JPS62109901A - Manufacture of sintered alloy - Google Patents

Manufacture of sintered alloy

Info

Publication number
JPS62109901A
JPS62109901A JP60250199A JP25019985A JPS62109901A JP S62109901 A JPS62109901 A JP S62109901A JP 60250199 A JP60250199 A JP 60250199A JP 25019985 A JP25019985 A JP 25019985A JP S62109901 A JPS62109901 A JP S62109901A
Authority
JP
Japan
Prior art keywords
powder
carbon
sintered
mixed
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60250199A
Other languages
Japanese (ja)
Inventor
Shigeya Sakaguchi
茂也 坂口
Hiroshi Yoshino
吉野 啓
Kazunori Daiho
大穂 和則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Tungsten Co Ltd
Original Assignee
Nippon Tungsten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Tungsten Co Ltd filed Critical Nippon Tungsten Co Ltd
Priority to JP60250199A priority Critical patent/JPS62109901A/en
Publication of JPS62109901A publication Critical patent/JPS62109901A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To manufacture a sintered alloy body contg. little impurities and having high strength and drawing property by mixing the powder of a metallic starting material with a fluidizing mixer filled with a nonoxidizing atmosphere and by compacting and sintering the mixed powder. CONSTITUTION:Powder of a metallic starting material having a desired composition such as a Ti-base starting material is mixed with a fluidizing mixer filled with the nonoxidizing atmosphere to gaseous Ar or the like. The mixed powder is compacted and sintered in vacuum or an inert gaseous atmosphere. By this method, the powder can be mixed in a short time and the sintered body of a Ti alloy or the like contg. small amounts of carbon and oxygen and having high deflective strength and elongation is obtd.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は強靭な焼結合金の製造方法に関するものである
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method for producing a strong sintered alloy.

〈従来の技術及びその問題点〉 例えばT−−^1.T1−人1−VあるいI:、Ti−
Mo等のチタン系合金部品は、従来から主としてインゴ
ットの圧延、鍛造、切削加工という方法が採用されてい
る。しかるにこの方法では組成によってはインゴットの
溶製時に偏析を生じ均一な合金が得られない、又その後
の被削性が悪い等の欠点があり、これらの欠点を解消す
る方法として粉末冶金法が検討され、種々報告されてい
る。しかしこの様なチタン系合金をはしめ、各種の合金
の粉末冶金法にあっては、原料粉末の混合時やその後の
焼結時に於いて、酸化及び炭化という問題があり、得ら
れる焼結合金が脆化され易いという問題があった。
<Prior art and its problems> For example, T--^1. T1-Person 1-V or I:, Ti-
Conventionally, parts of titanium-based alloys such as Mo have mainly been produced by ingot rolling, forging, and cutting. However, this method has drawbacks such as segregation during ingot melting depending on the composition, making it impossible to obtain a uniform alloy, and poor machinability afterward. Powder metallurgy has been considered as a method to overcome these drawbacks. and various reports have been made. However, in powder metallurgy of various alloys using titanium-based alloys, there are problems with oxidation and carbonization during mixing of raw material powder and subsequent sintering, and the resulting sintered alloy is There was a problem that it was easily embrittled.

く問題点を解決する為の手段〉 本発明では、原料粉末の混合方法及びその後の焼結方法
に改良を加える事により、上述の酸化及び炭化を抑制し
強靭な焼結合金を得る方法を提供するもので、その要旨
は所要組成の金属原料粉末を、非酸化性雰囲気となした
流動化型混合機により混合し、この混合粉末から得た成
形体を焼結することを特徴とする焼結合金の製造方法で
あり、この場合に於いて、焼結万囲気は真空又は不活性
ガス中で行なうのが好ましく、かつ又焼結体中ヘカーボ
ンの侵入を防ぐ為に例えばカーボン発熱体を用し)ろ場
合の様に炉内構成部材にカーボンを含む場合には、チタ
ンその他力−ホンとの親和力が大なる素材から成る炉内
容器等で成形体を包囲する等の方法を採用するものとす
る。
Means for Solving the Problems> The present invention provides a method for suppressing the above-mentioned oxidation and carbonization and obtaining a strong sintered alloy by improving the mixing method of raw material powder and the subsequent sintering method. The gist of this is a sintered joint characterized by mixing metal raw material powders of a required composition in a fluidized mixer in a non-oxidizing atmosphere, and sintering a molded body obtained from this mixed powder. A method for producing gold. In this case, the sintering atmosphere is preferably carried out in a vacuum or an inert gas, and a carbon heating element is used, for example, to prevent carbon from entering the sintered body. ) If the furnace components contain carbon, such as in the case of carbon, a method such as surrounding the molded body with a furnace container made of titanium or other material with a high affinity for force-bonding should be adopted. do.

