JPH1135930A - Cold storage material utilizing latent heat - Google Patents

Cold storage material utilizing latent heat

Info

Publication number
JPH1135930A
JPH1135930A JP9193939A JP19393997A JPH1135930A JP H1135930 A JPH1135930 A JP H1135930A JP 9193939 A JP9193939 A JP 9193939A JP 19393997 A JP19393997 A JP 19393997A JP H1135930 A JPH1135930 A JP H1135930A
Authority
JP
Japan
Prior art keywords
sodium chloride
storage material
cold storage
latent heat
supercooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9193939A
Other languages
Japanese (ja)
Inventor
Junya Maeda
純也 前田
Akira Kano
陽 狩野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP9193939A priority Critical patent/JPH1135930A/en
Publication of JPH1135930A publication Critical patent/JPH1135930A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Abstract

PROBLEM TO BE SOLVED: To effectively prevent supercooling by incorporating sodium borate in a specific ratio into an aqueous solution of sodium chloride. SOLUTION: The amount of sodium borate is preferably 0.1-5 pts.wt. based on 100 pts.wt. of an aqueous solution of sodium chloride and the concentration of sodium chloride is preferably 5-30 wt.%. The phase transition temperature of a cold storage material utilizing latent heat obtained is preferably -40 to -2 deg.C. For an aqueous solution of sodium chloride as a cold storage medium is employed sodium chloride having a purity of 99% or higher. As sodium borate employed as a supercooling preventing agent, there can be exemplified borax, anhydrous sodium borate, sodium borate dihydrate, etc., and among these borax is preferable. Sodium borate prevents the supercooling phenomenon of a cold storage material utilizing latent heat comprising sodium chloride as a cold storage medium and makes the freezing point close to the phase transition temperature of the aqueous solution of sodium chloride. To this material may be added a water-absorbent resin, attapulgite clay, gelatin, agar, etc.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は塩化ナトリウム水溶
液を蓄冷媒体(主剤)とする潜熱蓄冷材に関する。さら
に詳しくは、塩化ナトリウム水溶液を含む蓄冷材に過冷
却防止剤としてホウ砂を加えた潜熱蓄冷材に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a latent heat storage material using an aqueous solution of sodium chloride as a refrigerant (main agent). More specifically, the present invention relates to a latent heat storage material in which borax is added as a supercooling inhibitor to a cold storage material containing an aqueous solution of sodium chloride.

【0002】[0002]

【従来の技術】余剰電力の利用を目的として電力エネル
ギーの効率的分散貯蔵法が、現在種々検討、開発されて
いる。例えば、熱媒体となる物質の融解、凝固などの相
変化に伴う吸収熱を利用した潜熱蓄冷材の開発もそのひ
とつである。蓄熱材とは、熱または冷熱を物質内に蓄積
し必要時に有効に熱の出入りを利用する材料である。特
に、主に物質の相変化に伴う発熱/吸熱反応を利用した
ものを潜熱蓄熱材、さらに特に予め冷熱を蓄熱し必要時
に放冷する場合を潜熱蓄冷材と呼ぶが、蓄熱材、蓄冷材
の明確な区別はない。潜熱蓄冷材のうち、無機塩、無機
水和塩などの無機物系材料を蓄冷媒体としたものは、有
機物系材料に比べて熱伝導率が大きい、潜熱量が大、体
積変化が小さい、不燃性であるなどの利点があり、なか
でも塩化ナトリウム水溶液は、さらに毒性がない、低反
応性、入手容易、安価、適度な溶解度があり、共晶温度
が冷凍食品保存温度に近いという利点もある。従ってこ
れらの蓄冷材は、食品の冷蔵、配送時の保冷、化学・医
薬品の冷蔵、食品工場などの冷却工程に特に好適に使用
することができる。
2. Description of the Related Art Various efficient storage methods of electric power energy have been studied and developed for the purpose of utilizing surplus electric power. For example, development of a latent heat storage material utilizing absorption heat accompanying a phase change such as melting and solidification of a substance serving as a heat medium is one of them. A heat storage material is a material that accumulates heat or cold in a substance and effectively uses the flow of heat when necessary. Particularly, a material utilizing heat generation / endothermic reaction mainly due to a phase change of a substance is referred to as a latent heat storage material, and more particularly, a case in which cold heat is stored in advance and then cooled when necessary is referred to as a latent heat storage material. There is no clear distinction. Among the latent heat storage materials, those using inorganic materials such as inorganic salts and inorganic hydrated salts as the refrigerant storage medium have higher thermal conductivity, larger latent heat, smaller volume change, and nonflammability than organic materials. Among them, the aqueous sodium chloride solution has further advantages that it is less toxic, has low reactivity, is easily available, is inexpensive, has an appropriate solubility, and its eutectic temperature is close to the frozen food storage temperature. Therefore, these regenerative materials can be particularly suitably used for refrigeration of foods, cold preservation at the time of delivery, refrigeration of chemicals and pharmaceuticals, and cooling processes in food factories and the like.

【0003】[0003]

【発明が解決しようとする課題】しかし塩化ナトリウム
のような無機物系材料を蓄冷媒体とした潜熱蓄冷材は、
過冷却現象を起こすという問題がある。過冷却とは、物
質を冷却する際に液体から固体への相転移の温度を過ぎ
ても転移の現象が現れないことをいう。例えば、23.
3重量%の塩化ナトリウム水溶液は相転移温度が−21
℃であるにもかかわらず、実際には−30℃付近まで温
度を下げないと相転移が起こらないことがある。すなわ
ち過冷却現象を起こすということは、実際利用しようと
する温度(蓄冷材の凝固点)よりさらに低温まで冷やす
ことのできる冷凍機を準備しなければならず、冷凍機設
備の費用がかかり、また低温運転による運転効率の低下
(1℃下がる毎に3%低下)によるランニングコストの
増大など、余分のエネルギーを必要とするという問題も
ある。
However, a latent heat storage material using an inorganic material such as sodium chloride as a refrigerant storage medium,
There is a problem of causing a supercooling phenomenon. The term “supercooling” means that when a substance is cooled, the phenomenon of the transition does not appear even when the temperature of the phase transition from a liquid to a solid is exceeded. For example, 23.
A 3% by weight aqueous solution of sodium chloride has a phase transition temperature of -21.
Despite the temperature, the phase transition may not actually occur unless the temperature is lowered to around -30 ° C. In other words, to cause the supercooling phenomenon, it is necessary to prepare a refrigerator capable of cooling to a temperature lower than the temperature to be actually used (the freezing point of the regenerative material). There is also a problem that extra energy is required, such as an increase in running cost due to a decrease in operation efficiency due to operation (3% decrease every 1 ° C. decrease).

【0004】この過冷却を緩和するために、凝固時に蓄
冷媒体の核となるような物質(過冷却防止剤)を蓄冷媒
体に添加する。このような過冷却防止剤として、例えば
特開平6−80956号公報に粒径が1〜200μmの
結晶性発核剤を利用することが開示されている。しかし
該公報が開示する蓄冷材の蓄冷媒体は、硫酸ナトリウム
10水和塩、塩化カルシウム6水和塩、酢酸ナトリウム
3水和塩など全て相転移温度7〜8℃のものであって、
−20℃程度という低い相転移温度をもつものはない。
蓄冷材では、低温の冷却ほど冷却効率の点から過冷却の
問題が大きくなる。
[0004] In order to alleviate the supercooling, a substance (supercooling inhibitor) which becomes a core of the refrigerant during solidification is added to the refrigerant. As such a supercooling inhibitor, for example, JP-A-6-80956 discloses the use of a crystalline nucleating agent having a particle size of 1 to 200 μm. However, the refrigerant storage material of the cold storage material disclosed in this publication has a phase transition temperature of 7 to 8 ° C., such as sodium sulfate decahydrate, calcium chloride hexahydrate, and sodium acetate trihydrate.
None has a low phase transition temperature of about −20 ° C.
In the cold storage material, the lower the temperature is, the more the problem of supercooling becomes large in terms of cooling efficiency.

