JPH0581317B2 - - Google Patents

Info

Publication number
JPH0581317B2
JPH0581317B2 JP9352684A JP9352684A JPH0581317B2 JP H0581317 B2 JPH0581317 B2 JP H0581317B2 JP 9352684 A JP9352684 A JP 9352684A JP 9352684 A JP9352684 A JP 9352684A JP H0581317 B2 JPH0581317 B2 JP H0581317B2
Authority
JP
Japan
Prior art keywords
cooling
water
biological treatment
tank
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP9352684A
Other languages
Japanese (ja)
Other versions
JPS60238196A (en
Inventor
Toshio Iwase
Toshuki Kakizaki
Norya Ujo
Masamitsu Kawakubo
Kaoru Tanaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niigata Engineering Co Ltd
Original Assignee
Niigata Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Niigata Engineering Co Ltd filed Critical Niigata Engineering Co Ltd
Priority to JP59093526A priority Critical patent/JPS60238196A/en
Publication of JPS60238196A publication Critical patent/JPS60238196A/en
Publication of JPH0581317B2 publication Critical patent/JPH0581317B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Treatment Of Biological Wastes In General (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

【発明の詳細な説明】 本発明は、有機性廃水を活性汚泥法や接触曝気
法等によつて生物学的に処理する方法及びその装
置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method and apparatus for biologically treating organic wastewater by an activated sludge method, a contact aeration method, or the like.

し尿、化学工場廃水、食品工場廃水、アルコー
ル蒸留廃液、下水等の有機性廃水を活性汚泥法
(浮遊法)や接触曝気法(固定床曝気法)等によ
つて生物学的に処理することは従来から広く行な
われているが、これらの方法で例えばBOD濃度
が10000〜12000mg/のし尿を処理する場合、し
尿の処理量に対して10〜20倍の工業用水や地下水
等の希釈水が使用されていた。このため、処理費
が高くなり不経済となるばかりか、地下水の汲み
上げによる地盤沈下、飲料用水の枯渇等、社会的
にも問題がある。そこで、近年、希釈水を多量に
必要とする従来の処理法に代つて、無希釈処理法
もしくは低希釈処理法が採用されるようになつて
きた。
Organic wastewater such as human waste, chemical factory wastewater, food factory wastewater, alcohol distillation wastewater, and sewage can be biologically treated by activated sludge method (floating method) or contact aeration method (fixed bed aeration method). These methods have been widely used in the past, but when using these methods to treat human waste with a BOD concentration of 10,000 to 12,000 mg, for example, diluted water such as industrial water or groundwater is used that is 10 to 20 times the amount of human waste to be processed. It had been. For this reason, not only is the treatment cost high and uneconomical, but there are also social problems such as ground subsidence due to pumping up groundwater and depletion of drinking water. Therefore, in recent years, no-dilution treatment methods or low-dilution treatment methods have been adopted in place of conventional treatment methods that require large amounts of dilution water.

ところで、生物学的処理では、生物代謝反応に
よる発熱が、例えば好気的条件下における有機物
のBOD酸化反応(呼吸)の場合、酸素消費量1
Kg−O2当り約3300Kcalもあるが、上記無希釈処
理法や低希釈処理法にあつては、処理量単位当り
の酸素消費が多いため、自然放熱があつても活性
汚泥槽や接触曝気槽等の生物学的処理槽内の水温
が、微生物の適温である20〜35℃を超えて40℃以
上になる場合がある。特に生物学的処理槽に流入
する流入液温が高まる夏季や流入液のBOD濃度
が4000mg/以上になる場合に、これは顕著とな
り、また、生物学的脱窒処理までも行なわせる
と、この発熱量はさらに増大する。
By the way, in biological treatment, heat generation due to biological metabolic reactions, for example, in the case of BOD oxidation reaction (respiration) of organic matter under aerobic conditions, oxygen consumption 1
It is about 3300 Kcal per Kg- O2 , but in the case of the above-mentioned non-dilution treatment method and low dilution treatment method, oxygen consumption per unit of treatment amount is large, so even if there is natural heat dissipation, activated sludge tank or contact aeration tank In some cases, the water temperature in biological treatment tanks such as plants exceeds the optimum temperature for microorganisms, 20-35°C, and reaches 40°C or higher. This is particularly noticeable in the summer when the temperature of the influent flowing into the biological treatment tank is high, or when the BOD concentration of the influent exceeds 4000 mg/kg. The amount of heat generated further increases.

また、廃水処理系内の生物学的処理槽前の処理
が加熱等の熱処理を伴う廃水または汚泥の処理装
置であつた場合や化学工場廃水や食品工場廃水等
の処理の場合においては、生物学的処理槽への流
入液そのものが高温の場合がある。従来は、この
ような場合でも生物学的処理槽に流入する際、流
入液は希釈水によつて減温されていたが、上記無
希釈処理法または低希釈処理法では流入液は十分
に減温されない。
In addition, if the treatment before the biological treatment tank in the wastewater treatment system is a wastewater or sludge treatment equipment that involves heat treatment such as heating, or if the treatment is for chemical factory wastewater or food factory wastewater, biological The liquid flowing into the treatment tank itself may be at a high temperature. Conventionally, even in such cases, the temperature of the influent was lowered by dilution water when it entered the biological treatment tank, but with the above-mentioned no-dilution treatment method or low-dilution treatment method, the temperature of the influent was sufficiently reduced. It doesn't get warm.

いずれにしろ生物学的処理槽内の水温が微生物
の適温を超えた場合は、活性汚泥の死滅、活性の
低下等によつて処理効果が低下し、処理水質の悪
化を来す。この問題を一部解決する方法が特公昭
58−6557号公報に提案されている。この方法は、
第6図に示すように、流出液である酸化済処理水
または還元済処理水を熱交換器1を経由して減温
した後、生物学的処理槽2を構成する混合分解槽
3に循環させ、かつ、脱窒素済処理水をクーリン
グタワー4にて冷却し、その冷却処理水を上記熱
交換器1の冷媒とした方法である。
In any case, if the water temperature in the biological treatment tank exceeds the optimum temperature for microorganisms, the treatment effect will decrease due to death of activated sludge, decrease in activity, etc., and the quality of treated water will deteriorate. Tokukosho is a way to partially solve this problem.
It is proposed in Publication No. 58-6557. This method is
As shown in FIG. 6, after the effluent, which is oxidized treated water or reduced treated water, is cooled through a heat exchanger 1, it is circulated to a mixed decomposition tank 3 that constitutes a biological treatment tank 2. In this method, the denitrified treated water is cooled in a cooling tower 4, and the cooled treated water is used as a refrigerant for the heat exchanger 1.

