidified product, as compared with the case where the binary eutectic composed of only one inorganic salt and water is encapsulated and cooled.

【0011】従って前記本発明にかかる潛熱蓄熱剤を封
入したカプセルと、前記二成分共晶体を封入したカプセ
ルを夫々用いた潛熱蓄熱装置を比較すると、前者は凝固
潛熱吸収の為の温度変化が緩衝される為に、ブライン負
荷に対して充分蓄熱槽内の温度が上昇する事なく、該蓄
熱槽より送出されるブライン温度を所定の低い温度に維
持する事が出来、結果として蓄熱効率の上昇につなが
る。
Therefore, comparing a capsule heat storage device according to the present invention with a capsule heat storage device using each of the capsules containing the two-component eutectic, the former shows that the temperature change due to absorption of coagulation heat is buffered. Therefore, it is possible to maintain the temperature of the brine sent from the heat storage tank at a predetermined low temperature without sufficiently increasing the temperature in the heat storage tank against the load of the brine, resulting in an increase in heat storage efficiency. Connect

【0012】又、前記潛熱蓄熱剤のN成分共晶点は、夫
々の無機塩と水との共晶点よりも低温であるために、該
無機塩を適宜に選択することにより、取出し温度を凝固
点未満の任意の低温に設定可能となるとともに、前記潛
熱蓄熱剤中における各無機塩の濃度を、水と各無機塩と
の2元共晶点とN元共晶点とを結ぶ共晶線の濃度の50
〜98%の範囲内にする事により、そして更に好ましく
は、前記潛熱蓄熱剤中における一の無機塩の濃度を、前
記無機塩と水との共晶体の濃度の60〜98%の範囲に
設定し、且つ前記潛熱蓄熱剤中の無機塩の全含有量を、
N成分共晶体の濃度以下に設定する事により、冷却の過
程に於いて、無機塩或いは無機塩の水和物が析出する恐
れを除き、これにより冷熱取出しに当って前記析出物の
存在により潛熱蓄熱剤溶液に再溶解する速度は制限され
る事なく、結果としてカプセル蓄熱剤の伝熱特性を向上
させ、これによりブラインの負荷追従能力と蓄熱効率の
高度化を図る事が出来る。
Further, since the N component eutectic point of the heat storage agent is lower than the eutectic point of each inorganic salt and water, the take-out temperature can be adjusted by appropriately selecting the inorganic salt. A eutectic line connecting the binary eutectic point and the N-element eutectic point of water and each inorganic salt with the concentration of each inorganic salt in the heat storage agent can be set to an arbitrary low temperature below the freezing point. Of the concentration of 50
To 98%, and more preferably, the concentration of one inorganic salt in the heat storage agent is set to 60 to 98% of the concentration of the eutectic of the inorganic salt and water. And the total content of the inorganic salt in the heat storage agent,
By setting the concentration below the N-component eutectic, there is no risk of precipitation of inorganic salts or hydrates of inorganic salts during the cooling process. The speed of re-dissolution in the heat storage agent solution is not limited, and as a result, the heat transfer characteristics of the capsule heat storage agent are improved, whereby the load followability of brine and the heat storage efficiency can be enhanced.

【0013】従って本発明によれば、蓄熱槽に貯留する
潛熱蓄熱剤は、少くとも3以上のN(N≧3)成分系と
して(N−1)種類の無機塩を水に溶解した水溶液であ
りこの水溶液の各無機塩の濃度を、所定の濃度範囲でそ
れぞれ変えることによって、N元共晶点の温度以上2元
共晶点の温度未満の温度範囲より任意の温度を凝固点と
して選択することができ、カプセルを用いた場合でも所
望温度の冷熱を容易に且つ精度よく取り出す事が出来
る。
Therefore, according to the present invention, the heat storage agent for storage in the heat storage tank is an aqueous solution prepared by dissolving (N-1) kinds of inorganic salts in water as at least 3 or more N (N ≧ 3) component system. Yes Select an arbitrary temperature as the freezing point from the temperature range above the temperature of the N-ary eutectic point and below the temperature of the binary eutectic point by changing the concentration of each inorganic salt in this aqueous solution within a predetermined concentration range. Even if a capsule is used, cold heat at a desired temperature can be easily and accurately taken out.

【0014】[0014]

【実施例】以下、図面に基づいて本発明の実施例を例示
的に詳しく説明する。但しこの実施例に記載されている
構成部品の寸法、材質、形状、その相対配置などは特に
特定的な記載がない限りは、この発明の範囲をそれのみ
に限定する趣旨ではなく単なる説明例に過ぎない。
Embodiments of the present invention will now be illustratively described in detail with reference to the drawings. However, the dimensions, materials, shapes, relative positions and the like of the components described in this embodiment are not intended to limit the scope of the present invention thereto, but are merely examples, unless otherwise specified. Not too much.

