JPS5942238B2 - Cold storage heat material - Google Patents

Cold storage heat material

Info

Publication number
JPS5942238B2
JPS5942238B2 JP55165293A JP16529380A JPS5942238B2 JP S5942238 B2 JPS5942238 B2 JP S5942238B2 JP 55165293 A JP55165293 A JP 55165293A JP 16529380 A JP16529380 A JP 16529380A JP S5942238 B2 JPS5942238 B2 JP S5942238B2
Authority
JP
Japan
Prior art keywords
cold storage
heat
weight
dihydrate
storage heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55165293A
Other languages
Japanese (ja)
Other versions
JPS5790597A (en
Inventor
秀夫 木村
弘 磯崎
八洲男 小林
靖徳 西森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP55165293A priority Critical patent/JPS5942238B2/en
Publication of JPS5790597A publication Critical patent/JPS5790597A/en
Publication of JPS5942238B2 publication Critical patent/JPS5942238B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Description

【発明の詳細な説明】 この発明は蓄冷熱式冷暖房装置に用いる蓄冷熱材に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a cold storage material used in a cold storage heating and cooling system.

蓄冷熱式冷暖房装置としては、ヒートポンプ式冷暖房装
置の空調空気流路内に蓄冷熱槽を設け、空気により蓄冷
熱材と熱交換する方式と、冷媒(通常フレオン)流路を
蓄冷熱槽に導き、冷媒により蓄冷熱材と熱交換する方式
があり、前者の方式は米国で研究がさかんで実用化され
た例もある。
There are two methods of cold storage type air conditioning and heating equipment: a method in which a cold storage heat tank is installed in the conditioned air flow path of a heat pump type air conditioning system, and heat is exchanged with the cold storage heat material using air; There is a method of exchanging heat with a cold heat storage material using a refrigerant, and the former method has been extensively researched in the United States and has even been put into practical use.

本発明は、後者の方式のシステムに用いられる蓄冷熱材
に関するものである。後者のシステムを第1図を用いて
説明する。
The present invention relates to a cold storage heat material used in the latter type of system. The latter system will be explained using FIG.

第1図は蓄冷熱槽を冷媒回路中に組込んだ蓄冷熱式冷暖
房装置の要部説明図で、1は圧縮機、2は冷媒通路管、
3は室外熱交換器、4、5は膨脹弁、6は蓄冷熱槽で内
部には蓄冷熱材□が充填されている。8は室内熱交換器
、9〜14はパルプである。
Figure 1 is an explanatory diagram of the main parts of a cold storage heat type air conditioning system that incorporates a cold storage heat tank into the refrigerant circuit, in which 1 is a compressor, 2 is a refrigerant passage pipe,
3 is an outdoor heat exchanger, 4 and 5 are expansion valves, and 6 is a cold storage heat tank, the inside of which is filled with a cold storage heat material □. 8 is an indoor heat exchanger, and 9 to 14 are pulps.

この方式による蓄冷、蓄熱、冷房および暖房運転は次の
ような機構で行なわれる。(ハ 蓄冷運転:パルプ1口
、11、13及び14を閉状態として、圧縮機1から吐
出された冷媒ガスは、冷媒通路管2を介して室外熱交換
器3に至り、ここで凝縮された後パルプ9、膨脹弁4を
経て蓄冷熱槽6に至り、ここで蒸発し周囲の蓄冷熱材7
より熱を奪取する。
Cold storage, heat storage, cooling, and heating operations using this method are performed by the following mechanism. (c) Cold storage operation: With pulp 1 mouth, 11, 13, and 14 closed, the refrigerant gas discharged from the compressor 1 reaches the outdoor heat exchanger 3 via the refrigerant passage pipe 2, where it is condensed. After passing through the pulp 9 and the expansion valve 4, it reaches the cold storage heat tank 6, where it is evaporated and the surrounding cold storage heat material 7
Capture more heat.