なお本発明方法に於いて用いる不活性ガスは、窒素を含
まない狭義の不活性ガスである。なぜならば窒素ガスを
用いろと、チタンが窒素と反応するので好ましくないか
らである。
Note that the inert gas used in the method of the present invention is an inert gas in the narrow sense that does not contain nitrogen. This is because using nitrogen gas is not preferable because titanium reacts with nitrogen.

又流動化型混合機というのは、混合槽の下部中心に回転
]陥が立設され、その回転軸に回転羽根が取付けられた
如き混合機であり、混合槽内に入れられた粉末は、回転
羽根の回転によってエネルギーが付与され、同時に混合
槽内に作り出された雰囲気ガスの流れに浮遊懸架されて
流動の状態を発生し、該粉末は回転羽根や槽壁に、ある
いは粉末同志で衝突し合い短時間で十分に混合されるも
のである。
A fluidized mixer is a mixer in which a rotating cavity is installed at the center of the lower part of a mixing tank, and a rotating blade is attached to the rotating shaft, and the powder placed in the mixing tank is Energy is imparted by the rotation of the rotary vane, and at the same time, the powder is suspended in the flow of atmospheric gas created in the mixing tank, creating a fluid state, and the powder collides with the rotary vane, the tank wall, or with each other. It can be thoroughly mixed in a short time.

〈実施例及び作用〉 以下本発明方法の実施例を、その他の比較例と共に述へ
乍ら本発明方法を詳述する。
<Examples and Effects> The method of the present invention will be described in detail below by describing Examples of the method of the present invention together with other comparative examples.

チタン粉末(粒度350メンシユシ、下)とモ・フブデ
ン粉末(平均粒子径388μm)とを、(人)通常ライ
カイ機と称されている垂直複軸混練機(容器固定型) 
、CB)内部をアルゴンガス雰囲気とした流動化型混合
機(容器固定型)、(C)通常ボールミルと称されてい
る水平円筒型混合機(容器回転型)の3n類の混合方法
によってTi−Ti−3O重量%)なる組成の混合粉末
を得た。
Titanium powder (particle size: 350 mm, bottom) and Mofubuden powder (average particle size: 388 μm) were mixed in a vertical double-screw kneader (fixed container type), usually called a Raikai machine.
Ti- A mixed powder having a composition of (Ti-3O weight %) was obtained.

この場合に於ける原料粉末中及び混合粉末中のC,O,
Feの含有度合を第1表に示す。
In this case, C, O, in the raw material powder and mixed powder,
Table 1 shows the Fe content.

第1表 次いでこれらの混合粉末を、196MPaの圧力にて成
形して得た成形体を、発熱体及び炉内容器を各種変化せ
しめ、1.3x 10 Paの真空中にて、1773K
Table 1 Next, these mixed powders were molded at a pressure of 196 MPa, and the resulting molded body was heated at 1773 K in a vacuum of 1.3 x 10 Pa with various changes in the heating element and furnace container.
.

7、2Ksの焼結を行なった。即ち真空炉の発熱体とし
てカーボン及びタングステンとを用い、又真空炉内に於
いて成形体を収納する炉内容器としてヂクン、モリブデ
ン、カーボンとを用いて焼結をし、得られた焼結体につ
いての抗折力、硬さ、焼結密度をそれぞれ図面に示し、
又引張強さと伸びとを下記第2表に示す。
Sintering was performed for 7.2Ks. That is, a sintered body obtained by sintering carbon and tungsten as a heating element in a vacuum furnace and using molybdenum and carbon as a furnace container for storing a molded body in a vacuum furnace. The transverse rupture strength, hardness, and sintered density are shown in the drawing, respectively.
Further, the tensile strength and elongation are shown in Table 2 below.

更に上記方法により得られた焼結体の中の数例について
、炭素及び酸素の定量分析結果を下記第3表に示す。
Furthermore, the results of quantitative analysis of carbon and oxygen for several examples of the sintered bodies obtained by the above method are shown in Table 3 below.

以上の実験結果より次の事が判明する。即ち、醜合方法
については第1表に示す様に、本発明方法で採用する流
動化型混合機を不活性ガス方囲気で用いる方法によると
、他の方法に比へて炭素。
The following is revealed from the above experimental results. That is, as shown in Table 1, the method using the fluidized mixer in an inert gas atmosphere, which is employed in the method of the present invention, produces more carbon than other methods.