【0015】図1は、本発明の実施例に係る潛熱蓄熱装
置をブラインの循環回路に組込んだ冷凍システムを示す
概略図で、その構成を簡単に説明するに、11は動力源
により駆動される圧縮機で、この圧縮機11の吐出側に
凝縮器12、及び膨脹弁13を介して蒸発器14が接続
され、該蒸発器14よりの蒸発冷媒を圧縮機11で再圧
縮する冷凍閉サイクル10が形成されている。そして前
記蒸発器14内にはブラインの循環回路20をなすコイ
ル状の熱交換器21が内挿されており、該熱交換器2
1、負荷側熱交換器22、蓄熱槽23及びポンプ24に
よりブラインの循環回路20を構成する。又25はブラ
インのバイパス路で、例えば夜間に前記冷凍サイクル1
0にて前記蓄熱槽23に潛熱を蓄熱した後、昼間負荷運
転時に前記バイパス路25に切換えて、電力コストの節
減を行なう事が出来る。又前記蓄熱槽23には無機塩の
三成分共晶体からなる潛熱蓄熱剤1を封入したカプセル
2が充填され、負荷側熱交換器22で熱交換したブライ
ンが前記蓄熱槽23上方より投入され、前記カプセル2
と熱交換を行なった後、ポンプ24及びバイパス路25
より負荷側熱交換器22側に送られる。
FIG. 1 is a schematic view showing a refrigerating system in which a heat storage device for heat storage according to an embodiment of the present invention is incorporated in a circulation circuit of brine. To briefly explain the structure, 11 is driven by a power source. In this compressor, a discharge side of the compressor 11 is connected to an evaporator 14 via a condenser 12 and an expansion valve 13, and a refrigerating closed cycle in which the refrigerant evaporated from the evaporator 14 is recompressed by the compressor 11. 10 are formed. A coil-shaped heat exchanger 21 forming a brine circulation circuit 20 is inserted in the evaporator 14, and the heat exchanger 2
1, the load side heat exchanger 22, the heat storage tank 23, and the pump 24 constitute a brine circulation circuit 20. Further, 25 is a bypass path for brine, for example, the refrigeration cycle 1 at night.
After storing the heat in the heat storage tank 23 at 0, the power can be saved by switching to the bypass path 25 during the daytime load operation. Further, the heat storage tank 23 is filled with a capsule 2 enclosing a heat storage agent 1 made of a ternary eutectic of an inorganic salt, and brine heat-exchanged by a load side heat exchanger 22 is introduced from above the heat storage tank 23. The capsule 2
After exchanging heat with the pump 24 and the bypass 25
It is sent to the load side heat exchanger 22 side.

【0016】さて前記カプセル2に封入される潛熱蓄熱
剤15は、水と2種類の無機塩、硝酸カリウム(KNO3
と硝酸ナトリウム(NaNO3)とからなる前記3成分系で
あり、その特性を表1及び図2に基づいて説明する。下
記表1は、硝酸カリウム(KNO3)−硝酸ナトリウム(Na
NO3)−水(H2O)の3成分系に関係する共晶体の濃度、
共晶点を示す特性表で、図2は、前記表1をグラフ化し
た前記3成分系の固液平衡図である。
The heat storage agent 15 contained in the capsule 2 is water and two kinds of inorganic salts, potassium nitrate (KNO 3 ).
And the sodium nitrate (NaNO 3 ) in the above three-component system, the characteristics of which will be described with reference to Table 1 and FIG. Table 1 below shows potassium nitrate (KNO 3 ) -sodium nitrate (Na
NO 3 ) -water (H 2 O) ternary system related eutectic concentration,
FIG. 2 is a solid-liquid equilibrium diagram of the ternary system in which the eutectic point is shown in FIG.

【0017】図2の固液平衡図には、稜線において各成
分の濃度を100重量%に設定し、垂直方向に温度を目
盛った三角柱に、前記3成分の状態を示している。点
A、点B、点Cは、硝酸カリウム、硝酸ナトリウム、及
び水の融点であり、点E1は硝酸カリウムと水との共晶
点で、点E2は硝酸カリウムと硝酸ナトリウムとの共晶
点で、またE3は硝酸ナトリウムと水との共晶点であ
る。これら各点の温度及び各成分の重量濃度は、表1に
示すものである。
In the solid-liquid equilibrium diagram of FIG. 2, the concentration of each component is set to 100% by weight on the ridgeline, and the state of the three components is shown in a triangular prism whose temperature is graduated in the vertical direction. Points A, B, and C are melting points of potassium nitrate, sodium nitrate, and water, point E 1 is a eutectic point of potassium nitrate and water, and point E 2 is a eutectic point of potassium nitrate and sodium nitrate. , And E 3 is the eutectic point of sodium nitrate and water. The temperatures at these points and the weight concentration of each component are shown in Table 1.