【0005】また、どんな過冷却防止剤を使用するかと
いう点に関しては、蓄熱媒体と同じような結晶構造・格
子定数をもつものが良いとも言う説もあり、逆に蓄熱媒
体と異質なものでも過冷却防止効果が高いものもあり、
特定の蓄熱媒体に対しどんな過冷却防止剤が適している
かは試行錯誤しているのが現状である。
[0005] In addition, regarding what kind of supercooling inhibitor to use, there is a theory that it is better to use a material having the same crystal structure and lattice constant as the heat storage medium. Some have a high supercooling prevention effect,
At present, what kind of supercooling inhibitor is suitable for a specific heat storage medium is trial and error.

【0006】本発明の目的は、塩化ナトリウム水溶液を
蓄熱媒体とした潜熱蓄冷材の過冷却現象を抑制し、凝固
点を塩化ナトリウム水溶液の相転移温度にできる限り近
づけた潜熱蓄冷材を提供することにある。
It is an object of the present invention to provide a latent heat storage material which suppresses the supercooling phenomenon of a latent heat storage material using an aqueous solution of sodium chloride as a heat storage medium and has a freezing point as close as possible to the phase transition temperature of the aqueous solution of sodium chloride. is there.

【0007】[0007]

【課題を解決するための手段】このような状況下、本発
明者らが種々検討した結果、ホウ酸ナトリウムを塩化ナ
トリウム水溶液の過冷却防止剤として使用した場合、特
に有効に過冷却を抑制する効果があることを初めて発見
し、本発明を完成させた。すなわち本発明は、(1)塩
化ナトリウム水溶液およびホウ酸ナトリウムを含む潜熱
蓄冷材、(2)ホウ酸ナトリウムの量が、塩化ナトリウ
ム水溶液100重量部に対して0.1〜5重量部である
上記(1)記載の潜熱蓄冷材、(3)−40℃〜−2℃
の温度範囲で相転移現象の生じる上記(1)または
(2)記載の潜熱蓄冷材、および(4)塩化ナトリウム
の濃度が5〜30重量%である上記(1)〜(3)のい
ずれかに記載の潜熱蓄冷材に関する。
Under these circumstances, the present inventors have conducted various studies. As a result, when sodium borate is used as a supercooling inhibitor for an aqueous solution of sodium chloride, supercooling is particularly effectively suppressed. The inventors discovered for the first time that they were effective, and completed the present invention. That is, the present invention provides (1) a latent heat storage material containing an aqueous sodium chloride solution and sodium borate, and (2) an amount of sodium borate is 0.1 to 5 parts by weight based on 100 parts by weight of the aqueous sodium chloride solution. (1) The latent heat storage material according to (3), -40 ° C to -2 ° C
(1) or (2), wherein the phase change phenomenon occurs in the temperature range of (1) or (2), and (4) the concentration of sodium chloride is 5 to 30% by weight. And a latent heat storage material according to (1).

【0008】[0008]

【発明の実施の形態】本発明で使用する蓄冷媒体は塩化
ナトリウム水溶液である。塩化ナトリウムの濃度は水溶
液を形成する限り特に限定されない。なかでも5〜30
重量%が好ましく、より好ましくは15〜27重量%で
ある。塩化ナトリウムが5〜30重量%であると、凝固
および融解時の温度差が小さくなり、蓄冷・放冷温度が
一定に近くなり、蓄冷材として望ましいものとなる。塩
化ナトリウムの純度は特に限定されないが、通常99%
以上が好ましく用いられる。
BEST MODE FOR CARRYING OUT THE INVENTION The refrigerant storage medium used in the present invention is an aqueous sodium chloride solution. The concentration of sodium chloride is not particularly limited as long as an aqueous solution is formed. Above all, 5-30
% By weight, more preferably 15 to 27% by weight. When the content of sodium chloride is 5 to 30% by weight, the temperature difference at the time of solidification and melting becomes small, and the cold storage / cooling temperature becomes close to constant, which is desirable as a cold storage material. Although the purity of sodium chloride is not particularly limited, it is usually 99%.
The above is preferably used.