しかしながら、このように熱交換器1を必要と
する方法では、生物学的処理槽2の流出液である
最終処理済水や活性汚泥混合液(返送汚泥等)の
中に存在しているカルシウム、マグネシウム、リ
ン、硫酸、炭酸の各イオン等の溶解性無機成分や
油分、浮遊物質等の懸濁物質が熱交換器1の伝熱
面にスケールとなつて付着し、冷却効果を著しく
低下させたり、あるいは、熱交換器1を閉塞させ
たりするなど設備面で多くの問題がある。また、
維持管理の面でも、冷却設備を休止して熱交換器
1の分解清掃を行なつたり、あるいは、薬液によ
る洗浄等のスケール除去作業を頻繁に行なつたり
しなければならず、生物学的処理設備の稼動日数
が減少したり、薬品使用によりランニングコスト
がかさむといつた問題があつた。
However, in the method that requires the heat exchanger 1, calcium present in the final treated water and activated sludge mixture (return sludge, etc.) that is the effluent of the biological treatment tank 2, Dissolved inorganic components such as magnesium, phosphorus, sulfuric acid, and carbonate ions, as well as suspended solids such as oil and suspended solids, may adhere as scales to the heat transfer surface of the heat exchanger 1, significantly reducing the cooling effect. Alternatively, there are many problems in terms of equipment, such as clogging of the heat exchanger 1. Also,
In terms of maintenance and management, the cooling equipment must be shut down to disassemble and clean the heat exchanger 1, or scale removal work such as cleaning with chemical solutions must be performed frequently. There were problems such as reduced equipment operating days and increased running costs due to the use of chemicals.

また、別の方法として、特開昭59−62392号公
報に開示されているように、汚水の生物処理工程
における処理水の少なくとも一部を循環水として
分岐し、冷却した後生物処理水槽に戻す生物処理
工程における水温上昇抑制方法も提案されてい
る。
In addition, as another method, as disclosed in Japanese Patent Application Laid-Open No. 59-62392, at least a part of the treated water in the biological treatment process of wastewater is branched off as circulating water, and after being cooled, it is returned to the biological treatment tank. Methods for suppressing water temperature rise in biological treatment processes have also been proposed.

しかし、この方法においても、冷却装置として
熱交換器を用いているために、機器のスケール付
着の問題点を解決する方法として、処理槽を冷却
する水にはスケール等の汚水物質を含まない高次
処理水等の浄化水を循環使用するようになつてお
り、良質の水でなければ熱交換器を通して冷却で
きない。これによつて、本来処理に必要でない冷
却用浄化水を処理槽に流入させるため徒に希釈度
を増すことになり、処理装置が大型化する問題が
生じる。
However, even in this method, a heat exchanger is used as a cooling device, so as a way to solve the problem of scale adhesion on equipment, the water used to cool the treatment tank is made of high-quality water that does not contain polluted water substances such as scale. Purified water such as post-processed water is recycled, and unless the water is of high quality, it cannot be cooled through a heat exchanger. As a result, purified water for cooling, which is not originally necessary for the treatment, is forced to flow into the treatment tank, which unnecessarily increases the degree of dilution, resulting in a problem of increasing the size of the treatment apparatus.

本発明は、上記事情に鑑みてなされたもので、
有機性廃水を無希釈もしくは低希釈状態で効率よ
く処理して良好な水質の処理水を得ることがで
き、しかも、装置を長期間連続して運転すること
ができる生物学的処理方法及びその装置を提供す
ることを目的とする。
The present invention was made in view of the above circumstances, and
A biological treatment method and device capable of efficiently treating organic wastewater in an undiluted or lightly diluted state to obtain treated water of good quality, and in which the device can be operated continuously for a long period of time. The purpose is to provide

上記目的を達成するために、本発明の方法は、
好気性生物学的処理手段を含む生物学的処理槽の
流出液または流入液を冷却缶において45mmHg以
下の絶対圧下で一部フラツシユ蒸発させて減温
し、その後に該液を上記生物学的処理槽に流入さ
せるようにしたものであり、また、装置を、好気
性生物学的処理手段を含む生物学的処理槽と、こ
の槽の流出液または流入液を45mmHg以下の絶対
圧下で一部フラツシユ蒸発させて減温する冷却缶
と、該冷却缶を減圧する真空装置と、該冷却缶の
液を上記生物学的処理槽に流入させる供給手段と
で構成したものである。
In order to achieve the above object, the method of the present invention includes:
The effluent or influent of a biological treatment tank containing an aerobic biological treatment means is partially flash evaporated in a cooling can under an absolute pressure of 45 mmHg or less to reduce its temperature, and then the liquid is subjected to the biological treatment described above. The device is configured to have a biological treatment tank containing an aerobic biological treatment means, and the effluent or inflow of this tank is partially flushed under an absolute pressure of 45 mmHg or less. It is composed of a cooling can which evaporates to reduce the temperature, a vacuum device which reduces the pressure of the cooling can, and a supply means which causes the liquid in the cooling can to flow into the biological treatment tank.

以下、本発明の装置の一実施例を図面を参照し
て説明する。第1図において符号10で示すもの
は、し尿等の有機性廃水Wの生物学的脱窒素処理
を行なう周知の生物学的処理槽で、第1脱窒素槽
11、硝化槽12、第2脱窒素槽13、再曝気槽
14が直列に流路15によつて接続され、かつ、
第1脱窒素槽11と硝化槽12が、硝化槽12内
の液の一部を循環液Rとして第1脱窒素槽11に
循環返送する循環流路16によつて互いに接続さ
れて成り、再曝気槽14には沈殿槽17と、必要
に応じて高度処理槽18が流路19によつて接続
され、かつ、該沈殿槽17と上記第1脱窒素槽1
1は、沈殿槽17に沈降した微生物汚泥の一部も
しくは全部を返送汚泥Sして第1脱窒素槽11に
返送する汚泥循環流路20によつて互いに接続さ
れている。また、上記循環流路16には、該循環
流路16を流れる循環液Rの一部もしくは全部を
冷却する冷却缶21と、該冷却缶21で冷却され
た循環液Rを上記第1脱窒素槽11に返送するポ
ンプ(供給手段)22が介在せしめられている。
Hereinafter, one embodiment of the apparatus of the present invention will be described with reference to the drawings. In FIG. 1, the reference numeral 10 indicates a well-known biological treatment tank for biologically denitrifying organic wastewater W such as human waste, including a first denitrification tank 11, a nitrification tank 12, and a second denitrification tank. The nitrogen tank 13 and the reaeration tank 14 are connected in series by a flow path 15, and
The first denitrification tank 11 and the nitrification tank 12 are connected to each other by a circulation flow path 16 that circulates and returns a part of the liquid in the nitrification tank 12 to the first denitrification tank 11 as circulating liquid R. A settling tank 17 and, if necessary, an advanced treatment tank 18 are connected to the aeration tank 14 via a flow path 19, and the settling tank 17 and the first denitrification tank 1 are connected to each other by a flow path 19.
1 are connected to each other by a sludge circulation channel 20 that returns part or all of the microbial sludge settled in the settling tank 17 to the first denitrification tank 11 as return sludge S. Further, the circulation passage 16 includes a cooling can 21 for cooling part or all of the circulating liquid R flowing through the circulation passage 16, and a cooling can 21 for cooling part or all of the circulating liquid R flowing through the circulation passage 16, and a cooling can 21 for cooling the circulating liquid R cooled by the cooling can 21 through the first denitrification process. A pump (supply means) 22 for returning the water to the tank 11 is interposed.

