JPH0580539B2 - - Google Patents

Info

Publication number
JPH0580539B2
JPH0580539B2 JP60070407A JP7040785A JPH0580539B2 JP H0580539 B2 JPH0580539 B2 JP H0580539B2 JP 60070407 A JP60070407 A JP 60070407A JP 7040785 A JP7040785 A JP 7040785A JP H0580539 B2 JPH0580539 B2 JP H0580539B2
Authority
JP
Japan
Prior art keywords
powder
atmosphere
oxygen
mixing
pulverization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP60070407A
Other languages
Japanese (ja)
Other versions
JPS61231129A (en
Inventor
Koji Hayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP60070407A priority Critical patent/JPS61231129A/en
Publication of JPS61231129A publication Critical patent/JPS61231129A/en
Publication of JPH0580539B2 publication Critical patent/JPH0580539B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] この発明は、たとえばTi、Alおよび希土類元
素などの酸素との親和性に富む元素を含む焼結金
属の製造方法に関する。 [従来の技術および発明が解決しようとする問題
点] たとえば、Ti、Alあるいは希土類元素などの
酸素との親和性が強い元素を構成要素とする焼結
体の製造に際しては、従来より、製造過程におい
て大気中の酸素とこれらの元素とが反応し、酸化
物を形成したり、吸着ガスの汚染等が生じ、目的
の特性を有する焼結体を得ることが困難であつ
た。この問題を、TiNi形状記憶合金を例にとつ
て説明する。 TiNi系形状記憶合金では、組成が0.1%ずれる
と、マルテンサイト変態温度が約10℃変化すると
言われており、したがつて正確に組成を調整する
ことが重要である。ところで、粉末冶金法による
TiNi系形状記憶合金の製造では、粉末冶金法本
来の特徴として偏析等のない均一な組成の合金を
得られることが期待される。 しかしながら、「粉体および粉末冶金」第30巻
第6号第6頁ないし第10頁および同第31巻第3号
第6頁ないし第8頁に記載されているように、現
実には、従来の粉末冶金法では、目的とする特性
を有するTiNi系形状記憶合金を得ることはでき
なかつた。これは、合金製造過程において、酸素
との親和性が特に強いTiが酸素と結合し、TiO2
またはTi4Ni2Oなどの酸化物を形成し、合金組成
のずれを引起こすためと考えられている。 上述の問題、すなわち酸素の侵入による組成の
変化は、TiNi系形状記憶合金の製造時に限らず、
Ti、Alおよび希土類元素などの酸素との親和性
が強い元素を含む焼結体の製造一般において問題
となつていた。 それゆえに、この発明の目的は、酸素の影響を
排除し、それによつて所望の特性を有する焼結金
属を確実に得ることが可能な易酸化性元素を含む
焼結金属の製造方法を提供することにある。 [問題点を解決するための手段および作用] 本願発明者は、上記問題を鋭意検討した結果、
粉末の粉砕および混合、粉末成形ならびに焼結の
一連の工程を、大気との接触を断つた不活性雰囲
気下において行なうことにより、酸素の影響を効
果的に抑制し、それによつて確実に所望の特性を
具備し得る、易酸化性元素を含む焼結金属の製造
方法を見出した。 第2図は、Ti−50原子%Ni合金の粉末冶金に
よる製造方法におけるボールミル処理時間と焼結
体中の酸素含有量との関係を示す図である。第2
図において曲線Aは原料として−325メツシユの
Ti2粉と、平均粒度約2μmのカーボニルNi粉(酸
素量は0.10%)を用いた場合の結果を示し、曲線
は同一のカーボニルNi粉と−100メツシユの
TiH2粉とを用いた場合の結果を示す。第2図か
ら明らかなように、いずれの場合にも、ボールミ
ル処理時間が長くなるにつれて、焼結体の酸化が
急速に進行することがわかる。これは、粉末の進
行に伴ない粉末が微粉化され、その結果比表面積
の増大により粉末自体の活性度が増加すること、
ならびに粉砕に伴ない粉体の温度が上昇すること
が原因と考えられる。 上述のような知見の下に、本願発明者は、粉末
の粉砕および混合、粉末成形ならびに焼結の一連
の工程を、大気に触れさすことなく不活性雰囲気
下で処理すれば、含有酸素量の極めて少ない焼結
体を得ることができることを見出した。 また、好ましくは、粉末の粉砕、混合および成
形を、たとえば工業的に比較的得やすい低温度で
ある173K〜273Kの範囲内の低温雰囲気下で行な
い、かつ粉砕処理中の温度上昇を5℃以内に抑制
することにより、焼結体中の酸素含有量をより一
層効果的に低下させることができる。これは、粉
体の粉砕に伴なう発熱の影響が予想以上に大きい
と考えられ、したがつて逆にこの温度上昇を、た
とえばボールミル全体を冷却するなどして何らか
の形態で阻止することにより、粉砕に伴なう酸化
の進行を抑制することが可能となるからである。 第3図は、この粉砕処理における冷却の効果を
示す図である。第3図において、曲線Cは従来法
による場合のボールミル処理時間と焼結体の酸素
含有量との関係を示し、曲線Dはこの発明の製造
方法においてさらに粉砕・混合処理および粉末成
形に際し冷却を行なつた場合の結果を示す。第3
図から明らかなように、粉砕・混合処理および粉
末成形に際し粉末を冷却することにより、ボール
ミル処理時間を長くしたとしても、得られた焼結
体中の酸素含有量はさほど増加しないことがわか
る。 なお、この発明では、粉末の粉砕および混合、
粉末成形ならびに焼結の一連の工程が、大気との
接触を断つた不活性雰囲気下で行なわれるが、該
不活性雰囲気は、たとえばArまたは窒素ガスに
より形成することができる。 なお、上述した第2図および第3図の結果は、
TiNi系形状記憶合金についてのものであるが、
他のTi、Alおよび希土類元素などの酸素との親
和性の強い元素を含む焼結金属の製造に際しても
同様のことが言えることは言うまでもない。 次に、第1図を参照してこの発明の製造方法を
実施するための装置の一例を説明する。第1図に
示した装置では、粉砕処理を行なうためのボール
ミル1が冷却装置2を収容する囲繞部6内に配置
されている。したがつて、粉砕処理に際し粉末を
低温に保持することが可能とされている。また、
ボールミル1により粉砕された微粉末を成形する
ためのプレス装置3と、プレス装置3により得ら
れた成形体を焼結するための焼結炉4とが、ボー
ルミル1および冷却装置2とともに囲繞部6内に
配置されている。該囲繞部6には、ガス導入ライ
ン7およびガス排出ライン8が接続されており、
ガス導入ライン7よりたとえばArガスを導入し、
ガス排出ライン8より囲繞部6内の空気を追出
し、しかる後コツク7a,8aを閉じることによ
り、囲繞部6内を不活性雰囲気下にすることが可
能とされている。そして囲繞部6内を必要に応じ
て冷却装置2により173〜273Kの温度まで冷却す
る。 したがつて、第1図に示した装置を用いれば、
粉末の粉砕および混合、粉末成形ならびに焼結の
一連の工程が、大気との接触を断つた不活性雰囲
気下で、かつ低温雰囲気の下に行なわれ得ること
がわかる。 [実施例の説明] 粒度は−325メツシユ(平均粒度22μm)と−
100メツシユ(130μm)の2種のTiH2粉(H2
はいずれも約3.9%、酸素量はそれぞれ、0.53お
よび0.20重量%)と、約2μmのカーボニルNi粉
(酸素量は約0.10重量%)とを、Ti−50原子%Ni
(TiH2−54重量%Ni)となるように配合し、第
1図に示した冷却装置2内に配置されたボールミ
ル1で粉砕・混合した。なお、ボールミルのポツ
トおよびボールは、いずれもWC−10重量%Co超
硬合金からなるものを用いた。また、粉砕および
混合にあたつては、該処理中の温度変化を5℃以
内とするように粉末の温度制御をした。 上述のようにして得られた粉末を圧力1t/cm2
て成形し、さらに1448Kの温度で真空焼結した。 なお、上述のボールミルによる粉砕および混
合、成形ならびに真空焼結に際しては、周囲を
250KのArガスによる不活性雰囲気とした。 比較のために、同一の原料を用い、大気と接触
させた状態で、ボールミルによる粉砕および混
合、成形および焼結を行なつた。この比較例の方
法では、ボールミルによる粉砕および混合に際し
ては、溶媒としてエチルアルコールを用いた湿式
処理で行ない、ポツト内をN2ガスで置換してお
いた。また、粉砕および混合の後に真空乾燥機に
より乾燥し、しかる後成形を行なつた。成形条件
および焼結条件は、周囲雰囲気を除いては上述し
た実施例と同様の条件で処理した。 上述のような実施例および比較例により得られ
た各焼結体中の酸素含有量を表に示す。