【0009】過冷却防止剤として使用されるホウ酸ナト
リウムは、ホウ砂(ホウ酸ナトリウム10水和塩)、無
水ホウ酸ナトリウム、ホウ酸ナトリウム2水和塩、ホウ
酸ナトリウム4水和塩、ホウ酸ナトリウム5水和塩など
が使用でき、なかでもホウ砂が好ましい。ホウ酸ナトリ
ウムの使用量は、塩化ナトリウム水溶液100重量部に
対して0.1〜5重量部、好ましくは2〜4重量部であ
る。上記使用量が0.1重量部未満の場合、期待する過
冷却防止効果が得られず、一方5重量部を超えると、潜
熱量が低下し、かつ溶液の残渣が認められ、均一性が損
なわれる場合がある。
Sodium borate used as a supercooling inhibitor includes borax (sodium borate decahydrate), anhydrous sodium borate, sodium borate dihydrate, sodium borate tetrahydrate, and borate. Sodium pentahydrate can be used, and among them, borax is preferable. The amount of sodium borate used is 0.1 to 5 parts by weight, preferably 2 to 4 parts by weight, based on 100 parts by weight of the aqueous sodium chloride solution. If the amount is less than 0.1 part by weight, the expected effect of preventing supercooling cannot be obtained. May be

【0010】必須成分の他に本発明の潜熱蓄冷材に加え
てもよい成分として、吸水性樹脂、アタパルジャイ粘
土、ゼラチン、寒天、シリカゲルなどの増粘剤などが挙
げられる。ただし本発明の組成物はカーボンブラックは
含まない。
In addition to the essential components, other components that may be added to the latent heat storage material of the present invention include water-absorbing resins, thickening agents such as attapulghai clay, gelatin, agar, and silica gel. However, the composition of the present invention does not contain carbon black.

【0011】また本発明の潜熱蓄冷材は、好ましくは−
40℃〜−2℃、さらに好ましくは−30℃〜−15℃
の温度範囲で相転移現象の生じるものがよい。
The latent heat storage material of the present invention is preferably
40 ° C to -2 ° C, more preferably -30 ° C to -15 ° C
It is preferable that a phase transition phenomenon occurs in the above temperature range.

【0012】蓄冷材の製造法は特に限定されないが、例
えば、容器に入れた純水またはイオン交換水に、塩化ナ
トリウムを徐々に攪拌しながら所定量まで投入し、十分
混合した後、過冷却防止剤であるホウ砂を徐々に攪拌し
ながら所定量まで投入し、十分混合し、他の添加剤もこ
れと同時またはこの後で添加し、攪拌・混合する方法、
樹脂の上に塩化ナトリウム、ホウ砂などを予め混合した
水溶液を注ぎ込む方法などがある。なお、塩化ナトリウ
ム、ホウ砂および他の添加剤の投入順序は任意であり、
かつ溶解を促進するために50℃程度まで加熱すること
も可能である。また、塩化ナトリウムとホウ砂などを混
合した後、該混合物を純水またはイオン交換水に投入し
てもよい。
The method of producing the regenerator material is not particularly limited. For example, sodium chloride is gradually added to pure water or ion-exchanged water in a container while gradually stirring to a predetermined amount, and the mixture is sufficiently mixed. The borax, which is an agent, is gradually added to a predetermined amount while stirring, and mixed well, and other additives are added simultaneously or after this, followed by stirring and mixing.
There is a method of pouring an aqueous solution in which sodium chloride, borax and the like are mixed in advance on the resin. The order of adding sodium chloride, borax and other additives is optional.
It is also possible to heat to about 50 ° C. to promote dissolution. After mixing sodium chloride and borax, the mixture may be added to pure water or ion-exchanged water.

【0013】蓄冷材の形態も特に限定されないが、通常
は、上記した蓄冷材を耐蝕性のある金属や無機材料、お
よび/またはポリエチレンを初めとするプラスチックな
どの有機材料によって包装する形態となる。また形状と
しては、塊状、板状、シート状などがある。このような
蓄冷材が配置される場所としては、蓄冷室にそのまま、
あるいは熱交換部に置く、などが考えられる。
Although the form of the cold storage material is not particularly limited, it is usually a form in which the above-mentioned cold storage material is packaged with a corrosion-resistant metal or inorganic material and / or an organic material such as polyethylene or other plastics. Examples of the shape include a lump, a plate, and a sheet. As a place where such a cold storage material is arranged, as it is in a cold storage room,
Alternatively, it is conceivable to place it in a heat exchange section.

【0014】[0014]

【実施例】以下、本発明を実施例により具体的に説明す
る。ただし本発明は以下の実施例に限定されるものでは
ない。 実施例1 DSC(示差走査熱量計)で、降温速度:1℃/分→−
45℃で20分保持→昇温速度2℃/分→−10℃のプ
ログラムのもと、5.0重量%、10.0重量%、1
5.0重量%、20.0重量%および23.3重量%の
濃度の塩化ナトリウム水溶液に、それぞれ水溶液100
重量部に対してホウ砂を3重量部添加して蓄冷材を得、
該蓄冷材の凝固開始温度を測定した。結果を表1に示
す。
The present invention will be described below in more detail with reference to examples. However, the present invention is not limited to the following examples. Example 1 Temperature drop rate: 1 ° C./min→−
Hold at 45 ° C. for 20 minutes → heating rate 2 ° C./min→5.0 wt%, 10.0 wt%, 1 wt% under the program of −10 ° C.
100% aqueous solution was added to 5.0% by weight, 20.0% by weight and 23.3% by weight aqueous sodium chloride solution, respectively.
By adding 3 parts by weight of borax to parts by weight to obtain a cold storage material,
The solidification start temperature of the cold storage material was measured. Table 1 shows the results.

【0015】比較例1 ホウ砂を使用しなかった以外は実施例1と同様にしてそ
れぞれの濃度の塩化ナトリウム水溶液の凝固開始温度を
測定した。結果を表1に示す。
Comparative Example 1 The solidification start temperature of each concentration of sodium chloride aqueous solution was measured in the same manner as in Example 1 except that borax was not used. Table 1 shows the results.

【0016】[0016]

【表1】 [Table 1]

【0017】実施例2 23.3重量%の濃度の塩化ナトリウム水溶液に、該水
溶液100重量部に対してホウ砂を2重量部添加して蓄
冷材を得、該蓄冷材の凝固開始温度を実施例1と同様に
して測定した。
Example 2 2 parts by weight of borax was added to an aqueous solution of sodium chloride having a concentration of 23.3% by weight based on 100 parts by weight of the aqueous solution to obtain a regenerator material, and the solidification start temperature of the regenerator material was measured. The measurement was performed in the same manner as in Example 1.

【0018】実施例3 ホウ砂の量を塩化ナトリウム水溶液100重量部に対し
て1重量部とした以外は実施例2と同様にして蓄冷材の
凝固開始温度を測定した。
Example 3 The solidification start temperature of the regenerator material was measured in the same manner as in Example 2 except that the amount of borax was changed to 1 part by weight with respect to 100 parts by weight of the aqueous sodium chloride solution.

【0019】比較例2 23.3重量%の塩化ナトリウム水溶液に表2に示す過
冷却防止剤を使用して蓄冷材を得、得られた各蓄冷材の
凝固開始温度を実施例1と同様にしてDSCで測定し
た。実施例2、3および比較例2の結果を、実施例1の
23.3重量%塩化ナトリウム水溶液を用いた蓄冷材の
結果および比較例1の23.3重量%塩化ナトリウム水
溶液の結果とともに表2に示す。「過冷却度」は、過冷
却防止剤を添加しないときの塩化ナトリウム水溶液の融
解温度と蓄冷材の凝固開始温度との差をいう。
Comparative Example 2 A regenerator material was obtained by using a supercooling inhibitor shown in Table 2 in a 23.3% by weight aqueous sodium chloride solution, and the solidification start temperature of each regenerator material was set in the same manner as in Example 1. Was measured by DSC. Table 2 shows the results of Examples 2 and 3 and Comparative Example 2 together with the results of the cold storage material using the 23.3% by weight aqueous sodium chloride solution of Example 1 and the results of the 23.3% by weight aqueous sodium chloride solution of Comparative Example 1. Shown in "Degree of supercooling" refers to the difference between the melting temperature of the aqueous sodium chloride solution and the solidification start temperature of the cold storage material when no supercooling inhibitor is added.

【0020】[0020]

【表2】 [Table 2]

【0021】実施例4 耐熱ガラス製ビーカーにサンプル(23.3重量%塩化
ナトリウム水溶液にホウ砂を、塩化ナトリウム水溶液1
00重量部に対して3重量部加えたもの)を入れ、蒸発
を防ぐためシリコン栓で栓をし、検温のため液中にはス
テンレスシースT型熱電対を入れた。この試料容器を低
温フリーザーに入れ、室温から−40℃まで冷却し、凝
固開始温度を測定した。結果を過冷却度とともに表3に
示す。
Example 4 A sample (a borax was added to an aqueous 23.3% by weight sodium chloride solution, and a sodium chloride aqueous solution 1 was placed in a heat-resistant glass beaker)
(3 parts by weight with respect to 00 parts by weight) was added, and the container was plugged with a silicon stopper to prevent evaporation, and a stainless sheath T-type thermocouple was placed in the liquid for temperature measurement. The sample container was placed in a low-temperature freezer, cooled from room temperature to -40 ° C, and the solidification onset temperature was measured. The results are shown in Table 3 together with the degree of supercooling.

【0022】比較例3 ホウ砂を使用しなかった以外は実施例2と同様にして塩
化ナトリウムの凝固開始温度を測定した。結果を過冷却
度とともに表3に示す。
Comparative Example 3 The solidification starting temperature of sodium chloride was measured in the same manner as in Example 2 except that borax was not used. The results are shown in Table 3 together with the degree of supercooling.

【0023】[0023]

【表3】 [Table 3]

【0024】以上の実施例および比較例の結果から、本
発明の潜熱蓄冷材は過冷却防止剤を使用しないものに比
べて10℃以上の過冷却防止効果が得られ、また塩化ナ
トリウム水溶液以外の他の主剤を用いた蓄冷材に過冷却
防止剤として使用される化合物を使用したものに比べて
も格段によい結果が得られることがわかった。
From the results of the above Examples and Comparative Examples, the latent heat storage material of the present invention has an effect of preventing supercooling of 10 ° C. or more as compared with the case where no supercooling inhibitor is used. It has been found that a remarkably good result can be obtained as compared with the case where a compound used as a supercooling inhibitor is used in a cold storage material using another main ingredient.

【0025】[0025]

【発明の効果】本発明の蓄冷材は、塩化ナトリウム水溶
液の過冷却が有効に防止でき、かつ経済的に有効な蓄冷
材であり、さらに安全性が高いためアイスクリームなど
の食品の保冷に問題なく利用できる。
The cold storage material of the present invention is an economically effective cold storage material that can effectively prevent supercooling of an aqueous solution of sodium chloride and has high safety, and thus has a problem in keeping cold food such as ice cream. Available without.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 塩化ナトリウム水溶液およびホウ酸ナト
リウムを含む潜熱蓄冷材。
1. A latent heat storage material containing an aqueous sodium chloride solution and sodium borate.
【請求項2】 ホウ酸ナトリウムの量が、塩化ナトリウ
ム水溶液100重量部に対して0.1〜5重量部である
請求項1記載の潜熱蓄冷材。
2. The latent heat regenerator according to claim 1, wherein the amount of sodium borate is 0.1 to 5 parts by weight based on 100 parts by weight of the aqueous sodium chloride solution.
【請求項3】 −40℃〜−2℃の温度範囲で相転移現
象の生じる請求項1または2記載の潜熱蓄冷材。
3. The latent heat storage material according to claim 1, wherein a phase transition phenomenon occurs in a temperature range of −40 ° C. to −2 ° C.
【請求項4】 塩化ナトリウムの濃度が5〜30重量%
である請求項1〜3のいずれかに記載の潜熱蓄冷材。
4. The concentration of sodium chloride is 5 to 30% by weight.
The latent heat storage material according to claim 1, wherein
JP9193939A 1997-07-18 1997-07-18 Cold storage material utilizing latent heat Pending JPH1135930A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9193939A JPH1135930A (en) 1997-07-18 1997-07-18 Cold storage material utilizing latent heat

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9193939A JPH1135930A (en) 1997-07-18 1997-07-18 Cold storage material utilizing latent heat

Publications (1)

Publication Number Publication Date
JPH1135930A true JPH1135930A (en) 1999-02-09

Family

ID=16316265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9193939A Pending JPH1135930A (en) 1997-07-18 1997-07-18 Cold storage material utilizing latent heat

Country Status (1)

Country Link
JP (1) JPH1135930A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000061699A1 (en) * 1999-04-09 2000-10-19 Iida, Takazo Cold-storage material, cold-storage pack, and cold-reserving box
CN114350323A (en) * 2021-12-28 2022-04-15 苏州安特实业有限公司 Long-acting composite low-temperature coolant and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000061699A1 (en) * 1999-04-09 2000-10-19 Iida, Takazo Cold-storage material, cold-storage pack, and cold-reserving box
US6469085B1 (en) 1999-04-09 2002-10-22 Tutomu Ushio Cooling agent, cooling pack and cooling box
CN114350323A (en) * 2021-12-28 2022-04-15 苏州安特实业有限公司 Long-acting composite low-temperature coolant and preparation method thereof

Similar Documents

Publication Publication Date Title
CN101171318B (en) Heat storable substance, heat storage agent, heat storage material, heat transfer medium, cold insulation agent, cold insulation material, melting point controlling agent for heat storage agent, agent for prevention of overcooling for use in heat storage agent, heat storage agent, heat transfer medium and process for manufacturing any one of main agent of cool keeping agents
JP3324392B2 (en) Heat storage material
JP2581708B2 (en) Thermal energy storage composition
JP6598076B2 (en) Latent heat storage material
US4292189A (en) Thermal energy storage composition comprising sodium sulfate decahydrate; sodium carbonate decahydrate; and sodium tetraborate decahydrate
EP3864106B1 (en) Metal nitrate based compositions for use as phase change materials
US4406806A (en) Thermal energy storage
CN106221675A (en) A kind of phase-change and energy-storage medium
US4273666A (en) Hydrated Mg(NO3)2 reversible phase change compositions
JPH1135933A (en) Cold storage material utilizing latent heat
JPH1135930A (en) Cold storage material utilizing latent heat
JPS6035077A (en) Reversible phase transfer composition for energy storage
JP2006131856A (en) Latent heat cold storage material composition
JPH0726250A (en) Cold storage material
US4406805A (en) Hydrated MgCl2 reversible phase change compositions
JP6575859B2 (en) Latent heat storage material
JPH1135931A (en) Cold storage material utilizing latent heat
JPH1135932A (en) Cold storage material utilizing latent heat
JP2000111282A (en) Heat storage device and heat control in heat storage device
JP2001192650A (en) Cold storage material
JP4100590B2 (en) Latent heat storage material composition and heat storage method
US20240158681A1 (en) Metal nitrate based compositions for use as phase change materials
JP2002030279A (en) Latent heat cooling agent
EP0020525B1 (en) Method for forming aqueous heat-storage compositions having prolonged heat-storage efficiencies
JPS61197668A (en) Thermal energy storage material