さらに、上記冷却缶21には、その内部を減圧
する真空装置23が蒸気吸引流路24を介して接
続されている。そして、該冷却缶21に供給され
る循環液Rは、缶内の圧力と平衡に達するまで自
己蒸発し、蒸発潜熱が奪われて減温されるが、循
環液Rからの蒸発蒸気と不凝縮ガスが真空装置2
3により冷却缶21から連続的に取り出されて缶
内の圧力が所定値に保持され、これにより循環液
Rがその圧力に相当する飽和蒸気圧の温度近くま
で冷却されるようになつている。
Further, a vacuum device 23 for reducing the pressure inside the cooling can 21 is connected to the cooling can 21 via a steam suction channel 24 . The circulating liquid R supplied to the cooling can 21 self-evaporates until it reaches equilibrium with the pressure inside the can, and the latent heat of vaporization is taken away and the temperature is reduced. Gas vacuum device 2
3, the circulating fluid R is continuously taken out from the cooling can 21 and the pressure inside the can is maintained at a predetermined value, whereby the circulating fluid R is cooled to a temperature close to the saturated vapor pressure corresponding to that pressure.

ここで、上記冷却缶21の内部の圧力は、上記
生物学的処理槽10の容量、構造、曝気気体量、
菌種、該冷却缶21から生物学的処理槽10に供
給される冷却液量等によつて異なり、一概には決
定できないが、少なくとも45mmHg以下の絶対圧
に保持される。これにより好気性生物学的処理の
適温の上限(36℃)を超える40℃以上の流出液も
しくは流入液は、その一部が確実に蒸発し、この
絶対圧下における飽和蒸気温度である36℃以下に
冷却され、処理槽の温度上昇を効果的に抑制でき
る。また、上記冷却缶21は、循環液Rが缶内に
おいて減圧状態に曝される形式のものであればど
のような形状のものでもよいが、循環液Rが自己
蒸発する関係上、缶内における循環液Rの表面積
ができるだけ大きくなるような構造が好ましく、
例えば、第2図a,bに示すような多段カスケー
ド式のものや、第2図cに示すように、循環液R
を缶の接線方向に流入させて缶壁を流下させる構
造のものがある。
Here, the pressure inside the cooling can 21 is determined based on the capacity, structure, and amount of aeration gas of the biological treatment tank 10.
The absolute pressure is maintained at at least 45 mmHg or less, although it varies depending on the type of bacteria, the amount of cooling liquid supplied from the cooling can 21 to the biological treatment tank 10, etc., and cannot be determined unconditionally. As a result, part of the effluent or inflow that exceeds the upper limit of the optimum temperature (36°C) for aerobic biological treatment at a temperature of 40°C or higher will be evaporated, and the temperature will be below 36°C, which is the saturated steam temperature under this absolute pressure. temperature rise in the processing tank can be effectively suppressed. The cooling can 21 may be of any shape as long as the circulating fluid R is exposed to a reduced pressure inside the can, but since the circulating fluid R self-evaporates, It is preferable to have a structure in which the surface area of the circulating fluid R is as large as possible,
For example, a multi-stage cascade type as shown in Figure 2a and b, or a circulating fluid R as shown in Figure 2c.
There is a structure in which the water flows in the tangential direction of the can and flows down the can wall.

なお、循環液Rからの蒸発蒸気を真空装置23
で吸引する際に飛沫同伴が多い場合には、缶内に
おいて蒸発液面上に十分な空間を取つたり、缶内
または蒸気吸引流路24に第2図cに示すような
邪魔板25や金網、サイクロン等のデミスターを
設けて飛沫分離を行なうのが行ましい。また、冷
却缶21に供給する循環液Rの液量が多い場合
や、冷却する温度差が大きい時には、冷却缶21
を数室に分割するか、複数の冷却缶21を設けて
真空装置23の負荷を軽減したり、あるいは、冷
却缶21に循環液Rを供給する前に、該循環液R
を一旦脱気装置に通して静置したり緩速攪拌した
りすることにより、該循環液Rから可能な限りの
ガス体を分離し、真空装置23にかかる負荷を軽
減するのが好ましい。
Note that the evaporated vapor from the circulating fluid R is transferred to the vacuum device 23.
If there are a lot of droplets entrained when suctioning, make sure to leave enough space above the evaporated liquid level in the can, or install a baffle plate 25 or the like shown in Figure 2c inside the can or in the vapor suction channel 24. It is recommended to use a demister such as a wire mesh or cyclone to separate droplets. In addition, when the amount of circulating fluid R supplied to the cooling can 21 is large or when the temperature difference to be cooled is large, the cooling can 21
The load on the vacuum device 23 can be reduced by dividing the cooling canister 21 into several chambers, or by providing a plurality of cooling cans 21 to reduce the load on the vacuum device 23.
It is preferable to separate as much gas as possible from the circulating liquid R by once passing it through a deaerator and allowing it to stand still or to slowly stir it, thereby reducing the load on the vacuum device 23.

一方、上記真空装置23は、基本的には、上記
循環液Rから出る蒸発蒸気や不凝縮性ガスを冷却
缶21の外部に排出して缶内を所定の減圧状態に
する真空ポンプから成るもので、必要に応じて、
冷却缶21から排出される蒸発蒸気を凝縮させる
コンデンサーが付設され、また、冷却温度が低く
蒸発蒸気がそのままではコンデンサーで凝縮され
ない場合に該蒸気を凝縮可能な圧力まで圧縮させ
るブースターが、冷却缶21と該コンデンサーと
の間に設けられる。
On the other hand, the vacuum device 23 basically consists of a vacuum pump that discharges evaporated steam and non-condensable gas from the circulating liquid R to the outside of the cooling can 21 to maintain the inside of the can in a predetermined reduced pressure state. And, if necessary,
A condenser is attached to the cooling can 21 to condense the evaporated vapor discharged from the cooling can 21, and a booster is provided to compress the evaporated vapor to a pressure at which it can be condensed when the cooling temperature is low and the evaporated vapor cannot be condensed as it is in the condenser. and the capacitor.

上記真空ポンプとしては、ピストンポンプ、商
品名ナツシユポンプと称される液封型ポンプ、多
翼回転ポンプ、油回転ポンプ等の機械的ポンプ
と、スチームエゼクター、空気エゼクター、水エ
ゼクター等の噴射ポンプが挙げられ、これらを単
独にもしくは多段に組み合わせて使用することが
できる。ここで、ピストンポンプ、多翼回転ポン
プ、油回転ポンプ等の真空オイルを用いるものに
おいては、吸引流体に含まれた多量の蒸発蒸気が
ポンプ内で凝縮して真空オイルに混入し、その機
能が損なわれるおそれがあるので、冷却缶21と
該ポンプとの間に、デミスター、コンデンサー等
の水分除去装置を設けたり、該ポンプから排出さ
れた凝縮水を含んだオイルを遠心分離機、油水分
離機等に通して水を分離し、清浄になつたオイル
を該ポンプに戻すようにするのが好ましい。ま
た、液封型ポンプは、封水が本体内部を循環する
もので、吸引した蒸発蒸気をポンプ内で凝縮する
作用があるので吸引能力は高い上、凝縮水の混入
の問題もない。この液封型ポンプはその上流側に
空気エゼクターを付属させて使用される。さら
に、水エゼクターは、ポンプにより加圧された液
体をノズルより噴射させて真空を発生させるもの
であり、上記液封型ポンプと同様に、蒸発蒸気の
凝縮作用と不凝縮性ガスの吸引作用を具備すると
ともに、機械的に動く部分がなく構造も単純であ
り、上記真空ポンプとして適している。特に、凝
縮機能を増大させた形式のマルチゼツトコンデン
サーやゼツトエゼクターコンデンサーと称せられ
る水ジエツトコンデンサー(噴射凝縮器)が好ま
しい。
Examples of the vacuum pumps mentioned above include mechanical pumps such as piston pumps, liquid ring pumps (trade name: Natsushi Pump), multi-blade rotary pumps, and oil rotary pumps, and injection pumps such as steam ejectors, air ejectors, and water ejectors. These can be used alone or in combination in multiple stages. In devices that use vacuum oil, such as piston pumps, multi-blade rotary pumps, and oil rotary pumps, a large amount of evaporated vapor contained in the suction fluid condenses inside the pump and mixes with the vacuum oil, causing its function to deteriorate. To prevent this, a water removal device such as a demister or condenser may be installed between the cooling can 21 and the pump, or the oil containing condensed water discharged from the pump may be removed by a centrifuge or oil-water separator. or the like to separate the water and return the purified oil to the pump. In addition, in a liquid ring type pump, sealed water circulates inside the main body, and the pump has the effect of condensing the sucked evaporated vapor within the pump, so the suction capacity is high and there is no problem of condensed water getting mixed in. This liquid ring type pump is used with an air ejector attached to its upstream side. Furthermore, the water ejector generates a vacuum by injecting liquid pressurized by a pump from a nozzle, and, like the liquid ring pump described above, has the effect of condensing evaporated steam and suctioning non-condensable gas. In addition, it has no mechanically moving parts and has a simple structure, making it suitable as the vacuum pump described above. Particularly preferred are multijet condensers with increased condensing function and water jet condensers called jet ejector condensers.

また、上記液封型ポンプ及び水エゼクターは、
封水及び噴射水の温度により性能が変化し、水温
に相当する蒸気圧以下の到達圧力は得られない。
従つて、所定の圧力を得るには多量の冷水が必要
となるが、封水及び噴射水に循環させ、クーリン
グタワー等の冷却装置によつて蒸発蒸気の凝縮熱
を除去するようにするとよい。この場合、液封型
ポンプまたは水エゼクターからの循環封水または
循環噴射水に清水を使用すると、冷水循環系内の
汚れが回避でき、好都合である。また、液封型ポ
ンプまたは水エゼクターにおける凝縮水は循環水
に追加されるので、クーリングタワーを使用する
場合にも、冷水循環系に対して補給水は特に必要
ではなく、さらに、該凝縮水は、循環液Rや生物
学的処理槽10の処理水と異なつて一度蒸発した
ものであるから、スケール物質や懸濁物質をほと
んど含まず、スケール生成等の問題はほとんどな
い。第3図aは、水ジエツトコンデンサー26を
使用して構成した場合の真空装置23を示すもの
であり、図中27はクーリングタワー等の冷却装
置、28は液面コントローラである。また、第3
図bは、複数の水エゼクター29を多段に配して
構成した真空装置30を示すもので、図中31は
それぞれ気液分離ドラム、32はクーリングタワ
ー等の冷却装置、33は流量調整弁である。
In addition, the liquid ring type pump and water ejector mentioned above are
Performance changes depending on the temperature of the sealing water and the injection water, and the ultimate pressure below the vapor pressure corresponding to the water temperature cannot be obtained.
Therefore, a large amount of cold water is required to obtain a predetermined pressure, but it is preferable to circulate the water through sealing water and injection water, and to remove the heat of condensation of the evaporated steam using a cooling device such as a cooling tower. In this case, it is advantageous to use fresh water for the circulating seal water or circulating jet water from the liquid ring pump or water ejector, as this avoids contamination in the cold water circulation system. In addition, since the condensed water in the liquid ring pump or water ejector is added to the circulating water, makeup water is not particularly required for the chilled water circulation system even when using a cooling tower, and furthermore, the condensed water is Unlike the circulating fluid R and the treated water of the biological treatment tank 10, the water has been evaporated once, so it contains almost no scale matter or suspended matter, and there are almost no problems such as scale formation. FIG. 3a shows the vacuum device 23 constructed using a water jet condenser 26, in which 27 is a cooling device such as a cooling tower, and 28 is a liquid level controller. Also, the third
Figure b shows a vacuum device 30 configured by arranging a plurality of water ejectors 29 in multiple stages. In the figure, 31 is a gas-liquid separation drum, 32 is a cooling device such as a cooling tower, and 33 is a flow rate adjustment valve. .

次に本発明の方法について説明する。 Next, the method of the present invention will be explained.

本発明の方法は、無希釈あるいは低希釈の常温
の有機性廃水Wで、希釈状態でもそのBOD濃度
が約4000mg/以上になるものを処理するのに好
適なものである。以下、上記構成の装置に基づい
てこの方法を説明すると、まず、無希釈あるいは
原廃水流量の1〜2倍程度の希釈水で希釈した低
希釈(原廃水流量をQm3/Dとすると処理量は
2Q〜3Qとなる。)の有機性廃水Wを第1脱窒素
槽11を経て硝化槽12に送給し、ここで、有機
性廃水W中の有機性窒素とアンモニア性窒素を硝
化させるとともに、BOD成分の除去を行なう。
この際、硝化槽12内の処理水と微生物汚泥の混
合液に適宜流量の空気を吹き込むとともに、必要
に応じて少量の水酸化ナトリウム液Nを加えて混
合液のPHを7.5〜9.0程度に保ち、硝化条件を最良
の状態に維持する。
The method of the present invention is suitable for treating organic wastewater W that is undiluted or lightly diluted at room temperature and has a BOD concentration of about 4000 mg/min or more even in the diluted state. Below, we will explain this method based on the apparatus with the above configuration. First, we will explain the method using either no dilution or low dilution diluted with dilution water of about 1 to 2 times the flow rate of the raw wastewater (processing amount if the flow rate of raw wastewater is Qm 3 /D). teeth
It will be from 2Q to 3Q. ) is sent to the nitrification tank 12 via the first denitrification tank 11, where organic nitrogen and ammonia nitrogen in the organic wastewater W are nitrified and BOD components are removed. .
At this time, an appropriate amount of air is blown into the mixture of treated water and microbial sludge in the nitrification tank 12, and if necessary, a small amount of sodium hydroxide solution N is added to maintain the pH of the mixture at around 7.5 to 9.0. , maintain the best nitrification conditions.

次に、硝化されて生成した亜硝酸性窒素と硝酸
性窒素を含む硝化槽12内の混合液または処理水
の一部を循環液R(一般に20〜36Qの水量)とし
て第1脱窒素槽11に循環返送するが、その際、
該循環液Rの一部もしくは全部を冷却缶21を経
由させる。該冷却缶21に供給された上記循環液
Rは、缶内が真空装置23,30により45mmHg
以下の絶対圧に減圧されているので、缶内の圧力
と平衡に達するまで自己蒸発(フラツシユ蒸発)
し、蒸発潜熱が奪われて減温されるが、その際、
蒸発蒸気と不凝縮ガスが真空装置23,30によ
り缶外に取り出されて缶内の圧力が所定値に保持
され、循環液Rの温度は缶内の圧力に相当する飽
和水蒸気圧の温度近くまで下がる。そして、この
減温された循環液Rをポンプ22により、上記第
1脱窒素槽11に返送する。
Next, a part of the mixed liquid or treated water in the nitrification tank 12 containing nitrite nitrogen and nitrate nitrogen generated by nitrification is used as circulating liquid R (generally 20 to 36Q water volume) to the first denitrification tank 11. We will send it back to you, but in that case,
Part or all of the circulating liquid R is passed through the cooling can 21. The circulating fluid R supplied to the cooling can 21 is heated to 45 mmHg inside the can by the vacuum devices 23 and 30.
Since the pressure is reduced to the absolute pressure below, self-evaporation (flash evaporation) occurs until it reaches equilibrium with the pressure inside the can.
The latent heat of vaporization is taken away and the temperature decreases, but at that time,
The evaporated steam and non-condensable gas are taken out of the can by the vacuum devices 23 and 30, and the pressure inside the can is maintained at a predetermined value, and the temperature of the circulating fluid R is brought close to the saturated water vapor pressure temperature corresponding to the pressure inside the can. Go down. Then, the circulating fluid R whose temperature has been reduced is returned to the first denitrification tank 11 by the pump 22.

この第1脱窒素槽11内は嫌気性環境条件下に
維持されており、上記有機性廃水W、上記硝化槽
12より直接もしくは冷却缶21を経由して返送
された循環液R及び沈殿槽17より返送された返
送汚泥Sが混合された混合廃液が滞留されてい
る。そして、上記循環液R中の亜硝酸性窒素と硝
酸性窒素は、この第1脱窒素槽11内に流入した
BOD成分を有機炭素源として利用する通性嫌気
性菌によつて窒素ガスに還元され、これにより、
混合廃液は脱窒素されるとともに、BOD成分も
除去される。
The inside of this first denitrification tank 11 is maintained under anaerobic environmental conditions, including the organic wastewater W, the circulating liquid R returned from the nitrification tank 12 directly or via the cooling can 21, and the settling tank 17. A mixed waste liquid mixed with return sludge S returned from the tank is retained. Then, the nitrite nitrogen and nitrate nitrogen in the circulating fluid R flowed into this first denitrification tank 11.
BOD components are reduced to nitrogen gas by facultative anaerobes that use them as an organic carbon source;
The mixed waste liquid is denitrified and BOD components are also removed.

さらに、第1脱窒素槽11と硝化槽12を経た
混合液を第2脱窒素槽13に導入し、先の第1脱
窒素槽11で還元されなかつた残りの亜硝酸性窒
素と硝酸性窒素を窒素ガスに還元して脱窒素す
る。この場合、第2脱窒素槽13内を嫌気性雰囲
気に維持するとともに、内部の混合液に少量のメ
タノールMを補助的に添加して、亜硝酸性窒素及
び硝酸性窒素の窒素ガスへの還元速度を促進させ
る。
Furthermore, the mixed liquid that has passed through the first denitrification tank 11 and the nitrification tank 12 is introduced into the second denitrification tank 13, and the remaining nitrite nitrogen and nitrate nitrogen that were not reduced in the first denitrification tank 11 are added. is denitrified by reducing it to nitrogen gas. In this case, while maintaining the inside of the second denitrification tank 13 in an anaerobic atmosphere, a small amount of methanol M is supplementarily added to the mixed liquid inside to reduce nitrite nitrogen and nitrate nitrogen to nitrogen gas. Promote speed.