[Industrial Field of Application] The present invention relates to a method for producing a sintered metal containing elements having high affinity for oxygen, such as Ti, Al, and rare earth elements. [Prior art and problems to be solved by the invention] For example, when producing a sintered body whose constituent elements are elements that have a strong affinity for oxygen, such as Ti, Al, or rare earth elements, the production process has traditionally been In the process, oxygen in the atmosphere reacts with these elements to form oxides and contaminate the adsorbed gas, making it difficult to obtain a sintered body with desired properties. This problem will be explained using TiNi shape memory alloy as an example. In TiNi-based shape memory alloys, it is said that if the composition shifts by 0.1%, the martensitic transformation temperature changes by about 10°C, so it is important to adjust the composition accurately. By the way, powder metallurgy
In the production of TiNi-based shape memory alloys, it is expected that an alloy with a uniform composition without segregation can be obtained as an inherent feature of powder metallurgy. However, as described in "Powder and Powder Metallurgy" Vol. 30, No. 6, pages 6 to 10 and Vol. 31, No. 3, pages 6 to 8, in reality, conventional It was not possible to obtain a TiNi-based shape memory alloy with the desired properties using powder metallurgy. This is because Ti, which has a particularly strong affinity for oxygen, combines with oxygen during the alloy manufacturing process, resulting in TiO 2
It is also thought that this is because oxides such as Ti 4 Ni 2 O are formed, causing a shift in alloy composition. The above-mentioned problem, that is, changes in composition due to oxygen intrusion, is not limited to the production of TiNi-based shape memory alloys.
This has been a problem in general production of sintered bodies containing elements that have a strong affinity for oxygen, such as Ti, Al, and rare earth elements. Therefore, it is an object of the present invention to provide a method for producing sintered metals containing easily oxidizable elements, which makes it possible to eliminate the influence of oxygen and thereby ensure that sintered metals with desired properties are obtained. There is a particular thing. [Means and effects for solving the problem] As a result of intensive study of the above problem, the inventor of the present application has determined that
By performing the series of steps of powder crushing and mixing, powder compaction, and sintering in an inert atmosphere with no contact with the atmosphere, the influence of oxygen is effectively suppressed, thereby ensuring the desired result. We have discovered a method for producing a sintered metal containing easily oxidizable elements that can have the following properties. FIG. 2 is a diagram showing the relationship between the ball milling time and the oxygen content in the sintered body in the powder metallurgical manufacturing method of a Ti-50 atomic % Ni alloy. Second
In the figure, curve A is -325 mesh as raw material.
The results are shown when using Ti 2 powder and carbonyl Ni powder (oxygen content is 0.10%) with an average particle size of about 2 μm.
The results are shown when using TiH 2 powder. As is clear from FIG. 2, in both cases, as the ball milling time becomes longer, the oxidation of the sintered body progresses more rapidly. This is because the powder becomes finer as it progresses, and as a result, the activity of the powder itself increases due to an increase in the specific surface area.
This is also thought to be caused by an increase in the temperature of the powder as it is pulverized. Based on the above-mentioned knowledge, the inventor of the present application has determined that if the series of steps of powder pulverization and mixing, powder compaction, and sintering are performed in an inert atmosphere without exposure to the atmosphere, the amount of oxygen content can be reduced. It has been found that an extremely small amount of sintered body can be obtained. Preferably, the powder is pulverized, mixed, and molded in a low-temperature atmosphere within the range of 173K to 273K, which is a low temperature that is relatively easily obtained industrially, and the temperature rise during the pulverization process is preferably within 5°C. By suppressing the amount of oxygen in the sintered body, the oxygen content in the sintered body can be reduced even more effectively. This is because the effect of heat generation associated with powder pulverization is thought to be greater than expected, and therefore, by countering this temperature rise in some way, such as by cooling the entire ball mill, This is because it becomes possible to suppress the progress of oxidation accompanying pulverization. FIG. 3 is a diagram showing the effect of cooling in this pulverization process. In FIG. 3, curve C shows the relationship between the ball milling time and the oxygen content of the sintered body in the case of the conventional method, and curve D shows the relationship between the ball milling time and the oxygen content of the sintered body in the case of the conventional method, and the curve D shows the relationship between the ball milling time and the oxygen content of the sintered body in the case of the conventional method. The results are shown below. Third
As is clear from the figure, even if the ball milling time is increased by cooling the powder during pulverization/mixing and powder compaction, the oxygen content in the obtained sintered body does not increase significantly. In addition, in this invention, pulverization and mixing of powder,
The series of steps of powder compaction and sintering are carried out in an inert atmosphere with no contact with the atmosphere, and the inert atmosphere can be formed by, for example, Ar or nitrogen gas. The results shown in Figures 2 and 3 above are as follows:
Regarding TiNi-based shape memory alloy,
Needless to say, the same thing can be said in the production of sintered metals containing other elements with strong affinity for oxygen, such as Ti, Al, and rare earth elements. Next, an example of an apparatus for carrying out the manufacturing method of the present invention will be explained with reference to FIG. In the apparatus shown in FIG. 1, a ball mill 1 for carrying out a grinding process is arranged in an enclosure 6 that accommodates a cooling device 2. Therefore, it is possible to maintain the powder at a low temperature during the pulverization process. Also,
A press device 3 for molding the fine powder pulverized by the ball mill 1 and a sintering furnace 4 for sintering the compact obtained by the press device 3 are connected to the surrounding part 6 together with the ball mill 1 and the cooling device 2. located within. A gas introduction line 7 and a gas discharge line 8 are connected to the surrounding part 6,
For example, Ar gas is introduced from the gas introduction line 7,
By expelling the air inside the surrounding section 6 through the gas exhaust line 8 and then closing the pots 7a and 8a, it is possible to create an inert atmosphere inside the surrounding section 6. Then, the inside of the surrounding part 6 is cooled to a temperature of 173 to 273 K by the cooling device 2 as necessary. Therefore, if the device shown in Fig. 1 is used,
It can be seen that the series of steps of powder grinding and mixing, powder compaction and sintering can be carried out under an inert atmosphere without contact with the atmosphere and under a low temperature atmosphere. [Explanation of Examples] The particle size is -325 mesh (average particle size 22 μm) and -
Two types of TiH 2 powder (H 2 amount is approximately 3.9%, oxygen amount is 0.53 and 0.20% by weight, respectively) of 100 mesh (130μm) and carbonyl Ni powder of approximately 2μm (oxygen amount is approximately 0.10% by weight) ) and Ti−50 atomic%Ni
(TiH 2 -54% by weight Ni) and pulverized and mixed in a ball mill 1 placed in a cooling device 2 shown in FIG. The pot and ball of the ball mill were both made of WC-10% by weight Co cemented carbide. Furthermore, during pulverization and mixing, the temperature of the powder was controlled so that the temperature change during the treatment was within 5°C. The powder obtained as described above was molded at a pressure of 1 t/cm 2 and further vacuum sintered at a temperature of 1448K. In addition, during the above-mentioned crushing and mixing using the ball mill, molding, and vacuum sintering, please be careful of the surroundings.
An inert atmosphere was created using Ar gas at 250K. For comparison, the same raw materials were ground and mixed in a ball mill, molded and sintered in contact with the atmosphere. In the method of this comparative example, pulverization and mixing using a ball mill were performed by wet processing using ethyl alcohol as a solvent, and the inside of the pot was replaced with N 2 gas. After pulverization and mixing, the mixture was dried in a vacuum dryer, and then molded. The molding conditions and sintering conditions were the same as those in the above-mentioned examples except for the surrounding atmosphere. The table shows the oxygen content in each sintered body obtained in the Examples and Comparative Examples as described above.

【表】 上記表から、比較例すなわち従来法では、ボー
ルミル処理時間が長くなるにつれて酸素含有量が
直線的に増加しているのに対して、実施例ではボ
ールミル処理時間が長くなつても酸素含有量の増
加は見られず、ボールミル処理開始時から酸化が
ほとんど進行していないことがわかる。したがつ
て、ボールミル処理開始時の酸素量をより低くし
ておけば、酸素含有量がさらに低められた焼結体
を得ることができると考えられる。 なお、この実施例により得られたTi−50Ni焼
結体の密度はほぼ100%であり、従来の粉末冶金
法において精製されるTi4Ni2OX、TiNi3および
TiO2などの異質相の生成も見られず、したがつ
てマルテンサイト変態温度のずれなどの問題も生
じないことが確認された。 [発明の効果] 以上のように、この発明によれば、粉末の粉砕
および混合、粉末成形ならびに焼結の一連の工程
が、大気との接触を断つた不活性雰囲気下で行な
われるので、酸素含有量が低く、したがつて所望
の特性を有する易酸化性元素を含む焼結金属を得
ることが可能となる。
[Table] From the above table, it can be seen that in the comparative example, that is, the conventional method, the oxygen content increases linearly as the ball milling time increases, whereas in the example, the oxygen content increases even as the ball milling time increases. No increase in the amount was observed, indicating that oxidation had hardly progressed from the start of the ball milling process. Therefore, it is considered that if the amount of oxygen at the start of the ball milling process is lowered, a sintered body with a lower oxygen content can be obtained. The density of the Ti-50Ni sintered body obtained in this example is almost 100%, which is higher than that of Ti 4 Ni 2 O x , TiNi 3 and
It was confirmed that no heterogeneous phase such as TiO 2 was observed, and therefore no problems such as a shift in martensitic transformation temperature occurred. [Effects of the Invention] As described above, according to the present invention, a series of steps of powder pulverization and mixing, powder compaction, and sintering are performed in an inert atmosphere that is cut off from contact with the atmosphere. It becomes possible to obtain a sintered metal containing easily oxidizable elements in a low content and thus having the desired properties.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明を実施するための装置の一
例を示す概略構成図である。第2図は、従来法に
おけるボールミル処理時間と焼結体中の酸素含有
量との関係を示す図である。第3図は、粉末の粉
砕および混合に際して冷却した場合の効果を示す
図である。 1はボールミル、2は冷却装置、3はプレス装
置、4は焼結炉を示す。
FIG. 1 is a schematic configuration diagram showing an example of an apparatus for carrying out the present invention. FIG. 2 is a diagram showing the relationship between the ball milling time and the oxygen content in the sintered body in the conventional method. FIG. 3 is a diagram showing the effect of cooling during pulverization and mixing of powder. 1 is a ball mill, 2 is a cooling device, 3 is a press device, and 4 is a sintering furnace.

Claims (1)

【特許請求の範囲】 1 粉末の粉砕および混合、乾燥粉末の成形なら
びに焼結の一連の工程により、易酸化性元素を含
む焼結金属を製造する方法において、 前記粉砕中の温度上昇を5℃以内に抑えつつ、
前記粉砕、前記混合および前記成形を173K〜
273Kの温度の雰囲気下で行ない、かつ 前記一連の工程を大気との接触を断つた不活性
雰囲気下において行なうことを特徴とする、易酸
化性元素を含む焼結金属の製造方法。 2 前記不活性雰囲気を、Ar、窒素、He、H2
CH4およびCO2からなる群から選択されるガスに
より形成する、特許請求の範囲第1項記載の易酸
化性元素を含む焼結金属の製造方法。
[Claims] 1. A method for producing a sintered metal containing an easily oxidizable element by a series of steps of pulverizing and mixing powder, forming dry powder, and sintering, wherein the temperature rise during the pulverization is 5°C. While keeping it within
The grinding, the mixing and the molding were carried out at 173K~
1. A method for producing a sintered metal containing an easily oxidizable element, characterized in that the process is carried out in an atmosphere at a temperature of 273K, and the series of steps are carried out in an inert atmosphere with no contact with the atmosphere. 2 The inert atmosphere may be Ar, nitrogen, He, H 2 ,
A method for producing a sintered metal containing an easily oxidizable element according to claim 1, which is formed using a gas selected from the group consisting of CH 4 and CO 2 .
JP60070407A 1985-04-03 1985-04-03 Manufacture of sintered metal containing easily oxidizable element Granted JPS61231129A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60070407A JPS61231129A (en) 1985-04-03 1985-04-03 Manufacture of sintered metal containing easily oxidizable element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60070407A JPS61231129A (en) 1985-04-03 1985-04-03 Manufacture of sintered metal containing easily oxidizable element

Publications (2)

Publication Number Publication Date
JPS61231129A JPS61231129A (en) 1986-10-15
JPH0580539B2 true JPH0580539B2 (en) 1993-11-09

Family

ID=13430581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60070407A Granted JPS61231129A (en) 1985-04-03 1985-04-03 Manufacture of sintered metal containing easily oxidizable element

Country Status (1)

Country Link
JP (1) JPS61231129A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62109901A (en) * 1985-11-07 1987-05-21 Nippon Tungsten Co Ltd Manufacture of sintered alloy

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5021313A (en) * 1973-06-27 1975-03-06
JPS5120291A (en) * 1974-08-12 1976-02-18 Noto Kobunshi Kogyo Kk Dorono dentoyohooruno seizoho
JPS5769707A (en) * 1980-10-20 1982-04-28 Toshiba Corp Manufacture of permanent magnet alloy

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5021313A (en) * 1973-06-27 1975-03-06
JPS5120291A (en) * 1974-08-12 1976-02-18 Noto Kobunshi Kogyo Kk Dorono dentoyohooruno seizoho
JPS5769707A (en) * 1980-10-20 1982-04-28 Toshiba Corp Manufacture of permanent magnet alloy

Also Published As

Publication number Publication date
JPS61231129A (en) 1986-10-15

Similar Documents

Publication Publication Date Title
JP2588272B2 (en) Method for producing Fe-Co based sintered magnetic material
US6010661A (en) Method for producing hydrogen-containing sponge titanium, a hydrogen containing titanium-aluminum-based alloy powder and its method of production, and a titanium-aluminum-based alloy sinter and its method of production
JP3435223B2 (en) Method for producing sendust-based sintered alloy
CN106498220A (en) Nickelous carbonate is used for the method for improving sintering copper-manganese damping alloy performance
CN106424716B (en) Improve the method for copper-manganese damping sintered alloy performance with ferrous oxalate
JPH0580539B2 (en)
CN106424712A (en) Process for improving structure and property uniformity of manganin sintered damping alloy
JP3998972B2 (en) Method for producing sputtering tungsten target
JP3432905B2 (en) Method for producing sendust-based sintered alloy
CN112030054A (en) TiZrMnFe quaternary getter alloy material and preparation method and application thereof
CN106392064B (en) Improve the method for high manganese copper-manganese damping alloy sintering character with nickel oxalate
JP2905043B2 (en) Manufacturing method of permanent magnet powder material
JPH04362105A (en) Production of fine intermetallic compound powder
JPH0525563A (en) Production of sintered zn-mn alloy
JPS6233298B2 (en)
US4236924A (en) Production of single phase alloy parts by reduction of oxides
JPH0742530B2 (en) Manufacturing method of low oxygen alloy compact
JPH1046208A (en) Production of ti-ni base alloy sintered body
JP7363059B2 (en) Manufacturing method of thermoelectric conversion material
JPS62132304A (en) Manufacture of sintered rare earth element magnet
JPH086121B2 (en) Method for producing low oxygen metal chromium powder
JP3062743B2 (en) Hydrogen-containing titanium-aluminum alloy powder, method for producing the same alloy powder, sintered titanium-aluminum alloy, and method for producing the same
JPH01275702A (en) Production of sintered powder material
JPS6358897B2 (en)
KR960010597B1 (en) Method of manufacturing tough and porous getter by means of hydrogen pulverization and getters produced thereby

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees