KR20200055191A - Non-discharge wastewater treatment using multi-step vacuum decompression evaporation concentration of high concentration wastewater - Google Patents

Non-discharge wastewater treatment using multi-step vacuum decompression evaporation concentration of high concentration wastewater Download PDF

Info

Publication number
KR20200055191A
KR20200055191A KR1020180138092A KR20180138092A KR20200055191A KR 20200055191 A KR20200055191 A KR 20200055191A KR 1020180138092 A KR1020180138092 A KR 1020180138092A KR 20180138092 A KR20180138092 A KR 20180138092A KR 20200055191 A KR20200055191 A KR 20200055191A
Authority
KR
South Korea
Prior art keywords
wastewater
concentration
concentrator
vacuum
evaporation
Prior art date
Application number
KR1020180138092A
Other languages
Korean (ko)
Other versions
KR102169490B1 (en
Inventor
양권석
양소연
Original Assignee
주식회사 태고
양소연
양권석
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 태고, 양소연, 양권석 filed Critical 주식회사 태고
Priority to KR1020180138092A priority Critical patent/KR102169490B1/en
Publication of KR20200055191A publication Critical patent/KR20200055191A/en
Application granted granted Critical
Publication of KR102169490B1 publication Critical patent/KR102169490B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • C02F1/046Treatment of water, waste water, or sewage by heating by distillation or evaporation under vacuum produced by a barometric column
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • C02F1/043Details
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • C02F1/048Purification of waste water by evaporation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • C02F11/13Treatment of sludge; Devices therefor by de-watering, drying or thickening by heating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F5/00Softening water; Preventing scale; Adding scale preventatives or scale removers to water, e.g. adding sequestering agents
    • C02F5/08Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)

Abstract

A zero liquid-discharge wastewater treatment system using multistep vacuum evaporation concentration of high-concentration wastewater, and a method for the same according to the present invention relate to zero liquid-discharge treatment for treating pollutants contained in the wastewater in high concentrations, such as nutritive salts including nitrogen and phosphorus, by multistep vacuum evaporation and concentration. More specifically, the present invention is configured with processes of pre-treatment, evaporation concentration, and post-treatment in order to treat high concentrations of nutritive salts such as nitrogen and phosphorus, wherein in order to process organic matters or highly concentrated concentrates generated from each process, a crystallization process is included. Thus, the present invention minimizes the volume of solids finally obtained and reuses condensed water for the processes, thereby reducing the amount of water used and alleviating environmental pollution.

Description

고농도 폐수의 다단계 진공 증발 농축을 이용한 무방류 폐수 처리시스템 {NON-DISCHARGE WASTEWATER TREATMENT USING MULTI-STEP VACUUM DECOMPRESSION EVAPORATION CONCENTRATION OF HIGH CONCENTRATION WASTEWATER}Non-discharged wastewater treatment system using multi-stage vacuum evaporation concentration of high concentration wastewater {NON-DISCHARGE WASTEWATER TREATMENT USING MULTI-STEP VACUUM DECOMPRESSION EVAPORATION CONCENTRATION OF HIGH CONCENTRATION WASTEWATER}

본 발명은 진공 증발 농축을 이용하여 질소 및 인이 포함된 영양염류 등 폐수 내의 고농도 오염물질을 처리하는 무방류 폐수 처리시스템에 관한 것으로서, 보다 구체적으로는 각종 폐수 처리 공정에서 발생되는 고농도의 농축수 처리 회수율을 높여 재이용하도록 함과 아울러 고농도 농축수에 의한 환경오염을 최소화하는 고농도 폐수의 다단계 진공 증발 농축을 이용한 무방류 폐수 처리시스템에 관한 것이다.The present invention relates to a non-discharged wastewater treatment system that treats high concentration contaminants in wastewater such as nutrient salts containing nitrogen and phosphorus using vacuum evaporation concentration, and more specifically, treatment of high concentration of concentrated water generated in various wastewater treatment processes. It relates to a non-discharged wastewater treatment system using multi-stage vacuum evaporation and concentration of high-concentration wastewater to increase reuse and reuse, and to minimize environmental pollution by high-concentration concentrated water.

일반적으로, 산업폐수, 축산폐수와 같은 고농도 난분해성 폐수 내에는 질소 및 인과 같은 영양염류가 포함되는 고농도의 오염물질이 다량 함유되어 있다.In general, high-concentration pollutants containing nutrients such as nitrogen and phosphorus are contained in high concentration non-degradable wastewater such as industrial wastewater and livestock wastewater.

이러한 오염물질을 제거하는 과정에서 부산물로 발생하는 고농도의 농축수가 그대로 하폐수 처리장으로 유입 시 처리장 내 수질을 악화시킴과 아울러 하폐수 처리 설비의 기능에 영향을 주어 처리 효율을 저하시킨다는 문제점이 있었다.In the process of removing these contaminants, high-concentration concentrated water generated as a byproduct deteriorates the water quality in the treatment plant when it flows into the sewage treatment plant and affects the function of the sewage treatment facility, thereby lowering the treatment efficiency.

이에 따라 농축수를 처리하여 폐수 처리 공정 등의 용수로 재활용하거나 생활용수로 사용할 수 있도록 농축수의 회수율을 높이기 위한 다양한 연구가 행해지고 있다.Accordingly, various studies have been conducted to increase the recovery rate of the concentrated water so that the concentrated water can be recycled as water for a wastewater treatment process or used as living water.

한국 특허등록 제465885호의 "하/폐수용 증발 농축 시스템" (2005.01.05)Korean Patent Registration No. 465885, "Evaporation and Concentration System for Wastewater / Wastewater" (2005.01.05) 한국 특허공개 제2016-26783호의 "폐수의 처리방법" (2016.03.09)Korean Patent Publication No. 2016-26783, "Wastewater Treatment Method" (2016.03.09) 한국 특허공개 제2001-65008호의 "역삼투시스템 및 증발농축법을 이용한 매립장 침출수 처리방법" (2001.07.11)Korean Patent Publication No. 2001-65008 "Reverse Osmosis System and Evaporation Concentration Method to Treat Landfill Leachate" (2001.07.11)

본 발명은 상기와 같은 문제점을 해결하기 위한 것으로서, 다단계 고농축 감압 증발 농축 공정을 통하여 고농도의 농축수를 효율적으로 처리 회수하여 공업용수 등으로 재활용하도록 함과 아울러 고농도 농축수에 기인한 환경문제를 저감하도록 하는 고농도 폐수의 다단계 진공 증발 농축을 이용한 무방류 폐수 처리시스템을 제공함에 있다.The present invention is to solve the above problems, through a multi-stage high-concentration reduced pressure evaporation and concentration process to efficiently recover and recover high-concentration concentrated water to be recycled as industrial water, and also reduce environmental problems caused by high-concentration concentrated water It is to provide a non-discharged wastewater treatment system using multi-stage vacuum evaporation and concentration of high-concentration wastewater.

상기와 같은 목적을 달성하기 위해 본 발명에 따른 고농도 폐수의 다단계 진공 증발 농축을 이용한 무방류 폐수 처리시스템은, 폐수 내 고농도로 질소와 인이 포함되는 영양염류를 제거하기 위하여 전처리, 증발 농축, 후처리 및 결정화의 4단계로 구성하되, 폐수를 1차 열교환 후 다단계 농축 즉, 1차 증발 농축과 2차 증발 농축을 통해서 고농축 시 각각의 농축기에 발생하는 스케일에 의한 문제를 해결하게 되며, 이에 따라 최종 농축수는 5% 이하로 농축이 가능함과 아울러 응축수는 폐수의 성상에 따라 재이용이 가능하게 하는 것을 특징으로 한다.In order to achieve the above object, a non-discharged wastewater treatment system using multi-stage vacuum evaporation of high concentration wastewater according to the present invention is pre-treated, concentrated by evaporation, and post-treated to remove nutrients containing nitrogen and phosphorus at high concentrations in the wastewater. And four stages of crystallization, which solves the problem caused by the scale occurring in each concentrator during high concentration through multi-stage concentration, that is, primary evaporation concentration and secondary evaporation concentration after primary heat exchange of wastewater. Concentrated water can be concentrated to 5% or less, and condensed water can be reused depending on the nature of the wastewater.

이상에서 살펴본 바와 같이 본 발명에 따르면, 전처리된 폐수를 열교환 후 1차 증발 농축과 2차 증발 농축에 이어 후처리를 함과 아울러 각 공정마다 결정화를 통해 수분함량 5% 이하의 고농도로 농축하여 최종적으로 얻어지는 고형분의 부피를 최소화하고 응축되는 물을 공정에 재사용할 수 있으므로 물의 사용량을 절감하고 그로 인한 환경오염을 줄일 수 있다.As described above, according to the present invention, the pre-treated wastewater is subjected to primary evaporation concentration and secondary evaporation concentration after heat exchange, followed by post-treatment, and concentrated to a high concentration of 5% or less of moisture content through crystallization in each process to finally It is possible to minimize the volume of solid content obtained by and reuse the condensed water in the process, thereby reducing the amount of water used and reducing environmental pollution.

또한, 이러한 과정에서 각 공정의 농축기에 발생하는 스케일 문제를 해결할 수 있을 뿐 아니라 각 진공 증발 농축 공정에서 스케일 방지를 위한 약품을 사용하지 않기 때문에 친환경적이라는 장점을 가진 것이다.In addition, it is possible to solve the scale problem occurring in the concentrator of each process in this process, and also has the advantage of being eco-friendly because no chemicals for preventing scale are used in each vacuum evaporation and concentration process.

도1은 본 발명에 따른 무방류 폐수 처리시스템을 개략적으로 도시한 도면
도2는 본 발명의 다단 증발 농축부를 개략적으로 도시한 도면
도3은 본 발명의 전처리부를 도시한 도면
도4는 본 발명의 결정화부를 개략적으로 도시한 도면
1 is a view schematically showing a non-discharged wastewater treatment system according to the present invention.
Figure 2 is a schematic view showing a multi-stage evaporation concentrator of the present invention
Figure 3 is a view showing a pre-processing unit of the present invention
Figure 4 schematically shows the crystallization unit of the present invention

이하, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명의 기술적 사상을 용이하게 실시할 수 있도록 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다. 다만, 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되는 것은 아니다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings so that those skilled in the art to which the present invention pertains can easily implement the technical spirit of the present invention. However, the present invention may be implemented in various different forms and is not limited to the embodiments described herein.

도1은 본 발명에 따른 무방류 폐수 처리시스템을 개략적으로 도시한 도면이고, 도2는 본 발명의 다단 증발 농축부를 개략적으로 도시한 도면이다.1 is a view schematically showing a zero-discharge wastewater treatment system according to the present invention, and FIG. 2 is a view schematically showing a multi-stage evaporative concentration unit of the present invention.

도면에 따르면, 본 발명의 고농도 폐수의 다단계 진공 증발 농축을 이용한 무방류 폐수 처리시스템은 폐수 내 고농도 질소 및 인과 같은 영양염류가 포함되는 오염물질을 제거하기 위하여 다단계 진공 증발 농축을 통해 폐수를 고농도로 감압 농축하여 5%의 고농축 농축수로 농축함과 아울러 95%는 증기로 응축하여 처리수로 재이용하는 처리시스템에 관한 것으로서, 이러한 처리시스템은 폐수 내 슬러지를 처리하고 그로부터 배출되는 농축수의 이온 총량을 1~2% 이내로 조절하는 전처리부(1); 상기 전처리부로부터 처리된 상등수는 다단계 증발 농축 즉, 1차 저감압 증발을 통하여 증발량을 최대화하고, 2차 고진공 감압을 통하여 고농도 폐수의 수분함량을 5% 이하로 농축하여 응축 배출하는 다단 증발 농축부(2); 상기 다단 증발 농축부에 의해 얻어진 응축수를 재이용수로 사용 가능하도록 역삼투를 통해 여과하는 후처리부(3); 및 상기 전처리부, 다단 증발 농축부, 후처리부에서 배출되는 슬러지/농축수를 결정화하여 부피를 최소화하는 결정화부(4);를 포함하여 구성된다.According to the drawings, a non-discharged wastewater treatment system using multi-stage vacuum evaporation and concentration of high-concentration wastewater of the present invention decompresses wastewater to high concentration through multi-stage vacuum evaporation and concentration to remove contaminants containing nutrients such as high concentration nitrogen and phosphorus in the wastewater. It is concentrated and concentrated with 5% of highly concentrated concentrated water, and 95% is condensed with steam and reused as treated water, which treats sludge in wastewater and treats the total amount of ions in the concentrated water discharged from it. Pre-processing unit (1) for controlling within 1 to 2%; The supernatant treated from the pre-treatment unit is multi-stage evaporative concentration, that is, multi-stage evaporation and concentration to maximize the evaporation through primary low-pressure evaporation, and condensate and discharge the moisture content of the high-concentration wastewater to 5% or less through secondary high-vacuum decompression. (2); A post-processing unit (3) for filtering the condensate obtained by the multi-stage evaporation concentration unit through reverse osmosis to be usable as reused water; And a pre-treatment unit, a multi-stage evaporation concentration unit, and a crystallization unit 4 that crystallizes sludge / concentrated water discharged from the post-treatment unit to minimize the volume.

이에 대하여 구체적으로 설명하면 다음과 같다.This will be described in detail as follows.

[1] 전처리부[1] preprocessing unit

전처리부(1)는 고농도 질소 및 인을 포함하는 영양염류가 내포된 폐수를 처리하되, 약품 응집 및 가압 부상에 의해 폐수 내의 유기물질이나 현탁입자와 같은 슬러지 고형물을 분리 제거하여 농축수의 총 이온의 농도가 1~2% 정도가 되도록 조절하는 반응조이다.The pretreatment unit 1 treats wastewater containing nutrient salts containing high concentrations of nitrogen and phosphorus, but separates and removes sludge solids such as suspended solids or organic substances in the wastewater by chemical aggregation and pressurized injury. It is a reaction tank that controls the concentration of 1 ~ 2%.

이러한 전처리부(1)는 응집제를 첨가하여 얻어진 플록을 가압 부상하여 분리하는 가압 부상부(11), 가압 부상을 이용하여 부상된 플록을 제거하는 슬러지 제거부(12), 폐수 내 잔존하는 유기물질 등을 마이크로버블 오존으로 산화 처리하는 마이크로버블조(13), 폐수 내에 존재하는 용존 유기화합물을 전기분해하여 제거하는 전기분해조(14)를 포함하나, 이러한 구성은 공지의 것으로서 자세한 설명은 생략하기로 한다.The pre-treatment unit 1 is a pressurized floating unit 11 for separating flocs obtained by adding flocculants by pressurized flotation, a sludge removing unit 12 for removing flocculent floats by using pressurized flotation, and organic substances remaining in the wastewater. It includes a microbubble tank 13 that oxidizes the back with microbubble ozone, and an electrolysis tank 14 that electrolyzes and removes dissolved organic compounds present in the wastewater, but this configuration is well known and detailed description is omitted. Shall be

[2] 다단 증발 농축부[2] multistage evaporative concentrators

다단 증발 농축부(2)는 전처리부(1)에서 슬러지 고형물(플록)이 제거된 고농도의 영양염류 폐수가 5% 이하로 농축 및 95% 이상 증발되도록 다단으로 증발 농축하는 것이며, 이러한 다단 증발 농축부(2)는 제1차 약진공 농축장치(10) 및 제2차 고진공 농축장치(20)로 구성된다.The multi-stage evaporation and concentration section 2 is a multi-stage evaporation and concentration so that the high concentration nutrient wastewater from which the sludge solids (floc) is removed in the pre-treatment section 1 is concentrated to 5% or less and evaporated more than 95%. The part 2 is composed of a first weak vacuum concentrator 10 and a second high vacuum concentrator 20.

여기에서, 상기 제1차 약진공 농축장치(10) 및 제2차 고진공 농축장치(20)는 본 출원인이 선출원한 출원번호 제2017-54143호 "스케일 및 거품 제거 기능이 구비된 진공 증발 농축장치"를 응용한 것으로서, 순환펌프(11,21)와, 농축기(12,22)와, 기액 분리기(13,23)와, 미세기포 발생기(14,24)와, 증기 재압축기(15,25), 거품 제거기(16,26) 및 응축기(17,27)를 기본 구성으로 한다.Here, the first weak vacuum concentrating device 10 and the second high vacuum concentrating device 20 are vacuum evaporation concentrators equipped with the function of removing scale and foam, as described in the application number 2017-54143 filed by the present applicant. As an application of ", circulating pump (11,21), concentrator (12,22), gas-liquid separator (13,23), micro-bubble generators (14,24), steam recompressor (15,25) , Defoamer (16,26) and condenser (17,27) as a basic configuration.

순환펌프(11,21)는 전처리부에 연결되는 폐수 유입관에 구비되어 농축기(12,22) 내부로 폐수를 공급함과 아울러 후술하는 기액 분리기(13,23)에 의해 기액 분리된 농축액을 농축기로 순환한다.The circulation pumps 11 and 21 are provided in the wastewater inlet pipe connected to the pre-treatment unit to supply wastewater to the inside of the concentrators 12 and 22, and to concentrate the concentrated liquid separated by the gas-liquid separators 13 and 23 described later as a concentrator. To cycle.

농축기(12,22)는 순환펌프에 의해 공급된 폐수를 열교환에 의해 가열하여 증발 농축함으로써 폐수 내 수분은 증발함과 아울러 가열 증기를 냉각 응축한다.The concentrators 12 and 22 heat the wastewater supplied by the circulation pump by heat exchange and evaporate to condense the moisture in the wastewater while cooling and condensing the heated steam.

기액 분리기(13,23)는 농축기에서 예열된 폐수를 진공 상태에서 증발 증기와 농축수로 분리한다.The gas-liquid separators 13 and 23 separate wastewater preheated in the concentrator into evaporated vapor and concentrated water in a vacuum.

미세기포 발생기(14,24)는 물레방아 타입으로 순환펌프와 농축기 사이에 설치되어 농축기 내부에 고착되는 스케일의 생성을 방지하도록 마이크로 버블을 공급한다. The micro-bubble generators 14 and 24 are water-mill type and are installed between the circulation pump and the concentrator to supply microbubbles to prevent the generation of scale adhered inside the concentrator.

즉, 순환펌프(11,21)에 의해 농축기(12,22)로 폐수를 공급 시 주기적으로 마이크로 버블을 주입하되 순환펌프에 의해 이송되는 폐수의 유속과 압력을 이용하여 마이크로 버블에 의한 충격파로 농축기 내부 및 연결 배관 내부에 고착된 스케일을 제거한다.That is, when the wastewater is supplied to the concentrators 12 and 22 by the circulation pumps 11 and 21, the microbubbles are periodically injected, but the shock wave by the microbubbles is concentrated using the flow velocity and pressure of the wastewater transferred by the circulation pump. Remove the scale stuck inside and inside the connecting pipe.

이러한 미세기포 발생기(14,24)는 다단 증발 농축부를 구성하는 제1,2차 농축장치에 설치된 농축기(12,22) 전단에 각각 설치되어 각 농축기에서 열교환 시 발생되는 스케일 문제를 2단으로 나누어 제거함으로써 효율을 높이되, 물레방아 형태의 무동력 발생기(14,24)로 생성되는 마이크로 버블에 의한 충격파로 배관 내에 쌓인 스케일을 추가적으로 제거하고 이를 서로 뭉치게 함으로써 스케일의 발생 빈도를 낮추어 장치의 운용 효율을 높이고 CIP(Clean In Place) 회수를 낮추어 유지관리 비용을 저감할 수 있도록 한다.These micro-bubble generators 14 and 24 are respectively installed at the front end of the concentrators 12 and 22 installed in the first and second concentrators constituting the multi-stage evaporative concentrator to divide the scale problem generated during heat exchange in each concentrator into two stages. By removing, the efficiency is increased, but the scale accumulated in the pipe is additionally removed by the shock wave generated by the microbubbles generated by the water-mill type non-power generators 14 and 24, and the scale is generated by lowering the frequency of the scale to reduce the operating efficiency of the device. And reduce the number of CIPs (Clean In Places) to reduce maintenance costs.

거품 제거기(16,26)는 기액 분리기의 후단에 설치되어 기액분리기에서 진공 상태에서 증기와 농축수로 분리되는 과정에서 배출된 증기 내에 포함된 다량의 거품을 제거하여 기액 분리기로 반송한다.The defoamers 16 and 26 are installed at the rear end of the gas-liquid separator to remove a large amount of bubbles contained in the steam discharged from the gas-liquid separator in the process of being separated into steam and concentrated water in a vacuum state and return to the gas-liquid separator.

증기 재압축기(15,25)는 기액 분리기의 후단에 설치되어 거품이 제거된 증발 증기를 재압축에 의해 가열 증기로 승온하여 다시 농축기로 공급한다. 이때, 상기 증기 재압축기(15,25)에서 압축된 공기는 포화 증기로서 농축기()로 유입 시 증기가 가진 잠열 모두 열교환하여 농축기 내부를 순환하는 폐수의 온도를 승온하는 기능을 한다.The steam recompressors 15 and 25 are installed at the rear end of the gas-liquid separator, and the evaporated steam from which bubbles have been removed is heated to heated steam by recompression and supplied to the concentrator again. At this time, the compressed air from the steam recompressors 15 and 25 functions as a saturated steam to heat up the temperature of wastewater circulating inside the concentrator by heat-exchanging all of the latent heat of the steam when entering the concentrator ().

응축기(17,27)는 농축기(증발기)에 연결되어 증기 재압축기(15,25)를 거쳐 농축기로 유입되는 압축 증기가 통과되면서 응축수로 배출되도록 하는 것이고, 이를 위하여 응축기는 증기 응축을 위해 외부로부터 공급받은 냉각수가 통과하는 구조로 이루어진다.The condensers 17 and 27 are connected to a concentrator (evaporator) so that the compressed steam flowing into the condenser passes through the steam recompressors 15 and 25 to be discharged as condensate. It consists of a structure through which the supplied cooling water passes.

이와 같이 상기 다단 증발 농축부(2)는 2단으로 구성되되, 각각 진공 농축 조건을 달리 제어하여 제1차 약진공 농축장치(10)에서는 증발량을 최대화하도록 함과 아울러 제2차 고진공 농축장치(20)에서는 95%까지 농축하도록 한다.As described above, the multi-stage evaporation concentrating unit 2 is composed of two stages, and each of the first weak vacuum concentrator 10 maximizes the amount of evaporation by controlling different vacuum concentration conditions, and the second high-vacuum concentrator ( In 20), it is concentrated to 95%.

도면에서 미설명부호 18은 열교환기이다.In the drawings, reference numeral 18 is a heat exchanger.

[3] 후처리부[3] post-processing unit

후처리부(3)는 다단 증발 농축부(2)에 의해 응축된 응축수를 재이용수로 사용하도록 여과하여 20%의 RO 농축수를 얻는 반응조이며, 이러한 후처리부로는 역삼투압장치가 사용된다.The post-treatment unit 3 is a reaction tank that obtains 20% RO concentrated water by filtering the condensate condensed by the multi-stage evaporation concentration unit 2 to be used as reuse water, and a reverse osmosis device is used as the post-treatment unit.

[4] 결정화부[4] crystallization unit

결정화부(4)는 전처리부(1)에서 발생되는 슬러지, 다단 증발 농축부(2)에 의해 95% 이상 증발된 농축수 및 후처리부(3)에서 발생되는 20%의 RO 농축수를 간접 건조방식(얇은 박막 건조)에 의해 결정화하여 부피를 최소화하는 장치이다.The crystallization section 4 indirectly dried the sludge generated in the pre-treatment section 1, concentrated water evaporated by 95% or more by the multi-stage evaporation concentration section 2, and 20% RO concentrated water generated in the post-treatment section 3 It is a device that minimizes the volume by crystallization by a method (dry thin film).

이러한 결정화부(4)는 5%의 고농도 농축수 등 결정화 대상이 투입되는 원통형의 반응기(41)와, 상기 반응기의 외측을 감싸도록 배치되고 농축수에 포함된 수분을 증발하도록 반응기에 스팀(열원)을 공급하는 가열기(42) 및 반응기 내부에 설치되어 농축수를 회전시키는 회전체(43:임펠러)로 이루어지며, 반응기의 가열 회전에 의해 회전체 내벽에 일정 두께로 쌓이는 슬러지는 외부로 배출 처리된다.The crystallization unit 4 is a cylindrical reactor 41 in which a crystallization target such as 5% high concentration concentrated water is inputted, and is arranged to surround the outside of the reactor and steam in the reactor to evaporate moisture contained in the concentrated water (heat source ) Is made of a heater (42) for supplying and a rotating body (43: impeller) that rotates concentrated water, installed inside the reactor, and sludge accumulated to a certain thickness on the inner wall of the rotating body by the heating rotation of the reactor is discharged to the outside. do.

즉, 가열기(스팀 공급부)에 의해 공급된 뜨거운 스팀이 농축수가 저장된 반응기(41)의 벽면에 맞닿게 하여 건조함으로써 벽면에 결정이 생성될 수 있도록 하면서 그 내부에 설치된 임펠러(43)에 의해 농축수가 결정 상태로 하부 낙하하게 하여 쌓이도록 하는바, 이러한 건조방식은 건조효율이 좋고, 농축수에 미량 내포된 금속 이온 등도 결정으로 성장하게 함으로써 분말 건조화를 수행할 수 있으며, 이에 따라 각 공정부에서 발생되는 슬러지/농축수의 부피를 최소화하여 배출할 수 있는데다가 용도에 따라서는 결정화된 분말을 재이용할 수 있게 된다.That is, while the hot steam supplied by the heater (steam supply unit) makes contact with the wall surface of the reactor 41 where the concentrated water is stored and is dried, crystals can be generated on the wall surface, and the concentrated water is supplied by the impeller 43 installed therein. It is made to accumulate by falling down in a crystalline state, and this drying method has good drying efficiency, and can also perform powder drying by allowing metal ions, etc., contained in a trace amount in concentrated water to grow into crystals. It can be discharged by minimizing the volume of sludge / concentrated water, and depending on the application, the crystallized powder can be reused.

다음으로, 본 발명에 따른 다단계 진공 증발 농축을 이용한 무방류 폐수 처리시스템을 이용하여 고농도 폐수를 처리하는 방법에 대하여 설명하기로 한다.Next, a method of treating high concentration wastewater using a zero-discharge wastewater treatment system using multi-stage vacuum evaporation concentration according to the present invention will be described.

[1] 전처리[1] pretreatment

우선, 고농도 질소 및 인을 포함하는 영양염류가 포함된 폐수를 효율적으로 처리하기 위하여 전처리를 한다.First, pretreatment is performed to efficiently treat wastewater containing nutrient salts containing high concentration nitrogen and phosphorus.

즉, 약품(고분자 응집제)을 이용하여 폐수 내 슬러지를 플록으로 응집 후 상부로 가압 부상시켜 고액 분리하여 고농도 폐수 내에 포함된 고형물을 제거함으로써 고형물 농도를 1% 이하로 처리하고, 폐수 내 잔존하는 유기물질 및 휘발성 물질을 마이크로버블 오존으로 산화처리하여 무해화하며, 전기분해에 의해 폐수 내의 스케일 유발물질을 염으로 안정화하여 스케일의 유발을 최소화한다.In other words, the sludge in the wastewater is flocculated with a floc using a chemical (polymer flocculant) and then pressurized to the top to separate solids and remove solids contained in the high concentration wastewater to treat the solids concentration to 1% or less and remain organic in the wastewater The substances and volatile substances are oxidized with microbubble ozone to make them harmless, and by electrolysis, the scale-causing substances in the wastewater are stabilized with salt to minimize the induction of scale.

이에 따라 농축수의 총 이온의 농도가 1~2% 정도가 되도록 조절된다.Accordingly, the concentration of total ions in the concentrated water is adjusted to be about 1 to 2%.

[2] 다단계 증발 농축[2] multi-stage evaporative concentration

이어서, 상기 전처리 공정을 통해 고형물이 제거된 폐수(상등수)를 다단계 증발 농축에 의해 수분함량 5% 이하로 농축하여 고농축 영양염류 폐수를 얻는다.Subsequently, the wastewater (supernatant) from which solids have been removed through the pretreatment process is concentrated to a moisture content of 5% or less by multi-step evaporative concentration to obtain a highly concentrated nutrient wastewater.

① 1차 약진공 농축① Primary weak vacuum concentration

고형물이 제거된 폐수를 진공도 500㎜Hg, 온도 80~85℃에서 증발 농축하여 65~70% 농축을 행한다.The waste water from which solids have been removed is concentrated by evaporation at a vacuum degree of 500 mmHg and a temperature of 80 to 85 ° C. to perform 65 to 70% concentration.

즉, 도2에 도시된 바와 같이 순환펌프(11)에 의해 공급되는 폐수는 미세기포 발생기(14)를 통해 마이크로 버블화된 후 상기 조건에 따라 농축기(12)에서 열교환이 이루어지고 기액 분리기(13)에 의해 액체와 증기로 분리되며, 상기 액체는 순환펌프를 통해 유입되는 폐수와 함께 순환되고 증기는 거품분리기(16)를 통해 거품이 분리된 후 증기 재압축기(15)를 통해 온도 100℃에서 107℃로 가압하여 다시 농축기(12)로 이송되며, 마이크로 버블화된 폐수와 열교환을 하여 재사용되도록 한다.That is, as shown in Figure 2, the wastewater supplied by the circulation pump 11 is microbubbled through the microbubble generator 14, and heat exchange is performed in the concentrator 12 according to the above conditions, and the gas-liquid separator 13 ) Is separated into liquid and steam, and the liquid is circulated together with the wastewater flowing through the circulation pump, and the steam is separated from the foam through the foam separator 16 and then at a temperature of 100 ° C. through the steam recompressor 15. Pressurized to 107 ° C and transferred to the concentrator 12 again, and exchanged with micro-bubble wastewater to be reused.

② 2차 고진공 농축② Secondary high vacuum concentration

상기 1차 약진공 농축 공정에서 저감압 증발을 통해 65~70% 정도 증발된 폐수를 1차 공정보다 높은 진공 상태 및 낮은 온도 즉, 진공도 700㎜Hg, 온도 65~70℃에서 상기 ①의 공정과 마찬가지의 방법으로 증발 농축하여 95% 이상 농축을 행한다.The wastewater evaporated about 65 ~ 70% through low pressure evaporation in the first weak vacuum concentration process and the process of ① in vacuum condition and lower temperature, ie, vacuum degree 700㎜Hg, temperature 65 ~ 70 ℃. It is concentrated by evaporation in the same manner and concentrated to 95% or more.

이와 같이 다단 증발 농축 공정을 통해 수분함량을 95% 이상 제거되도록 증발 농축함에 따라 5% 이하의 고농축수(고농축 영양염류 폐수)를 얻게 된다.As described above, as the water content is evaporated and concentrated to remove more than 95% of the moisture content through the multi-stage evaporative concentration process, high-concentrated water (high-concentrated nutrient wastewater) is obtained.