第2脱窒素槽13を経た脱窒素混合液を、次い
で、再曝気槽14に送給し、ここで空気攪拌下に
おいて短時間の曝気を施して、微生物汚泥の好気
化と、残余BOD成分の生物酸化と、微生物汚泥
に含蓄されたガスの脱気を行なうとともに、これ
をそのままあるいは水量10Q以下の希釈水Dで希
釈して次の沈殿槽17に送り、BOD成分及び窒
素の除去された処理水と、微生物汚泥とに沈降分
離する。そして、処理水は、必要に応じて高度処
理槽18を経由させて塩素減菌し、河川等に放流
する一方、沈降した微生物汚泥の一部もしくは全
量を返送汚泥Sとして第1脱窒素槽11に返送
し、槽内の微生物汚泥濃度を所定値に保持する。
ここで、微生物汚泥の一部のみを返送汚泥Sとす
る場合、余剰汚泥は適当な処理を行なつて廃棄す
る。
The denitrification mixture that has passed through the second denitrification tank 13 is then fed to the re-aeration tank 14, where it is aerated for a short time under air agitation to aerobize the microbial sludge and remove residual BOD components. In addition to performing biological oxidation and deaeration of the gas contained in the microbial sludge, the sludge is sent as it is or diluted with dilution water D with a water volume of 10Q or less and sent to the next settling tank 17, where BOD components and nitrogen are removed. Sedimentation separates into water and microbial sludge. Then, the treated water is sterilized with chlorine via the advanced treatment tank 18 as necessary and discharged into a river, etc., while a part or all of the settled microbial sludge is returned to the first denitrification tank 11 as return sludge S. The microbial sludge concentration in the tank is maintained at a predetermined value.
Here, when only a portion of the microbial sludge is used as return sludge S, excess sludge is appropriately treated and discarded.

このように、本発明の方法にあつては、生物学
的処理槽10からの流出液である循環液Rの一部
もしくは全部を冷却缶21に導いて所定温度まで
一旦減温し、その後に、この減温した循環液Rを
生物学的処理槽10に流入させるから、生物学的
処理槽10における液温を微生物の適温範囲に保
つことができ、処理効率を高く維持することがで
きる。また、循環液Rを、水エゼクター29等で
構成された真空装置23,30により減圧される
冷却缶21で減温するようにしたものであるか
ら、装置内にスケールが付着することがない。従
つて、装置を薬液等で洗浄したり分解したりする
必要がなく、維持管理が容易となり、ランニング
コストが低減されるとともに、長期間に亘る連続
運転が可能となる。
As described above, in the method of the present invention, part or all of the circulating fluid R, which is the effluent from the biological treatment tank 10, is guided to the cooling can 21 and once cooled to a predetermined temperature, and then Since the circulating liquid R whose temperature has been reduced is allowed to flow into the biological treatment tank 10, the liquid temperature in the biological treatment tank 10 can be maintained within the appropriate temperature range for microorganisms, and the treatment efficiency can be maintained at a high level. Further, since the temperature of the circulating fluid R is reduced in the cooling can 21 which is depressurized by the vacuum devices 23 and 30 composed of the water ejector 29 and the like, scale does not adhere to the inside of the device. Therefore, there is no need to clean the device with chemicals or the like or to disassemble it, making maintenance easier, reducing running costs, and enabling continuous operation over a long period of time.

ところで、上記においては、生物学的処理槽1
0の流出液として、硝化槽12からの処理水また
は処理水と微生物汚泥の混合液を冷却缶21に導
いて冷却したが、硝化槽12以外の槽からの処理
水(放流水を含む)や混合液もしくは返送汚泥S
を上記流出液として冷却して生物学的処理槽10
に流入させてもよい。また、上記において、第1
脱窒素槽11の代りに、第6図に示すような硝化
と脱窒素の両作用を行なう混合分解槽を設けても
よいし、沈殿槽17の代りに遠心分離機等の他の
濃縮装置を用いてもよい。さらに、上記生物学的
処理槽10は、複数の槽から成り、生物学的脱窒
処理を行なうものであつたが、単にBOD成分を
除去する場合は活性汚泥単槽であつてもよい。こ
の場合、冷却缶21に供給する生物学的処理槽の
流出液もしくは流入液は、沈殿槽17に流入する
前の微生物汚泥と処理水の混合液や返送汚泥Sと
する。
By the way, in the above, biological treatment tank 1
The treated water from the nitrification tank 12 or a mixed solution of treated water and microbial sludge was introduced into the cooling tank 21 and cooled as the effluent from the nitrification tank 12. Mixed liquid or returned sludge S
is cooled as the above-mentioned effluent to the biological treatment tank 10.
It may also be allowed to flow into the In addition, in the above, the first
Instead of the denitrification tank 11, a mixed decomposition tank that performs both nitrification and denitrification functions as shown in FIG. May be used. Furthermore, although the biological treatment tank 10 is made up of a plurality of tanks and is used for biological denitrification treatment, it may be a single activated sludge tank when simply removing BOD components. In this case, the effluent or inflow of the biological treatment tank supplied to the cooling can 21 is a mixture of microbial sludge and treated water before flowing into the settling tank 17, or a return sludge S.

また、原廃水を希釈して生物学的処理を行なう
場合には、沈殿槽17からの処理水または必要に
応じて高度処理槽18で高度処理された処理水
を、冷却缶21に供給して冷却し、これを上記原
廃水の希釈水として使用してもよい。
In addition, when biological treatment is performed by diluting raw wastewater, treated water from the settling tank 17 or, if necessary, treated water that has been highly treated in the advanced treatment tank 18 is supplied to the cooling can 21. It may be cooled and used as dilution water for the raw wastewater.

さらに、第4図は、廃水処理系や汚泥処理系に
おいて、生物学的処理槽10の前の工程に、加熱
等の熱処理を伴う装置34を設けたもので、生物
学的処理槽10に流入する流入液が高温の場合に
おける本発明の実施例を示す。上記熱処理を伴う
処理装置34としては、例えば、製鉄工業やガス
製造工業において、コークス炉ガス冷却工程から
排出されるアンモニア、フエノール、チオシア
ン、シアンや有機物質等を含んだガス液(安水)
を処理する廃水処理系におけるアンモニアスチー
ムストリツピング装置や、し尿、下水汚泥、余剰
汚泥を加熱して脱水性を向上させるポーチヤスプ
ロセスに代表される熱処理装置、さらにはジンマ
ーマン法と呼ばれる湿式酸化装置等が挙げられ、
該熱処理を伴う装置34と生物学的処理槽10と
の間には、他の処理装置があつても無論よい。
Furthermore, FIG. 4 shows a system in which a device 34 that performs heat treatment such as heating is installed in the process before the biological treatment tank 10 in a wastewater treatment system or sludge treatment system. An embodiment of the present invention is shown in which the influent is at a high temperature. The processing equipment 34 that involves the heat treatment is, for example, a gas liquid (ammonium water) containing ammonia, phenol, thiocyanide, cyanide, organic substances, etc. discharged from a coke oven gas cooling process in the iron and gas manufacturing industries.
Ammonia steam stripping equipment in wastewater treatment systems that treat wastewater, heat treatment equipment such as the Portias process that heats human waste, sewage sludge, and surplus sludge to improve dewatering performance, and wet oxidation equipment called the Zimmerman process. etc. are mentioned,
It goes without saying that another treatment device may be provided between the device 34 that involves heat treatment and the biological treatment tank 10.

またさらに、第5図は、化学工場廃水や食品工
場廃水等で原廃水そのものが高温の場合の実施例
を示すもので、基本的構成は第4図の実施例と同
一である。
Furthermore, FIG. 5 shows an embodiment in which the raw wastewater itself is at a high temperature, such as chemical factory wastewater or food factory wastewater, and the basic configuration is the same as the embodiment shown in FIG. 4.

また、上記各実施例は、微生物汚泥のみにより
廃水を処理するものであつたが、微生物汚泥と活
性炭とにより処理するようにしてもよい。さら
に、浮遊法ではなく、接触曝気法(固定床曝気
法)を利用してもよいが、その場合、返送汚泥S
や循環液Rがないので、第1図の実施例を適用す
る場合は、処理水を冷却して低希釈処理すればよ
く、無希釈処理する場合は、第4図や第5図の実
施例の方式を用いればよい。
Further, in each of the above embodiments, wastewater is treated using only microbial sludge, but it may be treated using microbial sludge and activated carbon. Furthermore, instead of the floating method, a contact aeration method (fixed bed aeration method) may be used, but in that case, the return sludge S
Since there is no water or circulating fluid R, when applying the embodiment shown in Figure 1, it is sufficient to cool the treated water and perform low dilution treatment, and when applying no dilution treatment, use the embodiments shown in Figures 4 and 5. The following method may be used.

以上説明したように、本発明にあつては、好気
性生物学的処理手段を含む生物学的処理槽の流出
液もしくは流入液を冷却缶に導いて45mmHg以下
の絶対圧の減圧下で減温し、その後に該液を生物
学的処理槽に流入させるようにしたから、処理系
内の液温を適宜に低く押えて微生物の活性を最適
に維持することができ、従つて処理効率を高く保
持することができる。しかも、装置内にスケール
が付着することがほとんどないから、装置の洗浄
や分解等が不要で維持管理が容易となり、ランニ
ングコストが低減されるとともに、長期間に亘つ
て装置を連続運転することができる等の効果を奏
する。
As explained above, in the present invention, the effluent or inflow of a biological treatment tank containing an aerobic biological treatment means is led to a cooling can and the temperature is reduced under a reduced pressure of 45 mmHg or less. Since the liquid is then allowed to flow into the biological treatment tank, the temperature of the liquid in the treatment system can be kept appropriately low to optimally maintain the activity of microorganisms, thus increasing the treatment efficiency. can be retained. Moreover, since there is almost no scale adhesion inside the equipment, there is no need to clean or disassemble the equipment, making maintenance easier, reducing running costs, and making it possible to operate the equipment continuously over long periods of time. It has the effect of being able to do things.

次に実施例と比較例を示して本発明をさらに具
体的に説明する。
Next, the present invention will be explained in more detail with reference to Examples and Comparative Examples.

循環液Rのみを全量冷却缶12に流入させた第
1図のもので1日当りの廃水処理規模が10Klの装
置と、該装置と同一処理規模で冷却缶21の代り
に熱交換器1を用いた第6図の従来の装置におい
て、し尿を2倍希釈(し尿量:希釈水量=1:
1)して1年間処理した。その結果、第1図の本
発明の装置では、上記処理期間中に装置を休止す
ることは一度もなく、しかも、第1脱窒素槽11
から沈殿槽17に至る全槽における水温は夏季で
も30〜35℃に保持することができた。これに対
し、従来の装置では、2週間に1回熱交換器1の
運転を休止して、化学薬品による洗浄を行なわな
いと、該熱交換器1の冷却効率が低下してしまい
上記水温を維持することができず、また、処理期
間中に熱交換器1に詰まりが生じ、これを分解清
掃する必要がたびたびあつた。
The system shown in Fig. 1, in which only the circulating fluid R flows in its entirety into the cooling can 12, has a wastewater treatment scale of 10 Kl per day, and the system has the same processing scale as the equipment, but uses the heat exchanger 1 instead of the cooling can 21. In the conventional device shown in Fig. 6, human waste is diluted twice (human waste amount: dilution water amount = 1:
1) and treated for one year. As a result, in the apparatus of the present invention shown in FIG. 1, the apparatus is never stopped during the above treatment period, and moreover,
The water temperature in all tanks from 1 to 17 could be maintained at 30 to 35°C even in summer. On the other hand, in conventional equipment, if the operation of the heat exchanger 1 is not stopped once every two weeks and cleaning with chemicals is performed, the cooling efficiency of the heat exchanger 1 decreases and the water temperature is lowered. Moreover, during the treatment period, the heat exchanger 1 became clogged, and it was often necessary to disassemble and clean it.

一方、希釈後のし尿は、BOD濃度5000〜6000
mg/、全窒素1800〜2200mg/であつたのに対
し、処理後は、上記いずれの装置においても、
BOD濃度60mg/以下、全窒素60mg/以下、
COD濃度350mg/以下であつた。しかし、従来
の装置では、熱交換器1の洗浄や分解清掃時に該
熱交換器1をバイパスして循環液Rを冷却せずに
運転すると、一時的に水温が上昇して処理水質が
かなり悪化し、BOD濃度180mg/、全窒素1100
mg/、COD濃度700mg/となり、活性汚泥の
活性低下が認められた。
On the other hand, human waste after dilution has a BOD concentration of 5000 to 6000.
mg/, total nitrogen was 1800-2200 mg/, but after treatment, in any of the above devices,
BOD concentration 60mg/or less, total nitrogen 60mg/or less,
The COD concentration was below 350mg/. However, with conventional equipment, if the heat exchanger 1 is bypassed during washing or disassembly cleaning of the heat exchanger 1 and is operated without cooling the circulating fluid R, the water temperature temporarily rises and the quality of the treated water deteriorates considerably. BOD concentration 180mg/, total nitrogen 1100
mg/, COD concentration was 700 mg/, and a decrease in activated sludge activity was observed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示すフローシー
ト、第2図a,b,cは冷却缶の断面略図、第3
図a,bは真空装置と冷却缶の構成例を示すフロ
ーシート、第4図及び第5図はそれぞれ本発明の
他の実施例を示すフローシート、第6図は従来の
装置のフローシートである。 10……生物学的処理槽、21……冷却缶、2
2……ポンプ(供給手段)、23,30……真空
装置、26……水ジエツトコンデンサー、27,
32……冷却装置、29……水エゼクター。
Figure 1 is a flow sheet showing one embodiment of the present invention, Figures 2 a, b, and c are schematic cross-sectional views of a cooling can, and Figure 3
Figures a and b are flow sheets showing configuration examples of a vacuum device and a cooling can, Figures 4 and 5 are flow sheets showing other embodiments of the present invention, and Figure 6 is a flow sheet of a conventional device. be. 10...Biological treatment tank, 21...Cooling can, 2
2... Pump (supply means), 23, 30... Vacuum device, 26... Water jet condenser, 27,
32...Cooling device, 29...Water ejector.

Claims (1)

【特許請求の範囲】 1 好気性生物学的処理手段を含む生物学的処理
槽の流出液または流入液を冷却缶において45mm
Hg以下の絶対圧下で一部フラツシユ蒸発させて
減温し、その後に該液を上記生物学的処理槽に流
入させることを特徴とする有機性廃水の生物学的
処理方法。 2 冷却缶から発生した蒸発蒸気を凝縮し、その
凝縮水を、冷却缶を減圧する真空装置の冷水循環
系に供給することを特徴とする特許請求の範囲第
1項記載の有機性廃水の生物学的処理方法。 3 好気性生物学的処理手段を含む生物学的処理
槽と、該生物学的処理槽の流出液または流入液を
45mmHg以下の絶対圧下で一部フラツシユ蒸発さ
せて減温する冷却缶と、該冷却缶を減圧する真空
装置と、該冷却缶で減温された上記液を上記生物
学的処理槽に流入させる供給手段とを具備して成
ることを特徴とする生物学的処理装置。 4 真空装置が、水エゼクターと、該水エゼクタ
ーの循環噴射水を冷却するクーリングタワー等の
冷却装置とから構成されて成ることを特徴とする
特許請求の範囲第3項記載の生物学的処理装置。 5 水エゼクターが水ジエツトコンデンサーであ
ることを特徴とする特許請求の範囲第4項記載の
生物学的処理装置。
[Scope of Claims] 1. The effluent or inflow of a biological treatment tank containing an aerobic biological treatment means is placed in a cooling can with a diameter of 45 mm.
1. A biological treatment method for organic wastewater, which comprises partially flash-evaporating the liquid under an absolute pressure of Hg or less to reduce the temperature, and then flowing the liquid into the biological treatment tank. 2. A living organism of organic wastewater according to claim 1, characterized in that evaporated steam generated from a cooling can is condensed and the condensed water is supplied to a cold water circulation system of a vacuum device that depressurizes the cooling can. Scientific processing method. 3. A biological treatment tank containing an aerobic biological treatment means, and the effluent or inflow of the biological treatment tank.
A cooling can whose temperature is lowered by flash evaporation in part under an absolute pressure of 45 mmHg or less, a vacuum device which reduces the pressure of the cooling can, and a supply for causing the liquid whose temperature has been reduced in the cooling can to flow into the biological treatment tank. A biological treatment device comprising: means. 4. The biological treatment device according to claim 3, wherein the vacuum device comprises a water ejector and a cooling device such as a cooling tower that cools the circulating jet water of the water ejector. 5. The biological treatment device according to claim 4, wherein the water ejector is a water jet condenser.
JP59093526A 1984-05-10 1984-05-10 Method and apparatus for biological treatment of organic waste water Granted JPS60238196A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59093526A JPS60238196A (en) 1984-05-10 1984-05-10 Method and apparatus for biological treatment of organic waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59093526A JPS60238196A (en) 1984-05-10 1984-05-10 Method and apparatus for biological treatment of organic waste water

Publications (2)

Publication Number Publication Date
JPS60238196A JPS60238196A (en) 1985-11-27
JPH0581317B2 true JPH0581317B2 (en) 1993-11-12

Family

ID=14084755

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59093526A Granted JPS60238196A (en) 1984-05-10 1984-05-10 Method and apparatus for biological treatment of organic waste water

Country Status (1)

Country Link
JP (1) JPS60238196A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2581636B2 (en) * 1992-09-09 1997-02-12 株式会社東洋製作所 High-concentration organic matter treatment method
JP5347547B2 (en) * 2009-02-13 2013-11-20 住友化学株式会社 Wastewater treatment method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4843288A (en) * 1971-10-01 1973-06-22
JPS5843288A (en) * 1981-09-10 1983-03-12 Ebara Infilco Co Ltd Treatment of organic waste water
JPS5962392A (en) * 1982-10-04 1984-04-09 Mitsubishi Heavy Ind Ltd Method for suppressing elevation of water temperature in biological treatment stage

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4843288A (en) * 1971-10-01 1973-06-22
JPS5843288A (en) * 1981-09-10 1983-03-12 Ebara Infilco Co Ltd Treatment of organic waste water
JPS5962392A (en) * 1982-10-04 1984-04-09 Mitsubishi Heavy Ind Ltd Method for suppressing elevation of water temperature in biological treatment stage

Also Published As

Publication number Publication date
JPS60238196A (en) 1985-11-27

Similar Documents

Publication Publication Date Title
KR101312966B1 (en) Two-stage anoxic membrane bio-reactor system for treating wastewater in combination with an anaerobic bath and return lines
WO2003093178A1 (en) Organic slurry treatment process
JP2006272177A (en) Method and system for removing biological nitrogen
CN101659495A (en) Membrane distillation bioreactor device and method
KR20200055191A (en) Non-discharge wastewater treatment using multi-step vacuum decompression evaporation concentration of high concentration wastewater
KR100422211B1 (en) Management Unit and Method of Foul and Waste Water
JP4106203B2 (en) How to remove nitrogen from water
KR100940123B1 (en) Floating catalysis sewage disposal facility system
JPH029879B2 (en)
KR19980083279A (en) Treatment method of high concentration organic wastewater and nutrients using immersion type microfiltration membrane-activated sludge process
JPH0581317B2 (en)
KR101948185B1 (en) Treatment of reverse osmosis concentrated water using Electro-Dialysis system and vacuum evaporation drying system
Raj et al. Synthetic dairy wastewater treatment using cross flow medium trickling filter
JP2004066030A (en) Method and equipment for removing nitrogen compound from wastewater
KR101679603B1 (en) Water treatment apparatus using cleaning powder and submersed membranes module
JPH0114836B2 (en)
JPH11333494A (en) Method and apparatus for biological dentrification of waste water
JP2016117016A (en) Recovery filtration unit
KR101444791B1 (en) wastewater treatment system
JPS6320199B2 (en)
JPH0114832B2 (en)
KR20090068124A (en) Biological treatment apparatus and biological treatment process of aqueous organic wastes
KR20010092160A (en) Sewage and waste water disposal plant
JP2003340485A (en) Method for treating organic waste water and apparatus therefor
JPS5919598A (en) Treatment of organic liquid waste