【0018】[0018]

【表1】 [Table 1]

【0019】尚、前記図2中、線AE1は、硝酸カリウ
ムの濃度範囲が8〜100重量%である2成分系水溶液
が冷却過程中に硝酸カリウム結晶が析出する温度を示す
固液相線であり、線CE1は、硝酸カリウムの濃度範囲
が0〜8重量%である水溶液が冷却過程中に氷が析出す
る温度を示す固液相線である。両固液相線と2元共晶点
1(−3.5℃)を通る等温線A1・E1・C1との間に
挟まれる温度領域AA11及びCC11にあっては、前
者領域では硝酸カリウム− 水溶液、後者領域では氷−
水溶液の固体、液体が共存する。ちなみに、前記共晶点
1以下に冷却されると、もはや水溶液は存在し得ず、
夫々硝酸カリウム−共晶体、氷−共晶体の固体混合物と
なる。
In FIG. 2, the line AE 1 is a solid-liquid phase line showing the temperature at which potassium nitrate crystals precipitate during the cooling process of a binary aqueous solution having a potassium nitrate concentration range of 8 to 100% by weight. The line CE 1 is a solid-liquid phase line showing the temperature at which ice precipitates during the cooling process of an aqueous solution in which the concentration range of potassium nitrate is 0 to 8% by weight. In the temperature regions AA 1 E 1 and CC 1 E 1 sandwiched between both solid-liquid phase lines and the isotherms A 1 · E 1 · C 1 passing through the binary eutectic point E 1 (-3.5 ° C) In the former region, potassium nitrate-water solution and in the latter region, ice-
Solids and liquids of aqueous solutions coexist. By the way, when cooled below the eutectic point E 1 , the aqueous solution can no longer exist,
It becomes a solid mixture of potassium nitrate-eutectic and ice-eutectic, respectively.

【0020】なお、前記固液相線以下の温度で共晶点以
上の温度にあっては、例えば濃度が[p/(p+q)]
×100重量%である硝酸カリウム水溶液Kを示す垂直
線KK'K1と前記共晶線A111と平行な温度線t'と
の交点K'は、その温度線t'に於いて該交点K'から水
の稜線迄の距離rと、該交点K'から前記固液相線迄の
距離sとの比は、固体と液体の重量割合を示す事は、公
知である。即ち、固液相線AE1は硝酸ナトリウムの溶
解度をも示している事になる。また、固液線CE1は、
共晶体の濃度より薄い硝酸カリウム水溶液における氷と
水溶液の重量比を示す。同様に、固液相線AE2、及び
固液相線BE2は、硝酸カリウム−硝酸ナトリウム成分
系に於いて、夫々硝酸カリウム−融解液、硝酸ナトリウ
ム−融解液の共存限界を、また、固液相線BE3、固液
相線CE3は、硝酸ナトリウム水溶液に於いて、夫々、
硝酸ナトリウム−水溶液、氷−水溶液が共存する限界を
示す温度−濃度線である。
When the temperature is below the solid-liquid phase line and above the eutectic point, the concentration is, for example, [p / (p + q)].
× 100% by weight the co-vertical line KK'K 1 showing a potassium nitrate aqueous solution K is Akirasen A 1 K 1 'intersection of the K' C 1 parallel to the temperature lines t are, in the temperature line t ' It is known that the ratio of the distance r from the intersection K ′ to the ridge of water and the distance s from the intersection K ′ to the solid-liquid phase line indicates the weight ratio of solid and liquid. That is, the solid-liquid phase line AE 1 also indicates the solubility of sodium nitrate. The solid-liquid line CE 1 is
The weight ratio of ice and aqueous solution in potassium nitrate aqueous solution thinner than the concentration of eutectic is shown. Similarly, the solid-liquid phase line AE 2 and the solid-liquid phase line BE 2 show the coexistence limits of potassium nitrate-melt solution and sodium nitrate-melt solution in the potassium nitrate-sodium nitrate component system, respectively. The line BE 3 and the solid-liquid phase line CE 3 are respectively for the sodium nitrate aqueous solution,
It is a temperature-concentration curve which shows the limit of coexistence of sodium nitrate-aqueous solution and ice-aqueous solution.

【0021】更に、線E1Eは、硝酸カリウム−硝酸ナ
トリウム−水の前記3成分系にあって、析出物−共晶体
1−水溶液の固液相線を示し、この内前記無機塩の濃
度が固液相線E1−E以上の場合は、前記析出物は無機
塩結晶であり、その逆に固液相線E1E以下の濃度の場
合は、前記析出物は氷である。同様に、線E3Eは、析
出物−共晶体E3−水溶液の固液相線を示し、該3成分
系中無機塩の濃度が固液相線E3E以上であれば、前記
析出物は無機塩結晶であり、反対に固液相線E3E以下
であれば、前記析出物は氷である。
Further, the line E 1 E represents the solid-liquid phase line of the precipitate-eutectic E 1 -aqueous solution in the above-mentioned three-component system of potassium nitrate-sodium nitrate-water, in which the concentration of the inorganic salt is Is greater than or equal to the solid-liquid phase line E 1 -E, the precipitate is an inorganic salt crystal, and conversely, when the concentration is less than or equal to the solid-liquid phase line E 1 E, the precipitate is ice. Similarly, line E3E the precipitates - eutectic E 3 - shows a solid-liquid phase line of the aqueous solution, if the 3-component concentration solid-liquid phase line of an inorganic salt E 3 E above, the precipitates If it is an inorganic salt crystal and, on the contrary, it is not more than the solid-liquidus line E 3 E, the precipitate is ice.

【0022】また、共晶点E以下の温度にあっては、析
出物−共晶体Eの固体混合物であって、前記析出物は3
成分系の濃度により、無機塩結晶、氷、共晶体E1、或
いは共晶体E2の何れかの混合物である。
When the temperature is lower than the eutectic point E, it is a solid mixture of precipitate-eutectic E, and the precipitate is 3
Depending on the concentration of the component system, it is a mixture of inorganic salt crystals, ice, eutectic crystal E 1 or eutectic crystal E 2 .

【0023】ここで、前記無機塩の水溶液は、厳密には
該水溶液の沸点(大気圧において凡そ100℃)以上に
は存在し得ない。従って、図2における、沸点を超える
固液相線は、想像線であり、高圧に於ては実現可能の線
であが、全体像を把握するために示したものである。
Here, strictly speaking, the aqueous solution of the inorganic salt cannot exist above the boiling point of the aqueous solution (about 100 ° C. at atmospheric pressure). Therefore, the solid-liquid phase line above the boiling point in FIG. 2 is an imaginary line, and although it is a line that can be realized at high pressure, it is shown to grasp the whole image.

【0024】さて、前記3成分共晶点Eは、図2に示す
ように、−22.8℃である。従って、前記3成分系の
組成が、該3成分系共晶点E、硝酸カリウム−水2成分
系の共晶点E1、硝酸ナトリウム−水2成分系の共晶点
3、及び氷点Cの各点を含む固液相曲面を超えない濃
度範囲であれば、冷却過程にあっては氷、及び共晶体E
1,E3を析出しながら、共晶点−22.8℃に至るまで
冷熱を蓄積可能である。更に、無機塩の濃度を、前記固
液相曲面内で適宜組合せる事で、冷却過程にあって最初
に固体析出物が形成される温度(以下凝固点と言う。)
を任意に設定することが出来る。潛熱蓄熱剤15として
前記3成分系を用いて、凝固点を−5℃とした実施例
1、さらに凝固点を−11℃とした実施例2、および凝
固点を−22℃とした実施例3の硝酸カリウムおよび硝
酸ナトリウムの水溶液の濃度及び特性を表2に示す。
The ternary eutectic point E is shown in FIG.
As such, it is −22.8 ° C. Therefore, the three-component system
The composition is the eutectic point E of the three-component system, potassium nitrate-water two-component
Eutectic point E of the system1, Sodium nitrate-water binary system eutectic point
E3, And the concentration not exceeding the solid-liquid phase curved surface including the freezing point C
Temperature range, ice and eutectic E during the cooling process
1, E3While eutectic point reaches eutectic point-22.8 ℃
Cold heat can be stored. Furthermore, the concentration of the inorganic salt is
In the cooling process, the
Temperature at which solid precipitates are formed (hereinafter referred to as the freezing point)
Can be set arbitrarily. As heat storage agent 15
Example in which the freezing point was −5 ° C. using the three-component system
1, Example 2 in which the freezing point was −11 ° C., and
Potassium nitrate and glass of Example 3 with a fixing point of -22 ° C
Table 2 shows the concentration and characteristics of the aqueous solution of sodium acid.

【0025】[0025]

【表2】 [Table 2]

【0026】次に本発明の作用を説明する。先ず、直径
30〜80mmの球形カプセル2内に例えば実施例1の
潛熱蓄熱剤を封入した後、該カプセル2を蓄熱槽23内
に積層充填する。そして前記ブラインに凝固点がー25
℃以下のブラインを用いて、前記カプセル2に冷熱を蓄
熱する場合、先ず冷凍サイクル10を作動させて、フロ
ンガスなどの1次冷媒を圧縮機11で圧縮し、吐出され
た1次冷媒を凝縮器12において冷却して凝縮・液化
し、次に、膨脹弁13を介して1次冷媒の圧力を下げ気
化されて、1次冷媒を蒸発器14に流入される。
Next, the operation of the present invention will be described. First, the spherical heat storage agent of Example 1 is filled in the spherical capsule 2 having a diameter of 30 to 80 mm, and then the capsule 2 is stacked and filled in the heat storage tank 23. And the brine has a freezing point of -25.
When cold heat is stored in the capsule 2 by using brine of ℃ or less, first, the refrigerating cycle 10 is operated to compress the primary refrigerant such as Freon gas by the compressor 11 and the discharged primary refrigerant to the condenser. In 12, the condensed refrigerant is condensed and liquefied, and then the pressure of the primary refrigerant is reduced and vaporized through the expansion valve 13, and the primary refrigerant is flowed into the evaporator 14.

【0027】この蒸発器14で1次冷媒は、コイル状熱
交換器22を循環するブラインと熱交換を行なって蒸発
させた後、再び前記圧縮機11の吸入側に流入する。一
方、前記ブラインは潛熱蓄熱槽23内でカプセル2と熱
交換して該カプセル2内の潛熱蓄熱剤15が冷却され、
氷点降下効果により0℃に成っても氷結せず、図2に示
す固液相曲面と交わる温度、即ち実施例1の濃度の於け
る凝固点−5℃に至って、最初に氷、続いて共晶体E1
を主成分とする固体を析出する。即ち、この潛熱蓄熱剤
15は、図3の凝固融解特性図に示すように略−5℃を
保持しながら冷熱を凝固潛熱量72kcal/g の形で吸収
・蓄積する。そして、3成分共晶点Eに至る前、IPF
(潛熱蓄熱剤水溶液中における氷・2成分共晶体の割
合、即ち、氷充填率)が30〜80%に達した時点で蓄
熱槽2316への蓄熱過程を終了させる。
In the evaporator 14, the primary refrigerant exchanges heat with the brine circulating in the coil heat exchanger 22 to evaporate it, and then flows into the suction side of the compressor 11 again. On the other hand, the brine exchanges heat with the capsule 2 in the heat storage tank 23 to cool the heat storage agent 15 in the capsule 2,
Due to the freezing point lowering effect, no freezing occurs even at 0 ° C., and the temperature at which the solid-liquid phase curved surface shown in FIG. 2 intersects, that is, the freezing point of −5 ° C. at the concentration of Example 1, first ice, and then eutectic E 1
A solid containing as a main component is deposited. That is, as shown in the solidification / melting characteristic diagram of FIG. 3, the heat storage agent 15 absorbs and accumulates cold heat in the form of the solidification heat quantity of 72 kcal / g while maintaining approximately −5 ° C. And before reaching the eutectic point E of three components, IPF
The heat storage process in the heat storage tank 2316 is terminated when the ratio of the ice / binary eutectic in the aqueous solution of the heat storage agent reaches 30 to 80%.

【0028】次に、例えば昼間負荷運転時に蓄熱槽23
より放熱を行なう場合、前記ブライン循環回路20をバ
イパス回路に切換えた後ポンプ24を作動させて、潛熱
蓄熱剤15の液体部および無機塩の析出物を蓄熱槽23
よりバイパス路17を介して負荷熱交換器2219に循
環させる。そして、この潛熱蓄熱剤15は、図3に示す
ように略−5℃を保持しながら潛熱量72kcal/g の融
解潛熱を放熱するために、前記熱交換器22の負荷側
は、−5℃の冷熱を受け取ることができる。また、潛熱
蓄熱剤1として実施例2をカプセル2に封入した場合、
前記実施例1と同様に蓄熱槽23へ蓄熱を行ない、冷熱
取出過程においては、−11℃を略一定に保持しながら
潛熱蓄熱剤1の潛熱量65kcal/g の潛熱を冷熱として
取出し、熱交換器22の負荷側は−11℃の冷熱を受け
取ることができる。
Next, for example, during the daytime load operation, the heat storage tank 23
For more heat dissipation, the brine circulation circuit 20 is switched to the bypass circuit and then the pump 24 is operated to collect the liquid portion of the heat storage agent 15 and the inorganic salt deposits in the heat storage tank 23.
It is circulated to the load heat exchanger 2219 via the bypass passage 17. As shown in FIG. 3, the heat storage agent 15 radiates melting heat having a heat quantity of 72 kcal / g while maintaining a temperature of approximately -5 DEG C. Therefore, the load side of the heat exchanger 22 has a temperature of -5 DEG C. Can receive cold heat. Further, when Example 2 is enclosed in the capsule 2 as the heat storage agent 1,
Heat was stored in the heat storage tank 23 in the same manner as in Example 1, and in the cold heat extraction process, the heat of the heat storage agent 1 having a heat transfer amount of 65 kcal / g was taken out as cold heat while keeping -11 ° C substantially constant, and heat exchange was performed. The load side of the vessel 22 can receive cold heat of -11 ° C.

【0029】このように前記構成によれば、蓄熱過程に
おいて、IPFを100%未満の例えば50%に達した
時点でこの蓄熱過程を終えているので、潛熱蓄熱剤15
の凝固融解特性において、IPFが増大して3元共融点
Eには達しなく、前記取出温度を確保しながら、実質的
に共融体E1の潛熱を冷熱として取り出すことができ
る。また、IPFを100%未満としているので、潛熱
蓄熱剤1は完全に凍結されずに少くとも一部は常に液状
であるから、カプセル2を介しても熱交換が容易であ
る。
As described above, according to the above configuration, the heat storage process is finished when the IPF reaches less than 100%, for example, 50% in the heat storage process.
In the solidification / melting characteristics of No. 3, the IPF increases and does not reach the ternary eutectic point E, and the heat of the eutectic body E 1 can be substantially taken out as cold heat while ensuring the above take-out temperature. Further, since the IPF is set to less than 100%, the heat storage agent 1 for heat storage is not completely frozen and at least a part of the heat storage agent is always in a liquid state. Therefore, heat exchange is easy even through the capsule 2.

【0030】例えば前記カプセル2内の潛熱蓄熱剤1に
2成分系の無機塩水溶液を用いた場合に比較して蓄熱槽
23出口側のポンプ24入口温度の変動を前記実施例と
比較した場合、その変動量は本実施例の方が1/3以下
に低減し、一定温度のブラインを精度よく得られる事が
確認できた。また、実施例3の潛熱蓄熱剤のIPFを1
00%まで蓄熱した場合では80%に達した時点で蓄熱
過程を終了させた場合において、放熱初期における熱変
動が大きく、特に負荷側の変動が大きい場合その精度よ
い追従が困難な事が確認された。尚、前記実施例におい
ては、3成分系の潛熱蓄熱剤について説明したが、4成
分系の潛熱蓄熱材15として、水と無機塩としてそれそ
れ共通イオンを持たない二つの塩としての硝酸ナトリウ
ム(NaNO3)と塩化アンモニウム(NH4Cl)とからなる水
溶液を用いることができる。
For example, when the fluctuation of the inlet temperature of the pump 24 on the outlet side of the heat storage tank 23 is compared with that of the above embodiment, as compared with the case of using a two-component inorganic salt aqueous solution for the heat storage agent 1 in the capsule 2, It was confirmed that the variation amount was reduced to 1/3 or less in this example, and that the brine at a constant temperature could be obtained with high accuracy. In addition, the IPF of the heat storage agent of Example 3 was set to 1
When the heat is stored up to 00%, when the heat storage process is terminated when it reaches 80%, it is confirmed that the heat fluctuation is large at the initial stage of heat radiation, and it is difficult to accurately follow it when the fluctuation on the load side is large. It was In addition, in the above-mentioned embodiment, the three-component heat storage agent was described, but as the four-component heat storage material 15, sodium nitrate as water and two salts which do not have common ions as inorganic salts ( An aqueous solution composed of NaNO 3 ) and ammonium chloride (NH 4 Cl) can be used.

【0031】無機塩が2種類のみ含んでいない水溶液
を、4成分として取扱うか、その理由を以下に述べる。
前記2種類の無機塩は、共通の陰イオンを持たないため
に、水溶液中において電離/結合し、前記以外の無機
塩、食塩(NaCl)、硝酸アンモニウム(NH4NO3)が形成する
可能性がある。前記4種類の無機塩の内、NaClは、xNa
NO 3+yNH4Cl−zNH4NO3で表す事ができるため、前記水
溶液は、NaNO3,NH4Cl,NH 4NO3、及び H2Oの4成分とし
て取扱う事になる。この場合前記4成分系においては、
水溶液中の硝酸ナトリウムの濃度が30重量%および塩
化アンモニウムの濃度が7重量%の場合、−29℃の共
融点が得られる。
Aqueous solution containing only two kinds of inorganic salts
Will be treated as four components, and the reason will be described below.
The two types of inorganic salts do not have a common anion
In addition, it is ionized / bonded in an aqueous solution and
Salt, salt (NaCl), ammonium nitrate (NHFourNO3) Forms
there is a possibility. Of the above four types of inorganic salts, NaCl is xNa
NO 3 + yNHFourCl-zNHFourNO3Can be represented by
The solution is NaNO3, NHFourCl, NH 4NO3, And H2As 4 components of O
Will be handled. In this case, in the four-component system,
The concentration of sodium nitrate in the aqueous solution is 30% by weight and salt
If the concentration of ammonium iodide is 7% by weight, the
A melting point is obtained.

【0032】[0032]

【発明の効果】以上記載のごとく本発明によれば、カプ
セル内で凝固した潛熱蓄熱剤の融解速度を早くする事に
より、カプセル内の蓄熱剤の伝熱特性を向上させ、これ
によりブラインの負荷追従能力と蓄熱効率の高効率化を
図る事が出来る。又本発明によれば温度冷熱を容易に且
つ精度よく取り出す事が出来る。等の種々の著効を有
す。
As described above, according to the present invention, the heat transfer property of the heat storage agent in the capsule is improved by increasing the melting rate of the heat storage agent in the capsule that solidifies in the capsule, and thus the load of the brine is increased. It is possible to improve the following ability and heat storage efficiency. Further, according to the present invention, temperature cold heat can be taken out easily and accurately. It has various remarkable effects.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に係る潛熱蓄熱装置を組込んだ
冷凍システムを示す概略図
FIG. 1 is a schematic diagram showing a refrigeration system incorporating a heat storage device according to an embodiment of the present invention.

【図2】カプセルに封入される潛熱蓄熱剤の3成分系の
固液相平衡図
FIG. 2 is a solid-liquid phase equilibrium diagram of the three-component system of the heat storage agent enclosed in capsules.

【符号の説明】[Explanation of symbols]

1 潛熱蓄熱剤 2 カプセル 23 蓄熱槽 1 heat storage agent 2 capsules 23 heat storage tank

───────────────────────────────────────────────────── フロントページの続き (72)発明者 柴田 宗一郎 東京都千代田区内幸町一丁目1番3号 東 京電力株式会社内 (72)発明者 嶋村 典行 東京都千代田区内幸町一丁目1番3号 東 京電力株式会社内 (72)発明者 川崎 成武 神奈川県伊勢原市八幡台一丁目12番6号 (72)発明者 笠原 敬介 東京都中野区白鷺三丁目6番11号 (72)発明者 佐久間 誠一 神奈川県川崎市多摩区菅仙谷二丁目12番14 号 (72)発明者 小松 富士男 東京都江東区牡丹二丁目13番1号 株式会 社前川製作所内 (72)発明者 石川 雅也 東京都江東区牡丹二丁目13番1号 株式会 社前川製作所内 (72)発明者 杉山 邦夫 東京都荒川区東尾久七丁目2番35号 旭電 化工業株式会社内 (72)発明者 増茂 光男 東京都荒川区東尾久七丁目2番35号 旭電 化工業株式会社内 (72)発明者 進藤 穣 東京都荒川区東尾久七丁目2番35号 旭電 化工業株式会社内 (72)発明者 川村 邦明 茨城県北相馬郡守谷町みずき野一丁目13番 8号 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Soichiro Shibata 1-3-1, Uchisaiwaicho, Chiyoda-ku, Tokyo Tokyo Electric Power Company (72) Inventor Noriyuki Shimamura 1-3-1, Uchiyuki-cho, Chiyoda-ku, Tokyo Within the Tokyo Electric Power Company (72) Inventor Naritake Kawasaki 1-12-6 Hachimandai, Isehara-shi, Kanagawa (72) Keisuke Kasahara 3-6-11 Shirasagi, Nakano-ku, Tokyo (72) Inventor Sakuma Seiichi, 12-12-14, Sugakuya, Tama-ku, Kawasaki-shi, Kanagawa Prefecture (72) Inventor Fujio Komatsu, 2-13-1, Botan, Koto-ku, Tokyo Maekawa Works Ltd. (72) Inventor Masaya Ishikawa, Botan, Koto-ku, Tokyo Maekawa Manufacturing Co., Ltd. 2-13-1 Kunio Sugiyama 72-35 Kunio Sugiyama 7-35 Higashiohisa Arakawa-ku Tokyo Asahi Denka Kogyo Co., Ltd. (72) Inventor Masashige Mitsuo 7-35, Higashiokyu, Arakawa-ku, Tokyo Asahi Denka Kogyo Co., Ltd. (72) Inventor Minoru Shindo 7-35, Higashiohisa, Arakawa-ku, Tokyo Asahi Denka Kogyo Co., Ltd. (72) Inventor Kawamura Kuniaki 1-13-8 Mizukino, Moriya-cho, Kitasoma-gun, Ibaraki Prefecture

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 潛熱蓄熱剤を封入したカプセルを充填し
た蓄熱槽を冷却媒体の循環回路の一部に設けてなる潛熱
蓄熱装置において、 前記カプセル内に、少くとも3以上のN(N≧3)成分
系として(N−1)種類の無機塩を水に溶解して得られ
る潛熱蓄熱剤を封入すると共に、 該水溶液に溶解される夫々の無機塩の濃度を、氷点及び
前記無機塩と水との共晶点、及びN成分共晶点に対応す
る各成分濃度範囲を超えない濃度領域に設定した事を特
徴とする潛熱蓄熱装置。
1. A heat storage apparatus in which a heat storage tank filled with a capsule containing a heat storage agent is provided in a part of a circulation circuit of a cooling medium, wherein at least 3 or more N (N ≧ 3) is provided in the capsule. ) As a component system, a heat storage agent obtained by dissolving (N-1) kinds of inorganic salts in water is enclosed, and the concentration of each inorganic salt dissolved in the aqueous solution is adjusted to the freezing point and the inorganic salts and water. And a eutectic point of N and a eutectic point of N component.
【請求項2】 前記水溶液中における各無機塩の濃度
を、前記水と各無機塩との共晶点とN元共晶点とを結ぶ
共晶線の濃度の50〜98%の範囲に設定した請求項1
記載の潛熱蓄熱装置
2. The concentration of each inorganic salt in the aqueous solution is set within a range of 50 to 98% of the concentration of the eutectic line connecting the eutectic point of the water and each inorganic salt and the N-element eutectic point. Claim 1
Heat storage device described
【請求項3】 前記水溶液中における少なくとも一の前
記無機塩の含有量を、該一の無機塩と水との共晶体の濃
度の60〜98%の範囲に設定し、且つ前記水溶液中の
無機塩の全含有量を、前記潛熱蓄熱剤のN成分共晶体の
濃度以下に設定した請求項1記載の潛熱蓄熱装置
3. The content of the at least one inorganic salt in the aqueous solution is set to a range of 60 to 98% of the concentration of the eutectic crystal of the one inorganic salt and water, and the inorganic salt in the aqueous solution is set. The heat storage device according to claim 1, wherein the total content of salt is set to be equal to or lower than the concentration of the N-component eutectic of the heat storage agent.
JP4219653A 1992-07-28 1992-07-28 Latent heat accumulator Pending JPH0650686A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4219653A JPH0650686A (en) 1992-07-28 1992-07-28 Latent heat accumulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4219653A JPH0650686A (en) 1992-07-28 1992-07-28 Latent heat accumulator

Publications (1)

Publication Number Publication Date
JPH0650686A true JPH0650686A (en) 1994-02-25

Family

ID=16738881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4219653A Pending JPH0650686A (en) 1992-07-28 1992-07-28 Latent heat accumulator

Country Status (1)

Country Link
JP (1) JPH0650686A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007105566A (en) * 2005-10-11 2007-04-26 Takuma Co Ltd System, and method for freezing and thawing
JP2009186056A (en) * 2008-02-04 2009-08-20 Honda Motor Co Ltd Heat storage container
US20180105728A1 (en) * 2015-06-19 2018-04-19 Kaneka Corporation Cold storage material composition, cold storage material, and transport container
WO2018180506A1 (en) * 2017-03-29 2018-10-04 株式会社カネカ Cold storage material composition, method for using cold storage material composition, cold storage material and transport container
GB2595661A (en) * 2020-06-01 2021-12-08 Hubbard Products Ltd Phase change material screening
US11326084B2 (en) 2018-03-06 2022-05-10 Kaneka Corporation Cold storage material composition and use thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61208494A (en) * 1985-03-14 1986-09-16 Mitsubishi Corp Latent heat utilizing heat storage device
JPH02214793A (en) * 1989-02-15 1990-08-27 Asahi Denka Kogyo Kk Latent thermal energy storing agent composition

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61208494A (en) * 1985-03-14 1986-09-16 Mitsubishi Corp Latent heat utilizing heat storage device
JPH02214793A (en) * 1989-02-15 1990-08-27 Asahi Denka Kogyo Kk Latent thermal energy storing agent composition

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007105566A (en) * 2005-10-11 2007-04-26 Takuma Co Ltd System, and method for freezing and thawing
JP2009186056A (en) * 2008-02-04 2009-08-20 Honda Motor Co Ltd Heat storage container
US20180105728A1 (en) * 2015-06-19 2018-04-19 Kaneka Corporation Cold storage material composition, cold storage material, and transport container
US10717910B2 (en) * 2015-06-19 2020-07-21 Kaneka Corporation Cold storage material composition, cold storage material, and transport container
WO2018180506A1 (en) * 2017-03-29 2018-10-04 株式会社カネカ Cold storage material composition, method for using cold storage material composition, cold storage material and transport container
JPWO2018180506A1 (en) * 2017-03-29 2019-11-07 株式会社カネカ Cold storage material composition, method of using cold storage material composition, cold storage material and transport container
US11084963B2 (en) 2017-03-29 2021-08-10 Kaneka Corporation Cold storage material composition, method for using cold storage material composition, cold storage material, and transport container
US11326084B2 (en) 2018-03-06 2022-05-10 Kaneka Corporation Cold storage material composition and use thereof
GB2595661A (en) * 2020-06-01 2021-12-08 Hubbard Products Ltd Phase change material screening
WO2021245403A1 (en) * 2020-06-01 2021-12-09 Hubbard Products Limited Phase change material screening
GB2595661B (en) * 2020-06-01 2022-06-29 Hubbard Products Ltd Phase change material screening

Similar Documents

Publication Publication Date Title
JP2871257B2 (en) Latent heat storage device and latent heat storage material used in the device
US5065598A (en) Ice thermal storage apparatus
JPH0650686A (en) Latent heat accumulator
EP3864106B1 (en) Metal nitrate based compositions for use as phase change materials
CN1362462A (en) Cold accumulating agent
JP3407658B2 (en) Hydrate production method and apparatus
JP2875903B2 (en) Latent heat storage method
JPH0726250A (en) Cold storage material
JPH0399177A (en) Ice heat accumulating device
JPH06185762A (en) Cooling or heating method
JPH0726252A (en) Cold storage material
JP2001107035A (en) Heat accumulating material and heat accumulating device for air conditioner
JPH01159572A (en) Cold accumulation agent
US6849197B2 (en) Ice thermal storage medium
JP3723051B2 (en) Manufacturing method of heat storage material
JPS60196558A (en) Air-cooling and refrigerating device
JP2001192650A (en) Cold storage material
JPS63273787A (en) Capsule for heat accumulating material
JPH0725571Y2 (en) Absorption refrigerator impurity removal device
JPH0229595A (en) Cold heat accumulating device
JP3641763B2 (en) Solid corrosion inhibitor for absorption refrigerator
JPS58150432A (en) Absorbent composition for absorptive cooling and heating machine
JPH0658686A (en) Latent heat accumulating device
JP2562677Y2 (en) Vacuum cooling device with regenerator
JPS5942238B2 (en) Cold storage heat material