아울러, 본원발명은 상기한 바와 같이 1차 약진공 농축, 2차 고진공 농축으로 나누어 농축을 실시하는바, 이는 처음부터 고진공으로 농축하게 되면 폐수에 포함된 이온과 고형물에 의한 스케일이 대량으로 발생함에 따른 급격한 농축 효율의 저하를 방지하기 위해서이며, 이에 따라 진공증발 농축 시에 발생하는 스케일 문제를 제거함과 동시에 고농도로 농축할 수 있는 것이다.In addition, the present invention performs concentration by dividing into a first weak vacuum concentration and a second high vacuum concentration as described above, which, when concentrated from the beginning to high vacuum, causes a large scale due to ions and solids contained in the wastewater. This is to prevent the rapid decrease in concentration efficiency, and accordingly, it is possible to remove the scale problem that occurs during vacuum evaporation and to concentrate at a high concentration.

[3] 후처리[3] Post-treatment

다음으로, 상기 다단 증발 농축 공정에서 응축된 유출수를 재이용 가능하도록 역삼투(RO) 여과, 오존 마이크로버블을 이용하여 휘발성 물질을 제거한다.Next, volatiles are removed using reverse osmosis (RO) filtration and ozone microbubble to reuse the condensed effluent in the multi-stage evaporative concentration process.

즉, 증발 농축 시 발생되는 뜨거운 응축수는 바로 재이용이 가능할 수도 있으나, 고농도 폐수 속에 포함되어 있는 휘발성 물질은 COD 유발물질이므로 RO 여과를 행하거나 또는 마이크로 버블 오존에 의해 대략 10분 동안 산화처리함으로써 COD 및 색도 등을 처리함으로써 완전히 무해화하여 재이용하도록 할 수 있다.That is, the hot condensate generated during evaporation and concentration may be immediately re-used, but since volatile substances contained in high-concentration wastewater are COD-inducing substances, CO filtration is performed by performing RO filtration or oxidizing with microbubble ozone for approximately 10 minutes. By treating chromaticity or the like, it can be completely made harmless and reused.

아울러, 역삼투막을 사용하여 RO 여과 시에는 약 20% 정도의 농축수가 발생할 수 있는데, 이때 발생되는 농축수는 후공정인 결정화 공정으로 보내어 재처리함으로써 외부로 발생하는 고농축 폐수를 자체 처리할 수 있게 된다.In addition, about 20% of concentrated water may be generated during RO filtration using a reverse osmosis membrane, and the generated concentrated water can be sent to a crystallization process, which is a subsequent process, to be reprocessed to self-treat highly concentrated wastewater generated outside. .

[4] 결정화 : 간접 건조[4] Crystallization: Indirect drying

아울러, 상기 전처리, 다단 증발 농축 및 후처리 공정에서 발생된 슬러지/농축수를 간접 건조방식에 의해 결정화하여 수분함유율을 저하(부피 최소화)시킨다.In addition, the sludge / concentrated water generated in the pre-treatment, multi-stage evaporation concentration, and post-treatment processes is crystallized by an indirect drying method to lower the moisture content (minimize the volume).

즉, 상기 전처리 공정에서 발생되는 슬러지, 다단 증발 농축 공정을 통해 얻어진 95% 이상 농축된 농축수(고농축 영양염류 폐수) 및 후처리 공정에서 발생되는 20%의 RO 농축수를 반응기에 투입하고 반응기 벽면에 스팀을 가하면서 회전시키면 농축수에 포함된 수분이 벽면에 얇은 막을 형성하면서 건조가 이루어지며, 이 막이 벽면에 일정한 두께 이상이 되면 반응기 내부의 임펠러에 의해 결정 상태로 하부로 낙하하여 쌓이고 이들이 완전히 건조되면 배출한다. 이때 배출되는 건조물(결정화된 분말)은 완전히 멸균 건조된 상태에 있게 된다.That is, the sludge generated in the pre-treatment process, 95% or more concentrated concentrated water (highly concentrated nutrient wastewater) obtained through the multi-stage evaporative concentration process, and 20% RO concentrated water generated in the post-treatment process are introduced into the reactor and the reactor wall surface. When rotating while applying steam to the water, the moisture contained in the concentrated water forms a thin film on the wall, and drying is performed. When the film becomes more than a certain thickness on the wall, it falls down to the crystal state by the impeller inside the reactor and accumulates. Drain when dry. At this time, the dried product (crystallized powder) to be discharged is completely sterile dried.

상기와 같이 전처리, 다단 증발 농축, 후처리 공정을 통해 얻어지는 응축수는 처리수인 원수와 거의 동일한 수질을 가짐에 따라 공장 등에서 재이용 가능하게 되며, 이러한 시스템 및 방법은 고농도 폐수, 고농도 세척 폐수를 비롯하여 화력발전소나 탈황스크러버에서 배출되는 폐수, 하수처리수 재이용을 위한 RO 공정에서의 농축수, 해수담수화 시설의 RO 농축수, 음식물 탈리액 폐수, 가공공정의 절삭유 폐수, 전자도금 공정의 세척액 폐수 등에 적용될 수 있다.As described above, the condensate obtained through the pre-treatment, multi-stage evaporation concentration, and post-treatment process can be reused in factories, etc., as it has almost the same water quality as the raw water, and these systems and methods include high-concentration wastewater, high-concentration washing wastewater, and thermal power. It can be applied to wastewater discharged from power plants or desulfurization scrubbers, concentrated water from RO processes for reuse of sewage treatment water, RO concentrated water from seawater desalination plants, food desalination wastewater, cutting oil wastewater from processing processes, and washing fluid wastewater from electroplating processes. .