酸素及び鉄の混入が少なく、第3表で示す様に得られる
焼結体中の炭素及び酸素の量が少なく、かつ図面で示す
様に同じ条件で焼結したにも拘らず、抗折力の大きな差
となって現われている。
As shown in Table 3, the amount of carbon and oxygen in the obtained sintered body was small, and the transverse rupture strength was low even though the sintered body was sintered under the same conditions as shown in the drawing. This appears to be a large difference.

なお本発明方法での流動化型混合機に、よる混合では、
他の混合方法即ら垂直複軸混練機や水平円筒型混合機を
用いる場合と比較して非常に短時間で十分な混合が行な
える事を確認した。
In addition, in the method of the present invention, mixing using a fluidization type mixer,
It was confirmed that sufficient mixing can be achieved in a very short time compared to other mixing methods, such as using a vertical double-screw kneader or a horizontal cylindrical mixer.

次に焼結条件であるが、図面及び第2表、第3表に示す
結果から、炉内構成部材にカーボンを含まない場合の例
としてタングステン製発熱体を用い、かつモリブデン製
炉内容器を使用した場合と、カーボッ製発熱体を用いた
場合にはカーホンと親和力が大なるチタン製炉内容器を
使用した場合とか、他の発熱体や炉内容器との組合オ)
せの場合に比べ混入する炭素や酸素の量が少なく、かつ
抗、折力と伸びが著しく大である事が判る。前者の場合
には発熱体も炉内容器も共に高温まで安定で被焼結体で
ある成形体に影響を与えないものと考えられ、ヌ後者の
場合にはカーボン製発熱体から発生するカーボンをチタ
ン製の容器が一種のケノクー材的役割を奏し捕獲した為
であると考えられろ。
Next, regarding the sintering conditions, from the results shown in the drawings and Tables 2 and 3, we can see that a tungsten heating element is used as an example in which the furnace components do not contain carbon, and a molybdenum furnace inner vessel is used. When using a carbon heating element, when using a titanium furnace inner container that has a high affinity with carphones, or when combining with other heating elements and furnace inner containers)
It can be seen that the amount of carbon and oxygen mixed in is smaller than in the case of steel, and the resistance, rupture strength, and elongation are significantly larger. In the former case, both the heating element and the furnace container are considered to be stable up to high temperatures and have no effect on the compact, which is the object to be sintered.In the latter case, the carbon generated from the carbon heating element is considered to be stable. It is thought that this is because the titanium container served as a kind of Kenoku material and was captured.

〈発明の効果〉 以上述べて来た如く、本発明方法によれば原料粉末の混
合を、非酸化性雰囲気となした流動化型混合機で行なI
N、かつその後の焼結を真空中又は不活性ガス中でしか
もタングステン製発熱体−モリブデン製炉内容器、ある
いはカーポジ裂発熱体−千クン製炉内容器の如くカーボ
ンか焼結体中へ侵入しない条件で行なう為に、混合時及
び焼結時のいずれの時点にあっても、炭素、酸素を:t
しめとする不純物の混入が少なく高強度でかつ伸延性に
も富むチタン系合金の焼結体を得る事が出来:Sっ
<Effects of the Invention> As described above, according to the method of the present invention, raw material powders are mixed in a fluidized mixer in a non-oxidizing atmosphere.
N, and the subsequent sintering is carried out in vacuum or inert gas, and carbon penetrates into the sintered body, such as in a tungsten heating element - molybdenum furnace container, or a carposi crack heating element - Senkun furnace container. In order to carry out the process under conditions where carbon and oxygen are
It is possible to obtain a sintered body of titanium-based alloy that has high strength and extensibility with little contamination of impurities.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明及び比較例方法によって得られA7Ti−
30Mo合金焼結体の諸特性を示すグラフ。 特許出願人 日本クングステノ株式会社代 理 人 有
吉 教晴
The drawings show A7Ti-
Graph showing various properties of a 30Mo alloy sintered body. Patent applicant: Nippon Kungsteno Co., Ltd. Agent: Noriharu Ariyoshi

Claims (1)

【特許請求の範囲】 1、所要組成の金属原料粉末を、非酸化性雰囲気となし
た流動化型混合機により混合し、この混合粉末から得た
成形体を焼結することを特徴とする焼結合金の製造方法
。 2、焼結炉内を真空又は不活性ガス雰囲気となすことを
特徴とする特許請求の範囲第1項記載の焼結合金の製造
方法。 3、発熱体その他の焼結炉内構成部材にカーボンを含む
場合には、成形体の周囲にチタンその他のカーボンと親
和力が大なる物質を置くことを特徴とする特許請求の範
囲第1項若しくは第2項記載の焼結合金の製造方法。
[Claims] 1. A sintering method characterized by mixing metal raw material powders of a required composition in a fluidized mixer in a non-oxidizing atmosphere and sintering a molded body obtained from this mixed powder. Manufacturing method of bonded metal. 2. The method for manufacturing a sintered alloy according to claim 1, characterized in that the inside of the sintering furnace is kept in a vacuum or an inert gas atmosphere. 3. When the heating element and other components in the sintering furnace contain carbon, titanium or other material having a high affinity for carbon is placed around the molded body. 2. A method for producing a sintered alloy according to item 2.
JP60250199A 1985-11-07 1985-11-07 Manufacture of sintered alloy Pending JPS62109901A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60250199A JPS62109901A (en) 1985-11-07 1985-11-07 Manufacture of sintered alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60250199A JPS62109901A (en) 1985-11-07 1985-11-07 Manufacture of sintered alloy

Publications (1)

Publication Number Publication Date
JPS62109901A true JPS62109901A (en) 1987-05-21

Family

ID=17204294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60250199A Pending JPS62109901A (en) 1985-11-07 1985-11-07 Manufacture of sintered alloy

Country Status (1)

Country Link
JP (1) JPS62109901A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5072806A (en) * 1973-10-31 1975-06-16
JPS54162608A (en) * 1978-06-15 1979-12-24 Toshiba Corp Sintering method for titanium
JPS5928601A (en) * 1982-08-10 1984-02-15 Amada Co Ltd Method and device for detecting magnetic material plate
JPS59173205A (en) * 1983-03-22 1984-10-01 グリフイス・イ−・ウイリアムズ Removal of residual substances from metal powder
JPS61231129A (en) * 1985-04-03 1986-10-15 Sumitomo Electric Ind Ltd Manufacture of sintered metal containing easily oxidizable element

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5072806A (en) * 1973-10-31 1975-06-16
JPS54162608A (en) * 1978-06-15 1979-12-24 Toshiba Corp Sintering method for titanium
JPS5928601A (en) * 1982-08-10 1984-02-15 Amada Co Ltd Method and device for detecting magnetic material plate
JPS59173205A (en) * 1983-03-22 1984-10-01 グリフイス・イ−・ウイリアムズ Removal of residual substances from metal powder
JPS61231129A (en) * 1985-04-03 1986-10-15 Sumitomo Electric Ind Ltd Manufacture of sintered metal containing easily oxidizable element

Similar Documents

Publication Publication Date Title
JP5524257B2 (en) Method for producing metal articles without melting
EP2376248B1 (en) Method for the manufacture of a metal part
AU2003251511B9 (en) Method for preparing metallic alloy articles without melting
CN102905822B (en) Coordinate the titanium alloy composite powder of copper powder, chromium powder or iron powder, with its titanium alloy material being raw material and manufacture method thereof
US3950166A (en) Process for producing a sintered article of a titanium alloy
JP5855565B2 (en) Titanium alloy mixed powder containing ceramics, densified titanium alloy material using the same, and method for producing the same
US6231807B1 (en) Dispersion hardening alloy and method for the production of the alloy
US3704115A (en) High alloy steel powders and their consolidation into homogeneous tool steel
US5114470A (en) Producing void-free metal alloy powders by melting as well as atomization under nitrogen ambient
US4722826A (en) Production of water atomized powder metallurgy products
EP0202886B1 (en) Canless method for hot working gas atomized powders
JP3071118B2 (en) Method for producing NiAl intermetallic compound to which fine additive element is added
US3775100A (en) Process for making sintered articles
GB2074609A (en) Metal binder in compaction of metal powders
DK1249510T4 (en) A process for powder metallurgical production of objects from tool steel
US4410488A (en) Powder metallurgical process for producing a copper-based shape-memory alloy
US4731117A (en) Nickel-base powder metallurgy alloy
JPS62109901A (en) Manufacture of sintered alloy
Hamill et al. Water atomized fine powder technology
US5976459A (en) Method for compacting high alloy tool steel particles
JPH0432141B2 (en)
JPH06271901A (en) Ti-al intermetallic compound powder having excellent sinterability and sintered compact thereof
JPH0751721B2 (en) Low alloy iron powder for sintering
JPH02138403A (en) Manufacture of low oxygen-content powder high speed tool steel
JP3328620B2 (en) Method for producing low oxygen metal powder products