この場合、蓄冷熱槽6内の蓄冷熱材□は常温で液相であ
るが、冷媒に熱を奪取されつつ徐々に冷やされ凝固し始
め、ついには完全に凝固し固相となる。一方、蒸発した
冷媒は、パルプ12を経て圧縮機1の吸収側に返戻され
る。(2)蓄冷源利用冷房運転:パルプ9、11、12
及び13を閉状態として、圧縮機1から吐出された冷媒
ガスは、冷媒通路管2を介して室外熱交換器3に至り、
ここで凝縮された後パルプ10を経て蓄冷熱槽6に至り
、ここで蓄冷熱材7に熱を放出する。
In this case, the cold storage heat material □ in the cold storage heat storage tank 6 is in a liquid phase at room temperature, but as the refrigerant absorbs heat, it gradually cools down and begins to solidify, and finally solidifies completely and becomes a solid phase. On the other hand, the evaporated refrigerant is returned to the absorption side of the compressor 1 via the pulp 12. (2) Cooling operation using cold storage source: Pulp 9, 11, 12
and 13 are closed, the refrigerant gas discharged from the compressor 1 reaches the outdoor heat exchanger 3 via the refrigerant passage pipe 2,
After being condensed here, it passes through the pulp 10 and reaches the cold storage heat storage tank 6, where it releases heat to the cold storage heat material 7.

この場合蓄冷熱材1は、前記(1)蓄冷運転により固・
液共存状態にある。冷媒より熱を奪取する蓄冷熱材1は
、徐々に加温され包晶点温度付近で溶解し始めついには
完全に液相となる。液化した冷媒は、膨脹弁5、パルプ
14を経て室内熱交換器8に至り、ここで室内の熱を奪
う、即ち室内を冷房して蒸発した冷媒は圧縮機1の吸人
側に返戻される。(3)蓄熱運転:バルプ10,11,
13及び14を閉状態として、圧縮機1から吐出された
冷媒ガスは、冷媒通路管2aを介して、バルプ12を経
て蓄冷熱槽6に至り、ここで凝縮し固・液共存状態にあ
る蓄冷熱材7に熱を放出する。
In this case, the cold storage heat material 1 becomes solid and
It is in a state of liquid coexistence. The cold storage heat material 1, which absorbs heat from the refrigerant, gradually warms up and begins to melt near the peritectic point temperature, and finally becomes completely liquid. The liquefied refrigerant passes through the expansion valve 5 and the pulp 14 and reaches the indoor heat exchanger 8, where it takes away the heat in the room, that is, cools the room, and the evaporated refrigerant is returned to the suction side of the compressor 1. . (3) Heat storage operation: valves 10, 11,
13 and 14 are closed, the refrigerant gas discharged from the compressor 1 passes through the refrigerant passage pipe 2a, passes through the valve 12, and reaches the cold storage heat tank 6, where it is condensed and cooled in a solid-liquid coexistence state. Heat is released to the heat material 7.

この場合、蓄冷熱材7はこの熱を奪取し蓄熱し液相状態
になる。一方、凝縮した冷媒は膨脹弁4、バルプ9を経
て室外熱交換器3に至り、ここで蒸発し外気より熱を奪
取した冷媒は圧縮機1に返る。(4)蓄熱源利用暖房運
転:バルプ9,10,12及び13を閉状態として、圧
縮機1から吐出された冷媒ガスは、冷媒通路管2aを介
して室内熱交換器8に至り、ここで室内空気と熱交換し
室内を暖房せしめる。
In this case, the cold storage heat material 7 absorbs this heat, stores it, and enters a liquid phase state. On the other hand, the condensed refrigerant passes through the expansion valve 4 and the valve 9 and reaches the outdoor heat exchanger 3, where the refrigerant evaporates and absorbs heat from the outside air and returns to the compressor 1. (4) Heating operation using heat storage source: With the valves 9, 10, 12, and 13 closed, the refrigerant gas discharged from the compressor 1 reaches the indoor heat exchanger 8 via the refrigerant passage pipe 2a, where it is heated. It exchanges heat with indoor air and heats the room.

凝縮した冷媒は、バルプ14、膨脹弁5を経て蓄冷熱槽
6に至り、ここで蓄熱運転により蓄熱された蓄冷熱材7
より熱を奪取して蒸発した冷媒はバルプ11を経て圧縮
機1に返戻される。該システムに用いられる蓄冷熱材で
、これまでに実用化ないし研究報告されているのは次の
様な物質があるが、各々次の様な欠点を有している。
The condensed refrigerant passes through the valve 14 and the expansion valve 5 and reaches the cold storage heat storage tank 6, where it is transferred to the cold storage heat storage material 7 that has been stored with heat during the heat storage operation.
The refrigerant that has absorbed more heat and evaporated is returned to the compressor 1 via the valve 11. The following materials have been put into practical use or have been reported in research as cold heat storage materials used in such systems, but each of them has the following drawbacks.

(1)水:実用化されてはいるが、暖房用としては液体
状態の顕熱しか利用出来ないので、蓄冷熱槽が大容量と
なる一方、冷房用としては相変化温度が低すぎ効率の良
いヒートポンプが期特出来ない。(2)テトラハイドロ
フラン水和物:冷房専用として実用化されている。
(1) Water: Although it has been put into practical use, only sensible heat in the liquid state can be used for heating purposes, so the cold storage tank has a large capacity, but the phase change temperature is too low for cooling purposes, resulting in low efficiency. A good heat pump cannot be found at any time. (2) Tetrahydrofuran hydrate: It is put into practical use exclusively for cooling.

融点が4℃と低く暖房用には使えない。又蒸気圧が大で
可燃性であるから完全密閉の必要がある。(3)パラフ
イン(Cl4〜Cl6):体積当りの潜熱が25〜30
Kca1/lと小さく、蓄冷熱槽が大容量化する。
It has a low melting point of 4°C and cannot be used for heating. Also, it has a high vapor pressure and is flammable, so it must be completely sealed. (3) Paraffin (Cl4-Cl6): latent heat per volume is 25-30
Kca is as small as 1/l, and the cold storage heat tank has a large capacity.

又凝固時の収縮が大きく熱交換性に問題がある。(4)
無機塩水和物:ー般に無機塩の水和エンタルピー値は大
きいので、これを利用すべく硫酸塩・チオ硫酸塩・リン
酸塩・塩化物等の水和物の研究が盛んであるが、無機塩
水和物は一般に過冷却度が大きいため、容量の大きいコ
ンプレツサ一が必要となり省エネルギーの観点より不利
である。
Furthermore, there is a problem in heat exchangeability due to large shrinkage during solidification. (4)
Inorganic salt hydrates: In general, inorganic salts have a large hydration enthalpy value, so research into hydrates such as sulfates, thiosulfates, phosphates, and chlorides is active in order to take advantage of this. Since inorganic salt hydrates generally have a high degree of supercooling, a compressor with a large capacity is required, which is disadvantageous from the viewpoint of energy conservation.

更に相分離現像を起すため熱交換効率が悪く、しかも蓄
冷熱温度と採冷熱温度の振幅が狭い条件では蓄冷熱量の
再現性が得られない。又その多くは熱交材金属に対する
腐食性が大きい。本発明者等は上記のような欠点のない
蓄冷熱式空調システム用蓄冷熱材を提供すべく、種々の
物質について、水との共存系の状態図、水和エンタルピ
ー値、及びその物理、化学的性質を併せ検討した結果、
過冷却度が小さく、しかも相分離を起こさないギ酸ナト
リウム(HCOONa)と水の二成分系にHCOONa
より水に対する親和性の小なる物質、例えばNaNO3
を第3成分として加えた三成分系が、当該システムの蓄
冷熱材として最適であることを見出し本発明に到達した
ものである。
Furthermore, since phase separation development occurs, heat exchange efficiency is poor, and reproducibility of the amount of cold storage heat cannot be obtained under conditions where the amplitude of the cold storage heat temperature and the cold collection heat temperature is narrow. Moreover, most of them are highly corrosive to heat exchanger metals. In order to provide a cold storage material for a cold storage air conditioning system that does not have the above-mentioned drawbacks, the present inventors investigated the phase diagram of coexistence systems with water, hydration enthalpy values, and their physical and chemical properties for various substances. As a result of considering the characteristics of
HCOONa is added to the binary system of sodium formate (HCOONa) and water, which has a small degree of supercooling and does not cause phase separation.
Substances with a lower affinity for water, such as NaNO3
The present invention was achieved by discovering that a three-component system containing the following as the third component is optimal as a cold storage heat material for the system.

すなわち、本発明は、蓄冷熱式空調システム用蓄冷熱材
として、40.0〜50.0重量%HCOONa水溶液
85〜90重量%と、HCOONaより水に対する親和
性の小なる物質15〜10重量%との混合物を用いると
ころに特徴を有するものである。
That is, the present invention uses a 40.0 to 50.0% by weight HCOONa aqueous solution of 85 to 90% by weight and a substance having a lower affinity for water than HCOONa by 15 to 10% by weight as a cold storage material for a cold storage heat type air conditioning system. It is characterized by the use of a mixture of

本発明蓄冷熱材として、HCOONa44〜45重量%
−水55〜56重量%からなるギ酸ナトリウム水溶液、
またはHCOONa:水−1:1(重量)のもの85〜
90重量%−NaNO3lO〜15重量%、殊にHCO
ONa:水:NaNO3−45:45:10重量%のも
のが好適である。
As the cold storage heat material of the present invention, 44 to 45% by weight of HCOONa
- an aqueous sodium formate solution consisting of 55-56% by weight of water;
Or HCOONa:water-1:1 (weight) 85~
90% by weight - NaNO31O to 15% by weight, especially HCO
ONa:water:NaNO3-45:45:10% by weight is preferred.

先ず、ギ酸ナトリウム−水2成分系の挙動について、第
2図の2成分系相変化概略図に基いて説明する。
First, the behavior of the sodium formate-water two-component system will be explained based on the schematic phase change diagram of the two-component system shown in FIG.

夏湯気温30′C位とすると、例えば50重量%HCO
ONa水溶液では熱交換して温度を下げて行くと、この
濃度は25℃の飽和濃度であるから25℃で2水和物の
析出が開始するはずであるが、実際には温度が更に下が
つて行つても2水和物は析出してこず、液は過飽和状態
を保つ(第2図の破線部)。
If the summer bath temperature is about 30'C, for example, 50% by weight HCO
In an ONa aqueous solution, when the temperature is lowered by heat exchange, precipitation of dihydrate should start at 25°C since this concentration is the saturated concentration at 25°C, but in reality, the temperature is lowered further. The dihydrate does not precipitate even if the solution is heated to a higher temperature, and the liquid remains supersaturated (as shown by the broken line in Figure 2).

これを過冷却現象Aという。更に温度が低下すると結晶
核の発生に伴ない固相の析出が開始する。固相析出に伴
なう発熱により蓄冷熱材の液組成と温度の関係は第2図
の様に固・液相平衡曲線上にもどる。更に冷却を続ける
と蓄冷熱材は温度の低下に伴ない2水和物Bを析出(2
水和物1yが析出すると液相中のギ酸ナトリウムが0.
667、水が0.357消費される)し、その液相組成
は平衡曲線に沿つて下がつてくる。液相組成が44.2
重量%に至ると、その後は3水和物Cが析出する。この
様に結晶型が変わる点を包晶点という。又、この包晶点
で析出結晶型が変わらず2水和物析出線の延長上の方へ
平衡関係が動いて行つてしまうこともありこの場合ある
程度動いた後に平衡関係は3水和物析出線の方へ移るが
、この2水和物が過剰に析出した分だけ3水和物の析出
量は減少する。今蓄冷熱材の温度を5℃まで下げてやつ
たとすると蓄冷熱材中には約33重量%のHCOONa
水溶液と析出した2水和及び3水和物結晶が存在してく
る。ここから蓄冷熱材の温度を上昇させてやる時の融解
挙動Dは、ゆつくり昇温(溶媒和速度と昇温速度を一致
させる)させれば第3図Aのように相平衡は同じ途を通
るが、凝集エネルギーの大きな物質はその物質の融点以
下の温度では溶媒和速度が遅く、例えば3水和物は17
℃までは固相のまま保持されるから第3図Bのような相
平衡移動となる。
This is called supercooling phenomenon A. When the temperature further decreases, precipitation of a solid phase begins as crystal nuclei are generated. Due to the heat generated due to solid phase precipitation, the relationship between the liquid composition and temperature of the cold storage material returns to the solid-liquid phase equilibrium curve as shown in FIG. As cooling continues, the cold heat storage material precipitates dihydrate B (2
When hydrate 1y precipitates, sodium formate in the liquid phase becomes 0.
667 and 0.357 water is consumed), and the liquid phase composition decreases along the equilibrium curve. Liquid phase composition is 44.2
When the weight percentage is reached, trihydrate C precipitates thereafter. The point at which the crystal type changes in this way is called the peritectic point. Also, at this peritectic point, the precipitated crystal type may not change and the equilibrium relationship may move toward the extension of the dihydrate precipitation line; in this case, after a certain amount of movement, the equilibrium relationship changes to trihydrate precipitation. Moving toward the line, the amount of trihydrate precipitated decreases by the amount of dihydrate precipitated in excess. If we now lower the temperature of the cold storage heat material to 5℃, there will be approximately 33% by weight of HCOONa in the cold storage heat material.
There will be an aqueous solution and precipitated dihydrate and trihydrate crystals. From here, the melting behavior D when the temperature of the cold storage heat material is increased is that if the temperature is increased slowly (by matching the solvation rate and the temperature increase rate), the phase equilibrium will reach the same level as shown in Figure 3A. However, substances with large cohesive energy have a slow solvation rate at temperatures below the melting point of the substance; for example, the trihydrate has a 17
Since it remains in a solid phase up to ℃, a phase equilibrium movement occurs as shown in FIG. 3B.

したがつて、たとえば46重量%組成の飽和温度は約2
0℃であるが、25℃までもつて行かないと析出した2
水和物は溶けにくいし、40重量%組成の飽和温度は約
13℃であるが、17℃までもつて行かないと3水和物
は溶けにくい。上記のようにギ酸ナトリウム水和物は、
温度上昇に対して相平衡の移動が極めて遅く水和物結晶
は不飽和溶液に接しつつも殆んど溶けず6包晶点温度付
近で一気に溶解する。即ち融点を有する様な挙動を示す
ので、ギ酸ナトリウム3水和物は17℃付近まで、又ギ
酸ナトリウム2水和物は25℃付近まで溶けずに固相の
まXである。従つて使用温度範囲(6ず〜25℃)の上
限付近では、蓄冷熱材固相の熱伝導率が極めて低いため
ギ酸ナトリウム2水和物を完全に溶解させることは困難
となるので、融解挙動だけに着目すれば、固相としてギ
酸ナトリウム3水和物のみが析出するギ酸ナトリウム4
4,2重量%の組成、換言すれば17℃における飽和組
成を用いた方が再現される蓄エネルギー値は高くなる。
すなわち、材料17に着目すると44.2重量%以上の
組成を用いれば液相組成が44.2重量%となるまでは
2水和物が析出する。例えは50屯量%の組成を用いれ
ば液相組成が50重量%HCOONa→44.2重量%
HCOONaとなる間に材料17当り0.2747の水
和物が析出するから残りは0.7267となる2水和物
が溶け残り、3水和物のみが溶けるとすれば初めから4
4.2重量%組成を用いれば有効に働く材料は1クであ
るのに50重量%組成を用いれば0.7267しか有効
に働かないということになる。一方、凝固に際しての過
冷却はこの組成を境に大きく異なる。
Therefore, for example, the saturation temperature for a composition of 46% by weight is approximately 2
Although the temperature was 0°C, 2 precipitated unless the temperature was raised to 25°C.
Hydrates are difficult to dissolve, and the saturation temperature for a 40% composition is about 13°C, but trihydrates are difficult to dissolve unless the temperature reaches 17°C. As mentioned above, sodium formate hydrate is
The phase equilibrium shifts very slowly with respect to temperature rise, and the hydrate crystal hardly dissolves even when it comes into contact with an unsaturated solution, and dissolves all at once at around the hexaperitectic point temperature. That is, they behave as if they have a melting point, so sodium formate trihydrate does not melt until around 17°C, and sodium formate dihydrate remains in a solid phase until around 25°C. Therefore, near the upper limit of the operating temperature range (6°C to 25°C), the thermal conductivity of the solid phase of the cold storage heat material is extremely low, making it difficult to completely dissolve sodium formate dihydrate, so the melting behavior If we focus only on sodium formate 4, only sodium formate trihydrate precipitates as a solid phase.
The reproduced energy storage value is higher when using a composition of 4.2% by weight, in other words, a saturated composition at 17°C.
That is, focusing on material 17, if a composition of 44.2% by weight or more is used, a dihydrate will precipitate until the liquid phase composition reaches 44.2% by weight. For example, if a composition of 50 tonne weight is used, the liquid phase composition will be 50 wt% HCOONa → 44.2 wt%
During the formation of HCOONa, 0.2747 hydrates per 17 of the material precipitate, so the remaining amount is 0.7267.If the dihydrate remains undissolved and only the trihydrate dissolves, from the beginning 4
If a composition of 4.2% by weight is used, 1 part of the material will work effectively, but if a composition of 50% by weight is used, only 0.7267 parts will work effectively. On the other hand, supercooling during solidification differs greatly depending on this composition.

これは第2図から明らかな様に結晶核の水和数が異なる
からである。ギ酸ナトリウム44.2重量%より高い組
成を用いると初晶として2水和物が析出するので、過冷
却が小さく使用温度範囲の下限で確実に凝固するが、2
水和物の析出により相平衡が2水和物と3水和物の包晶
点に達した後に2水和物の析出が続行する傾向があり、
その結果2水和物が過剰に析出し3水和物の析出量が減
少することにより蓄エネルギー量が減少する。この過剰
に生成した2水和物は沈降して強固な固相を形成するが
、熱伝導度が低いので熱交換面を直接固相に接触させる
か、或は固相が粉砕される程の強力な攪拌を行なう等の
措置を構じないと使用温度範囲上限で溶け残り相分離E
を起す。逆にギ酸ナトリウム44.2重量%以下の組成
を用いる場合には、核材例えばギ酸ナトリウム無水物等
の添加が必要である。2水和物が初晶として析出する配
合組成と3水和物が初晶として析出する配合組成との過
冷却度の相異は、両初晶の凝集エネルギーの違いによる
結晶表面の溶液による濡れ性の相違或は融解状態での両
結晶の特性の相違に基づく分子集合体の残存状態の相異
等に起因していると考えられる。
This is because, as is clear from FIG. 2, the hydration numbers of the crystal nuclei are different. If a composition higher than 44.2% by weight of sodium formate is used, dihydrate will precipitate as primary crystals, resulting in less supercooling and solidification at the lower limit of the operating temperature range;
After the phase equilibrium reaches the peritectic point of dihydrate and trihydrate due to hydrate precipitation, dihydrate precipitation tends to continue;
As a result, the dihydrate precipitates excessively and the amount of trihydrate precipitated decreases, thereby reducing the amount of stored energy. This excessively produced dihydrate settles and forms a strong solid phase, but since its thermal conductivity is low, the heat exchange surface must be brought into direct contact with the solid phase, or the solid phase must be brought into contact with the solid phase to the extent that the solid phase is crushed. If measures such as strong stirring are not taken, undissolved phase separation will occur at the upper limit of the operating temperature range.
wake up Conversely, when using a composition of 44.2% by weight or less of sodium formate, it is necessary to add a core material such as sodium formate anhydride. The difference in the degree of supercooling between the formulation in which the dihydrate precipitates as a primary crystal and the formulation in which the trihydrate precipitates as a primary crystal is due to the wetting of the crystal surface by the solution due to the difference in cohesive energy of both primary crystals. This is thought to be due to the difference in the remaining state of the molecular aggregate based on the difference in properties or the difference in the properties of both crystals in the molten state.

ところでギ酸ナトリウムと水の二成分系に少量の第3成
分を添加すると相変化挙動は元の二成分系の場合と異つ
てくる。第3成分としてギ酸ナトリウムより水に対する
親和力の小なる物質を添加してやると元の二成分系の相
平衡関係を大きく変化させることなく2水和物の融点を
降下させることができる。本発明は、この点に着目した
ものであつて、この融点降下の効果により、過冷却が小
(2水和物の初晶が析出する。)で、相分離が起らない
(所定温度上限(25℃)で2水和物は完全に融解する
。)というバランスの良い蓄冷熱材が調合できる。例え
ば第3成分として硝酸ナトリウムを添加する場合の相変
化の概要を第4図及び第5図に示す。第4図は水−HC
OONa−NaNO3三成分系の状態図を示す。
However, when a small amount of a third component is added to a two-component system of sodium formate and water, the phase change behavior becomes different from that of the original two-component system. By adding a substance with a lower affinity for water than sodium formate as the third component, the melting point of the dihydrate can be lowered without significantly changing the phase equilibrium relationship of the original two-component system. The present invention focuses on this point, and due to the effect of lowering the melting point, supercooling is small (primary crystals of the dihydrate are precipitated) and phase separation does not occur (the upper limit of the predetermined temperature (The dihydrate completely melts at 25°C.) A well-balanced cold storage heat material can be prepared. For example, an outline of the phase change when sodium nitrate is added as the third component is shown in FIGS. 4 and 5. Figure 4 shows water-HC
The phase diagram of the OONa-NaNO3 ternary system is shown.

図中、Aは2水和物析出域、Bは3水和物析出域、Cは
NaNO3析出域、Dは融点、Eは3成分系共晶点であ
る。図中、矢印で結ぶ曲線の間の平衡移動を使うとする
と各々の包晶線(2水和物の場合は移動線を延長して包
晶線と交わる点)との交点が各々の結晶の融点である。
前記第2図は、第4図の水−HCOONa線(底辺)の
状態図に当り、本発明で水−HCOONaとNaNO3
との三成分系として使用する組成は水HCOONa線土
の点と頂点(NaNO3)を結ぶ線上に現われ、水〜H
COONa線上50重量%点と頂点を結ぶ線に沿つた断
面投影図が第5図である。第5図は重量比で〔HCOO
Na〕:〔H2O〕:〔NaNO3〕−0,45:0.
45:0.10の配合組成を用いた時の温度変化による
相平衡の動き方を示したもので、元の2成分系で17℃
及び25℃で融解していた3水和物及び2水和物の融点
は、析出固相と平衡状態にある液相組成の軌跡を表わす
線Ab或はその外挿と包晶線(2水和物A、3水和物B
)との交点C,dとなり、各々13℃、21℃と元の二
成分系の場合より4℃降下しており、設定温度上限25
℃で完全に液化し、相分離は起こらない(C:飽和点、
D:過冷却、E:凝固曲線、F:融解)。また硝酸ナト
リウム10〜17重量%添加の範囲では初晶として2水
和物が析出し、過冷却が少く、しかも2水和物の融点は
2成分系の場合より/+12a 降下しており、25℃で完全な液化が可能である。
In the figure, A is the dihydrate precipitation region, B is the trihydrate precipitation region, C is the NaNO3 precipitation region, D is the melting point, and E is the ternary eutectic point. In the figure, if equilibrium movement between the curves connected by arrows is used, the intersection with each peritectic line (in the case of dihydrate, the point where the movement line is extended and intersects with the peritectic line) is the point of intersection of each crystal. It is the melting point.
The above FIG. 2 corresponds to the phase diagram of the water-HCOONa line (base) in FIG. 4, and in the present invention, water-HCOONa and NaNO3
The composition used as a ternary system of water and HCOONa appears on the line connecting the point of the soil and the apex (NaNO3), and
FIG. 5 is a projected cross-sectional view taken along a line connecting the 50% by weight point and the apex on the COONa line. Figure 5 shows the weight ratio [HCOO
Na]:[H2O]:[NaNO3]-0,45:0.
This shows how the phase equilibrium moves due to temperature changes when using a blending composition of 45:0.10.
The melting points of the trihydrate and dihydrate melted at 25°C are determined by the line Ab representing the locus of the liquid phase composition in equilibrium with the precipitated solid phase or its extrapolation and the peritectic line (dihydrate). hydrate A, trihydrate B
), which are 13°C and 21°C, respectively, 4°C lower than the original two-component system, and the upper limit of the set temperature is 25°C.
Completely liquefies at ℃, no phase separation occurs (C: saturation point,
D: supercooling, E: solidification curve, F: melting). Furthermore, in the range of addition of 10 to 17% by weight of sodium nitrate, dihydrate precipitates as primary crystals, and supercooling is small, and the melting point of dihydrate is /+12a lower than that of the two-component system, and 25 Complete liquefaction is possible at ℃.

なお、本発明による蓄冷熱材は水の蒸発によりギ酸ナト
リウム濃度が増すと相分離を起すので、撥水性が強く、
比重が該蓄冷熱材より小さいパラフイン系オイル例えば
、スニソ351オイル等をオイル層約2〜3?になるよ
うに該蓄冷熱材土に浮かべてシールし水の蒸発を防ぐ様
にして使用される。本発明の蓄冷熱材を用いることによ
り次のような効果が奏せられる。
In addition, the cold storage heat material according to the present invention undergoes phase separation when the concentration of sodium formate increases due to water evaporation, so it has strong water repellency.
Approximately 2 to 3 layers of paraffin oil, such as Suniso 351 oil, whose specific gravity is smaller than that of the cold storage heat material, is used. It is used by floating the cold heat storage material on soil and sealing it to prevent water evaporation. By using the cold heat storage material of the present invention, the following effects can be achieved.

(1)過冷却が少なく、しかも相分離が起らない。(1) There is little supercooling and no phase separation occurs.

(2)蓄エネルギー量は、蓄冷熱材が凝固開始後到達す
る温度により異なるが、9℃までで40Kca1//?
、6℃までで45Kca1/l蓄積可能である。(3)
毒件及び熱交材金属に対する腐食姓は問題にならない。
(2) The amount of energy stored varies depending on the temperature that the cold storage material reaches after solidification starts, but up to 9°C is 40Kca1//?
, 45Kcal/l can be accumulated up to 6°C. (3)
Poisoning and corrosion of heat exchanger metals are not a problem.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は蓄冷熱槽を冷媒回路中に組込んだ蓄冷熱式冷暖
房装置の要部説明図であり、第2図は水HCOONa2
成分系相変化概略図であり、第3図は水−HCOONa
の温度による相平衡移動図であり、第4図は水−HCO
ONa−NaNO3成分系の状態図であり、第5図は水
−HCOONa−NaNO33成分系の断面投影図であ
る。
Figure 1 is an explanatory diagram of the main parts of a cold storage heat type air conditioning system in which a cold storage heat tank is incorporated into the refrigerant circuit, and Figure 2 is an explanatory diagram of the main parts of a cold storage heat type air conditioning system that incorporates a cold storage heat tank into the refrigerant circuit.
This is a schematic diagram of the phase change of the component system, and FIG. 3 shows the phase change diagram of water-HCOONa.
Figure 4 is a phase equilibrium transfer diagram depending on the temperature of water-HCO
FIG. 5 is a state diagram of a three-component system of ONa-NaNO, and FIG. 5 is a projected cross-sectional view of a three-component system of water-HCOONa-NaNO.

Claims (1)

【特許請求の範囲】[Claims] 1 40〜50重量%HCOONa水溶液に、HCOO
Naより水に対する親和性の小なる物質を全液の10〜
15重量%となるよう添加してなる蓄冷熱式空調システ
ム用蓄冷熱材。
1 Add HCOO to 40-50% by weight HCOONa aqueous solution.
Substances with a lower affinity for water than Na should be added to 10~10% of the total solution.
A cold storage heat material for a cold storage type air conditioning system, which is added at a concentration of 15% by weight.
JP55165293A 1980-11-26 1980-11-26 Cold storage heat material Expired JPS5942238B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55165293A JPS5942238B2 (en) 1980-11-26 1980-11-26 Cold storage heat material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55165293A JPS5942238B2 (en) 1980-11-26 1980-11-26 Cold storage heat material

Publications (2)

Publication Number Publication Date
JPS5790597A JPS5790597A (en) 1982-06-05
JPS5942238B2 true JPS5942238B2 (en) 1984-10-13

Family

ID=15809571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55165293A Expired JPS5942238B2 (en) 1980-11-26 1980-11-26 Cold storage heat material

Country Status (1)

Country Link
JP (1) JPS5942238B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103937462A (en) * 2014-05-12 2014-07-23 上海海事大学 Composite low-temperature phase-change anticorrosive material and preparation method thereof
EP3611457A1 (en) * 2018-08-17 2020-02-19 Biofreshtec S.L. Thermal accumulator containing a pcm, and refrigerated container equiped with said thermal accumulator

Also Published As

Publication number Publication date
JPS5790597A (en) 1982-06-05

Similar Documents

Publication Publication Date Title
US5065598A (en) Ice thermal storage apparatus
JP3324392B2 (en) Heat storage material
JP3407658B2 (en) Hydrate production method and apparatus
JPS5942238B2 (en) Cold storage heat material
KR910007090B1 (en) Reversible phase change composition for storing energy
JPH07188648A (en) Heat storage composition
JPH0726250A (en) Cold storage material
JPH0215598B2 (en)
JPH0650686A (en) Latent heat accumulator
JPH05215369A (en) Cooling or heating method utilizing latent heat
JPH0143796B2 (en)
JPH0450955B2 (en)
JPS5849894A (en) Heat accumulating device utilizing latent heat
JPH03128987A (en) Latent heat storage material
JPH0399177A (en) Ice heat accumulating device
JPS63202687A (en) Thermal energy storage agent and method for storing thermal energy
JPS60203689A (en) Thermal energy storage material
JPS58185680A (en) Heat storage material
JPH0348238B2 (en)
JPS62199680A (en) Heat storage material
JPS5879080A (en) Heat storing material
JPS6157679A (en) Heat accumulation material
JPS5995387A (en) Heat accumulating material for direct heat exchange
JPS63256683A (en) Heat storage material
JPH1135930A (en) Cold storage material utilizing latent heat