1 : 전처리부 2 : 다단 증발 농축부
3 : 후처리부 4 : 결정화부
10 : 제1차 약진공 농축장치 20 : 제2차 고진공 농축장치
11,21 : 순환펌프 12,22 : 농축기(증발기)
13,33 : 기액 분리기 14,24 : 미세기포 발생기
15,25 : 증기 재압축기 16,26 : 거품 제거기
17,27 : 응축기
DESCRIPTION OF SYMBOLS 1 Pre-processing part 2 Multi-step evaporation concentration part
3: post-processing unit 4: crystallization unit
10: 1st weak vacuum concentrator 20: 2nd high vacuum concentrator
11,21: Circulation pump 12,22: Concentrator (evaporator)
13,33: gas-liquid separator 14,24: micro-bubble generator
15,25: steam recompressor 16,26: defoamer
17,27: condenser

Claims (5)

폐수 내 슬러지를 처리하고 그로부터 배출되는 농축수의 이온 총량을 1~2% 이내로 조절하는 전처리부(1);
상기 전처리부로부터 처리된 상등수를 2단의 진공 증발 농축에 의해 고농도로 감압 농축하여 수분함량 5% 이하로 응축 배출하는 다단 증발 농축부(2);
상기 다단 증발 농축부에 의해 얻어진 응축수를 재이용수로 사용 가능하도록 역삼투를 통해 여과하는 후처리부(3); 및
상기 전처리부, 다단 증발 농축부, 후처리부에서 배출되는 슬러지/농축수를 결정화하여 부피를 최소화하는 결정화부(4);를 포함하며,
상기 다단 증발 농축부(2)는 제1차 약진공 농축장치(10) 및 제2차 고진공 농축장치(20)로 구성된 것을 특징으로 하는 고농도 폐수의 다단계 진공 증발 농축을 이용한 무방류 폐수 처리시스템.
A pre-treatment unit (1) for treating sludge in the wastewater and adjusting the total amount of ions of the concentrated water discharged therefrom to within 1 to 2%;
A multi-stage evaporation concentrating unit (2) for condensing and draining the supernatant treated from the pre-treatment unit under reduced pressure to a high concentration by vacuum evaporation concentration in two stages to a moisture content of 5% or less;
A post-processing unit (3) for filtering the condensed water obtained by the multi-stage evaporation concentration unit through reverse osmosis to be usable as reused water; And
Includes a crystallization unit (4) to minimize the volume by crystallization of the sludge / concentrated water discharged from the pre-treatment unit, the multi-stage evaporation concentration unit, and the post-treatment unit.
The multi-stage evaporation concentration unit (2) is a first weak vacuum concentrator (10) and a second high vacuum concentrator (20), characterized in that it consists of a multi-stage vacuum evaporation of high-concentration wastewater using a non-discharged wastewater treatment system.
제1항에 있어서,
상기 제1차 약진공 농축장치(10) 및 제2차 고진공 농축장치(20)는,
전처리부에 연결되어 폐수를 공급 순환하는 순환펌프(11,21);
상기 순환펌프에 의해 공급된 폐수를 증발 농축하여 폐수 내 수분을 증발하고 가열 증기를 냉각 응축하는 농축기(12,22);
상기 농축기에서 예열된 폐수를 진공 상태에서 증발 증기와 농축수로 분리하는 기액 분리기(13,23);
상기 순환펌프와 농축기 사이에 설치되어 농축기 내부에 고착되는 스케일의 생성을 방지하도록 마이크로 버블을 공급하는 미세기포 발생기(14,24);
상기 기액 분리기의 후단에 설치되어 증발 증기를 재압축에 의해 가열 증기로 승온하여 농축기로 공급하는 증기 재압축기(15,25); 및
상기 농축기에 연결되어 증기 재압축기를 거쳐 유입되는 압축 증기를 응축 배출하는 응축기(17,27);를 포함함을 특징으로 하는 고농도 폐수의 다단계 진공 증발 농축을 이용한 무방류 폐수 처리시스템.
According to claim 1,
The first weak vacuum concentrator 10 and the second high vacuum concentrator 20,
Circulation pumps connected to the pre-treatment unit to supply and circulate wastewater (11,21);
A concentrator (12,22) for evaporating and concentrating the wastewater supplied by the circulation pump to evaporate moisture in the wastewater and cooling and condensing the heated steam;
A gas-liquid separator (13,23) for separating the wastewater preheated in the concentrator into evaporated steam and concentrated water in a vacuum;
A microbubble generator (14,24) installed between the circulation pump and the concentrator to supply microbubbles to prevent generation of scale adhered inside the concentrator;
A steam recompressor (15,25) installed at a rear end of the gas-liquid separator to heat the evaporated steam to heated steam by recompression and supply it to a concentrator; And
Non-discharged wastewater treatment system using multi-stage vacuum evaporation and concentration of high-concentration wastewater, characterized in that it comprises; condensers (17,27) connected to the condenser to condensate and discharge the compressed steam flowing through the steam recompressor.
제2항에 있어서,
상기 제1차 약진공 농축장치(10)는 고형물이 제거된 폐수를 진공도 500㎜Hg, 온도 80~85℃에서 증발 농축하여 65~70% 농축을 행하도록 구성된 것을 특징으로 하는 고농도 폐수의 다단계 진공 증발 농축을 이용한 무방류 폐수 처리시스템.
According to claim 2,
The first weak vacuum concentrator 10 is a multi-stage vacuum of high-concentration wastewater characterized in that it is configured to evaporate and concentrate the wastewater from which solids have been removed at a vacuum degree of 500 mmHg and a temperature of 80 to 85 ° C to perform 65 to 70% concentration. Effluent-free wastewater treatment system.
제2항에 있어서,
상기 제2차 고진공 농축장치(20)는 상기 제1차 약진공 농축장치를 통해 저감압 증발된 폐수를 진공도 700㎜Hg, 온도 65~70℃에서 증발 농축하여 95% 농축을 행하도록 구성된 것을 특징으로 하는 고농도 폐수의 다단계 진공 증발 농축을 이용한 무방류 폐수 처리시스템.
According to claim 2,
The second high vacuum concentrator 20 is configured to perform 95% concentration by evaporating and condensing the reduced pressure evaporated wastewater through the first weak vacuum concentrator at a vacuum degree of 700 mmHg and a temperature of 65 to 70 ° C. Non-discharged wastewater treatment system using multi-stage vacuum evaporation and concentration of high concentration wastewater.
제1항에 있어서, 상기 결정화부(4)는,
원통형의 반응기(41);
상기 반응기의 외측을 감싸도록 배치되고 농축수에 포함된 수분을 증발하도록 반응기에 스팀을 공급하는 가열기(42); 및
상기 반응기 내부에 설치되어 농축수를 회전시키는 회전체(43);를 포함함을 특징으로 하는 고농도 폐수의 다단계 진공 증발 농축을 이용한 무방류 폐수 처리시스템.
The crystallization unit (4) according to claim 1,
A cylindrical reactor 41;
A heater 42 disposed to surround the outside of the reactor and supplying steam to the reactor to evaporate moisture contained in the concentrated water; And
Non-discharged wastewater treatment system using multi-stage vacuum evaporation and concentration of high-concentration wastewater, comprising; a rotating body (43) installed inside the reactor to rotate the concentrated water.
KR1020180138092A 2018-11-12 2018-11-12 Non-discharge wastewater treatment using multi-step vacuum decompression evaporation concentration of high concentration wastewater KR102169490B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180138092A KR102169490B1 (en) 2018-11-12 2018-11-12 Non-discharge wastewater treatment using multi-step vacuum decompression evaporation concentration of high concentration wastewater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180138092A KR102169490B1 (en) 2018-11-12 2018-11-12 Non-discharge wastewater treatment using multi-step vacuum decompression evaporation concentration of high concentration wastewater

Publications (2)

Publication Number Publication Date
KR20200055191A true KR20200055191A (en) 2020-05-21
KR102169490B1 KR102169490B1 (en) 2020-10-26

Family

ID=70910290

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180138092A KR102169490B1 (en) 2018-11-12 2018-11-12 Non-discharge wastewater treatment using multi-step vacuum decompression evaporation concentration of high concentration wastewater

Country Status (1)

Country Link
KR (1) KR102169490B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220019214A (en) * 2020-08-07 2022-02-16 주식회사 성광이엔에프 Rotary disc-type crystallizer system using micro bubble
KR20220123947A (en) 2021-03-02 2022-09-13 주식회사 웨스코 Continuous filtration system
CN116573803A (en) * 2023-06-06 2023-08-11 江苏博厚环保科技有限公司 High ammonia nitrogen wastewater treatment process and equipment

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102601857B1 (en) * 2022-08-30 2023-11-16 주식회사 부강테크 Zero Liquid Discharge Treatment System of Wastewater from Used Lithium-Ion Battery Recycling Process

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200165008Y1 (en) 1997-11-05 2000-01-15 김복득 Artificial stion using a concrete waste matters
KR20010065008A (en) * 1999-12-20 2001-07-11 홍상복 A treatment method of leachates discharged from landfill by using reverse osmosis system and evaporation method
KR100387030B1 (en) * 2001-01-06 2003-06-18 주식회사 한국엔비텍 Wastewater evaporation concentration and drying plant
KR100465885B1 (en) 2004-08-12 2005-01-13 한영교 Graduation system for wastewater
KR20170077860A (en) * 2017-06-26 2017-07-06 두산중공업 주식회사 An apparatus for evaporative concentration of treating water using hot lime softening and a method for evaporative concentration of treating water using thereof
KR101904156B1 (en) * 2017-04-27 2018-10-04 주식회사 에어로워터스 Vacuum evaporation apparatus with function of removing the scale and bubble

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200165008Y1 (en) 1997-11-05 2000-01-15 김복득 Artificial stion using a concrete waste matters
KR20010065008A (en) * 1999-12-20 2001-07-11 홍상복 A treatment method of leachates discharged from landfill by using reverse osmosis system and evaporation method
KR100387030B1 (en) * 2001-01-06 2003-06-18 주식회사 한국엔비텍 Wastewater evaporation concentration and drying plant
KR100465885B1 (en) 2004-08-12 2005-01-13 한영교 Graduation system for wastewater
KR101904156B1 (en) * 2017-04-27 2018-10-04 주식회사 에어로워터스 Vacuum evaporation apparatus with function of removing the scale and bubble
KR20170077860A (en) * 2017-06-26 2017-07-06 두산중공업 주식회사 An apparatus for evaporative concentration of treating water using hot lime softening and a method for evaporative concentration of treating water using thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220019214A (en) * 2020-08-07 2022-02-16 주식회사 성광이엔에프 Rotary disc-type crystallizer system using micro bubble
KR20220019215A (en) * 2020-08-07 2022-02-16 주식회사 성광이엔에프 Vaporization system for treating high salinity and high concentration wastewater
KR20220123947A (en) 2021-03-02 2022-09-13 주식회사 웨스코 Continuous filtration system
CN116573803A (en) * 2023-06-06 2023-08-11 江苏博厚环保科技有限公司 High ammonia nitrogen wastewater treatment process and equipment

Also Published As

Publication number Publication date
KR102169490B1 (en) 2020-10-26

Similar Documents

Publication Publication Date Title
KR102169490B1 (en) Non-discharge wastewater treatment using multi-step vacuum decompression evaporation concentration of high concentration wastewater
Subramani et al. Treatment technologies for reverse osmosis concentrate volume minimization: A review
EP2374761A2 (en) Zero liquid discharge water treatment system and method
KR101602216B1 (en) Stacked type vertical tube falling film evaporator, zero liquid discharging equipment comprising the same, and zero liquid discharging method using the same
CN102260006B (en) Method for treating heavy-metal-containing wastewater membrane filtration concentrated liquid
CN102030441A (en) Method for treating wastewater in production of sebacic acid
US20150274541A1 (en) Methods for treating bioreactor wastewater streams
CN109011668B (en) Crystallized salt separation and purification system based on high-salt-content wastewater
JPH10323664A (en) Wastewater-recovering apparatus
CN101659495A (en) Membrane distillation bioreactor device and method
CN107226581B (en) Zinc-containing wastewater treatment method, treatment system and application
CN110550799A (en) method and device for treating ammonia-containing wastewater
CN211226804U (en) Membrane concentrate minimizing processing system
CN206521360U (en) Desulphurization for Coal-fired Power Plant waste water and Wastewater Form Circulating Cooling Water Zero discharging system
CN113277665A (en) Method and device for treating high-concentration high-salinity wastewater through electrolytic evaporation
ES2754898A2 (en) Zero liquid discharge treatment process to recover water from a contaminated liquid effluent for subsequent reuse (Machine-translation by Google Translate, not legally binding)
CN105036444B (en) Minimizing and recycling Treated sewage reusing Zero-discharge treating process
KR20090018403A (en) Apparatus and method for purifying waste-water using a distillation under reduced pressure
CN206447720U (en) Dyeing waste water zero discharge treatment device
JPH0114836B2 (en)
CN110642479A (en) Membrane concentrated solution reduction treatment system and treatment process thereof
CN105152377A (en) Sewage purifying and recycling system
CN215365294U (en) Zero liquid discharge processing system of pelletizing plant desulfurization waste water of high water recovery rate
CN219709323U (en) Concentrated water recovery system of nitrogen and phosphorus wastewater treatment system
CN104355445B (en) A kind of Coal Chemical Industry haline water purification process technique and special purpose device

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant