JPH0580200B2 - - Google Patents

Info

Publication number
JPH0580200B2
JPH0580200B2 JP26733987A JP26733987A JPH0580200B2 JP H0580200 B2 JPH0580200 B2 JP H0580200B2 JP 26733987 A JP26733987 A JP 26733987A JP 26733987 A JP26733987 A JP 26733987A JP H0580200 B2 JPH0580200 B2 JP H0580200B2
Authority
JP
Japan
Prior art keywords
acoustic
receiver
transmitter
matching layer
data transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP26733987A
Other languages
Japanese (ja)
Other versions
JPH01109897A (en
Inventor
Takashi Noge
Hiroshi Kamata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP26733987A priority Critical patent/JPH01109897A/en
Publication of JPH01109897A publication Critical patent/JPH01109897A/en
Publication of JPH0580200B2 publication Critical patent/JPH0580200B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Transducers For Ultrasonic Waves (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、水中音波伝搬路をデータ伝送路とし
て利用する電気音響変換器を用いた水中音響デー
タ伝送装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an underwater acoustic data transmission device using an electroacoustic transducer that utilizes an underwater acoustic wave propagation path as a data transmission path.

〔従来技術〕[Prior art]

第8図はこの種のデータ伝送に用いられる代表
的な水中音響データ伝送装置を示す機能ブロツク
図であり、この装置によるデータ伝送方法を以下
に説明する。
FIG. 8 is a functional block diagram showing a typical underwater acoustic data transmission device used for this type of data transmission, and a data transmission method using this device will be described below.

第8図において、送信系の電気信号発生器1か
ら発生する電気信号を、変調器3によりセンサ2
が測定した水中のデータに基づいて変調し、その
変調された電気信号を増幅器4で増幅した後、こ
の電気信号を送波器5により音響信号に変換して
水中に音波として放射する。
In FIG. 8, an electric signal generated from an electric signal generator 1 of a transmission system is transmitted to a sensor 2 by a modulator 3.
After the modulated electrical signal is amplified by an amplifier 4, the electrical signal is converted into an acoustic signal by a transmitter 5 and radiated into the water as a sound wave.

上記の如く放射された音波は水中を伝搬して受
信系の受波器6に入射し、受波器6で電気信号に
変換された後、復調器7で復調され、所定のデー
タとして表示記録装置8にて表示記録される。
The sound waves radiated as described above propagate through the water and enter the receiver 6 of the receiving system, where they are converted into electrical signals, demodulated by the demodulator 7, and displayed and recorded as predetermined data. The information is displayed and recorded by the device 8.

このように水中音波伝搬路をデータの伝送路と
して利用する水中データ伝送方法では、データの
送受信用として電気信号と音響信号とを変換する
電気音響変換器、つまり送波器5及び受波器6が
使用されるが、これらの送波器5及び受波器6の
性能によつて伝送し得るデータの帯域幅に制約を
受ける。その一例として、圧電磁気の共振を利用
した水中超音波送波器及び受波器を使用した場合
の感度積まつり送波器→海洋→受波器間の感度特
性を第9図に示す。
In this underwater data transmission method that uses an underwater acoustic wave propagation path as a data transmission path, an electroacoustic transducer, that is, a transmitter 5 and a receiver 6, converts an electric signal and an acoustic signal for transmitting and receiving data. However, the bandwidth of data that can be transmitted is limited by the performance of the transmitter 5 and receiver 6. As an example, when an underwater ultrasonic transmitter and a receiver using piezomagnetic resonance are used, the sensitivity characteristic between the transmitter, the ocean, and the receiver is shown in FIG.

なお、図中のfIは伝送帯域の下限周波数、fU
伝送帯域の上限周波数である。
Note that f I in the figure is the lower limit frequency of the transmission band, and f U is the upper limit frequency of the transmission band.

この圧電磁器の共振を利用した水中超音波送波
器及び受波器は、この種の水中データ伝送におい
て、一般的に用いられるがその共振の鋭さQはQ
=10〜20程度のものが多く、感度積即ちデータ伝
送特性の帯域幅が中心周波数を500KHzとした場
合、25KHz〜50KHzより狭い範囲内に限られる。
Underwater ultrasonic transmitters and receivers that utilize the resonance of piezoelectric ceramics are commonly used in this type of underwater data transmission, but the sharpness of the resonance is Q.
= 10 to 20 in most cases, and the sensitivity product, that is, the bandwidth of data transmission characteristics is limited to a range narrower than 25 KHz to 50 KHz when the center frequency is 500 KHz.

そこで送波器5及び受波器6の圧電磁器の前面
1/4波長の音響整合層を設け送波感度特性及び受
波感度特性の共振特性をQ=4程度まで広帯域化
したもので、データ伝送を行ない伝送帯域幅を広
げるようにした装置が考えられる。
Therefore, a 1/4 wavelength acoustic matching layer is provided on the front surface of the piezoelectric ceramics of the transmitter 5 and the receiver 6, and the resonance characteristics of the transmitting and receiving sensitivity characteristics are widened to about Q = 4. A device that performs transmission and widens the transmission bandwidth is conceivable.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら従来のように、送波器5及び受波
器6の圧電磁器の前面に1/4波長の音響整合層を
設け、送波器及び受波器の感度特性を等しく広帯
域化したものをデータ伝送用の送受器として使用
した場合、感度積(データ伝送特性)の帯域幅
は、個々の送受波器の感度特性よりかなり狭くな
るという問題点があつた。例えば送波器5及び受
波器6の共振特性を中心500KHz、Q=4(帯域幅
125KHz)とした場合、送波感度と受波感度の積
である感度積として帯域幅(−3dB)は約80KHz
になる。
However, as in the past, a 1/4 wavelength acoustic matching layer is provided on the front surface of the piezoelectric ceramic of the transmitter 5 and receiver 6, and the sensitivity characteristics of the transmitter and receiver are equally wideband. When used as a transmission transceiver, there was a problem in that the bandwidth of the sensitivity product (data transmission characteristics) was considerably narrower than the sensitivity characteristics of the individual transducers. For example, the resonance characteristics of the transmitter 5 and receiver 6 are centered at 500KHz, Q = 4 (bandwidth
125KHz), the bandwidth (-3dB) is approximately 80KHz as a sensitivity product, which is the product of transmitting sensitivity and receiving sensitivity.
become.

また、音響整合層を多層化すれば送波感度特性
及び受波感度特性を更に広帯域化することが可能
であるが、構造が複雑になるため特性が不安定に
なり、また耐環境性能が劣化する恐れがあつた。
In addition, if the acoustic matching layer is multilayered, it is possible to further widen the transmitting and receiving sensitivity characteristics, but the structure becomes complex, making the characteristics unstable and reducing environmental resistance. There was a fear that it would happen.

本発明は上述の点に鑑みてなされたもので、送
波器及び受波器の圧電磁器の前面に1層1/4波長
の音響整合層を設けた水中データ伝送用送受波器
において、データ伝送帯域幅が送波器及び受波器
の個々の感度特性帯域幅よりかなり狭くなるとい
う問題点を除去し、データ伝送特性に優れた水中
音響データ伝送装置を提供することにある。
The present invention has been made in view of the above points, and is a transducer for underwater data transmission in which an acoustic matching layer of 1/4 wavelength is provided on the front surface of the piezoelectric ceramic of the transmitter and receiver. It is an object of the present invention to provide an underwater acoustic data transmission device with excellent data transmission characteristics by eliminating the problem that the transmission bandwidth is considerably narrower than the individual sensitivity characteristic bandwidths of a transmitter and a receiver.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点を解決するため本発明は、水中音波
伝搬路を伝送路として利用する水中音響データ伝
送装置において、送波器及び受波器の圧電磁器前
面の1/4波長の音響整合層の内、一方の音響整合
層の固有音響インピーダンスZ1をZ13W 2 C
し、感度特性に2つの共振を持たせ、他方の音響
整合層の固有音響インピーダンスZ1をZ13W 2
ZCとすることにより、感度特性即ちデータ伝送特
性の帯域幅を広くしたものである。但し、ここで
ZW:水の音響インピーダンス、ZC:圧電磁器の
音響インピーダンス。
In order to solve the above problems, the present invention provides an underwater acoustic data transmission device that uses an underwater acoustic wave propagation path as a transmission path. , the specific acoustic impedance Z 1 of one acoustic matching layer is Z 1 > 3W 2 C , the sensitivity characteristic has two resonances, and the specific acoustic impedance Z 1 of the other acoustic matching layer is Z 13W 2
By setting Z C , the sensitivity characteristic, that is, the bandwidth of the data transmission characteristic is widened. However, here
Z W : Acoustic impedance of water, Z C : Acoustic impedance of piezoelectric ceramic.

〔作用〕[Effect]

水中音響データ伝送装置の送波器及び受波器の
圧電磁器前面の1/4波長の音響整合層を上記の如
く構成することにより、後に詳述するように感度
積(送波器→海洋→受波器の感度特性)の帯域幅
即ちデータ伝送帯域幅を広くとることが可能とな
る。
By configuring the 1/4 wavelength acoustic matching layer in front of the piezoelectric ceramic of the transmitter and receiver of the underwater acoustic data transmission device as described above, the sensitivity product (transmitter → ocean → It becomes possible to widen the bandwidth of the receiver (sensitivity characteristics), that is, the data transmission bandwidth.

〔実施例〕〔Example〕

以下、本発明の一実施例を図面に基づいて説明
する。
Hereinafter, one embodiment of the present invention will be described based on the drawings.

第7図は1/4波長の音響整合層を設けた水中超
音波送波受波器の1例を示す構造図である。第7
図において、水中超音波送波受波器は、円板状の
圧電磁器11、キルクゴム12、ケーブル13、
円板状の1/4波長音響整合層14及びフランジ1
5を具備し、これら圧電磁器11、キルクゴム1
2、ケーブル13、1/4波長音響整合層14及び
フランジ15をウレタン等の樹脂材で一体的にモ
ールドした構造である。
FIG. 7 is a structural diagram showing an example of an underwater ultrasonic transmitter/receiver provided with a 1/4 wavelength acoustic matching layer. 7th
In the figure, the underwater ultrasonic wave transmitter/receiver includes a disc-shaped piezoelectric ceramic 11, a Kirk rubber 12, a cable 13,
Disc-shaped 1/4 wavelength acoustic matching layer 14 and flange 1
5, these piezoelectric ceramics 11, Kirk rubber 1
2. It has a structure in which the cable 13, the 1/4 wavelength acoustic matching layer 14, and the flange 15 are integrally molded with a resin material such as urethane.

1/4波長音響整合層14は圧電磁器11と水の
中間の固有インピーダンスを持つ材料で作られて
おり、その固有音響インピーダンスZを Z03W 2 C ……(1) としたとき、最も広帯域な感度特性が得られる。
ここでZCは圧電磁器11の固有音響インピーダン
ス、ZWは水の固有音響インピーダンスである。
更に、ZO 3W 2 Cとする感度特性は第3図に示す
様に2つの共振特性を示すようになる。
The 1/4 wavelength acoustic matching layer 14 is made of a material with an inherent impedance between that of the piezoelectric ceramic 11 and water, and when its inherent acoustic impedance Z is Z 0 = 3W 2 C ... (1) , the widest sensitivity characteristics can be obtained.
Here, Z C is the specific acoustic impedance of the piezoelectric ceramic 11, and Z W is the specific acoustic impedance of water.
Furthermore, the sensitivity characteristic with Z O 3W 2 C exhibits two resonance characteristics as shown in FIG.

上記(1)式において、ZW=1.5×106Kg/m2sec,
ZC=30×106Kg/m2secとする、Z0=4.1×106Kg/
m2secとなる。この値に近い固有音響インピーダ
ンスを持つ材料には金属粉末を含んだエポキシレ
ジン等がある。
In the above equation (1), Z W = 1.5×10 6 Kg/m 2 sec,
Let Z C = 30×10 6 Kg/m 2 sec, Z 0 = 4.1×10 6 Kg/
m 2 sec. Materials with a specific acoustic impedance close to this value include epoxy resin containing metal powder.

送波器の圧電磁器11の前面に設ける1/4波長
音響整合層14の固有音響インピーダンスZ1
4.1Kg/m2sec≒Z0としたものの送波感度特性を第
4図に示す。ここで送波器及び受波器の圧電磁器
11の単体の共振周波数をどちらも等しくf0
し、受波器側の1/4波長音響整合層14の固有音
響インピーダンスZ2を7.0×106Kg/m2esc(≒
1.7Z0)とすると受感度特性は第2図に示すよう
になる。これを受波器Aとして上記第4図に示す
送波感度特性を持つ送波器と組み合わせると、第
1図の破線に示すような伝送特性となり、その帯
域幅は中心周波数を500KHzとする約190KHzとな
る。
The specific acoustic impedance Z 1 of the 1/4 wavelength acoustic matching layer 14 provided on the front surface of the piezoelectric ceramic 11 of the transmitter is
Figure 4 shows the transmission sensitivity characteristics when 4.1Kg/m 2 sec≒Z 0 . Here, the resonant frequencies of the piezoelectric ceramics 11 of the transmitter and receiver are both equal to f 0 , and the specific acoustic impedance Z 2 of the 1/4 wavelength acoustic matching layer 14 on the receiver side is 7.0×10 6 Kg/ m2 esc (≒
1.7Z 0 ), the sensitivity characteristics will be as shown in Figure 2. When this is combined as receiver A with a transmitter having the transmission sensitivity characteristics shown in Figure 4 above, the transmission characteristics will be as shown by the broken line in Figure 1, and the bandwidth will be approximately 500KHz with a center frequency of 500KHz. It becomes 190KHz.

また、受波器側の音響整合層の固有音響インピ
ーダンスZ2を15.0×106Kg/m2sec(≒2.6Z0)とす
ると受波感度特性は第3図に示すようになる。こ
の受波器と第4図の特性を持つ送波器とを組み合
わせると、第1図の実線に示すような伝送特性と
なり、その帯域幅は260KHzとなる。
Further, when the characteristic acoustic impedance Z 2 of the acoustic matching layer on the receiver side is set to 15.0×10 6 Kg/m 2 sec (≈2.6Z 0 ), the receiving sensitivity characteristics are as shown in FIG. 3. When this receiver is combined with a transmitter having the characteristics shown in FIG. 4, the transmission characteristics will be as shown by the solid line in FIG. 1, and the bandwidth will be 260 KHz.

第3図に示す感度特性を持つ送波器を用いた場
合、受波器側の整合層の固有音響インピーダンス
Z2と伝送特性帯域幅との間には、第5図に示すよ
うな関係があり、固有音響インピーダンスZ2を大
きくするにつれ伝送帯域幅が広がる。しかし中心
周波数f0における感度積の値は固有音響インピー
ダンスZ2が大きくなるに従い減少する。その関係
を第6図に示す。
When using a transmitter with the sensitivity characteristics shown in Figure 3, the specific acoustic impedance of the matching layer on the receiver side
There is a relationship between Z 2 and the transmission characteristic bandwidth as shown in FIG. 5, and as the specific acoustic impedance Z 2 is increased, the transmission bandwidth becomes wider. However, the value of the sensitivity product at the center frequency f 0 decreases as the specific acoustic impedance Z 2 increases. The relationship is shown in FIG.

上記第5図に示す固有音響インピーダンスZ2
伝送特性帯域幅の関係及び第6図に示す固有音響
インピーダンスZ2と中心周波数f0における感度積
の関係から、受波器側の音響整合層の固有音響イ
ンピーダンスをシステムの要求する帯域幅及び感
度積に応じて最適な値に設定できる。即ち本発明
では、受波器側の1/4波長音響整合層の音響イン
ピーダンスを3W 2 C(ZW:水の音響インピー
ダンス,ZC:圧電磁器の音響インピーダンス)と
略等しいか又はそれ以下とし、送波器側の1/4波
長音響整合層14の音響インピーダンスを3W 2
ZCよりも大きくする。
From the relationship between the characteristic acoustic impedance Z 2 and the transmission characteristic bandwidth shown in Figure 5 above, and the relationship between the characteristic acoustic impedance Z 2 and the sensitivity product at the center frequency f 0 shown in Figure 6, it is clear that the acoustic matching layer on the receiver side The characteristic acoustic impedance can be set to an optimal value according to the bandwidth and sensitivity product required by the system. That is, in the present invention, the acoustic impedance of the 1/4 wavelength acoustic matching layer on the receiver side is approximately equal to or less than 3W 2 C (Z W : acoustic impedance of water, Z C : acoustic impedance of piezoelectric ceramic). The acoustic impedance of the 1/4 wavelength acoustic matching layer 14 on the transmitter side is 3W 2 as follows.
Make Z larger than C.

以上のことは送波器と受波器とを入れ換えても
同様に成り立つ。
The above holds true even if the transmitter and receiver are replaced.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、水中デー
タ伝送装置において、送波器及び受波器の圧電磁
器単体の共振周波数を等しくし、圧電磁器の前面
に設ける1/4波長音響整合層を一方は固有音響イ
ンピーダンスが3W 2 Cと略等しいか又はそれ以
下の材料から成るものとし、他方は3W 2 Cより
大きい材料から成るものとしたため、感度積(送
波器→海洋→受波器の感度特性)の帯域幅即ちデ
ータ伝送帯域幅を広くとることが可能となるとい
う優れた効果が得られる。
As explained above, according to the present invention, in an underwater data transmission device, the resonant frequencies of individual piezoelectric ceramics of a transmitter and a receiver are equalized, and a 1/4 wavelength acoustic matching layer provided on the front side of the piezoelectric ceramic is applied to one side. Since one is made of a material with a specific acoustic impedance approximately equal to or less than 3W 2 C , and the other is made of a material larger than 3W 2 C , the sensitivity product (transmitter→ocean→receiver) is An excellent effect can be obtained in that it becomes possible to widen the bandwidth of the wave transmitter (sensitivity characteristics), that is, the data transmission bandwidth.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る水中音響データ伝送装置
に用いる受波器の伝送特性を示す図、第2図は受
波器Aの感度特性を示す図、第3図は受波器Bの
感度特性を示す図、第4図は送波器の感度特性を
示す図、第5図は受波器側整合層の固有音響イン
ピーダンスと伝送帯域幅の関係を示す図、第6図
は受波器側整合層の固有音響インピーダンスと中
心周波数での感度積との関係を示す図、第7図は
1/4波長の音響整合層を設けた水中超音波送受波
器の1例を示す構造図、第8図はこの種のデータ
伝送に用いられる代表的な水中データ伝送装置を
示す機能ブロツク図、第9図は従来の水中音響デ
ータ伝送装置の感度積(伝送特性)を示す図であ
る。 図中、1……電気信号発生器、2……センサ、
3……変調器、4……増幅器、5……送波器、6
……受波器、7……復調器、8……表示記録装
置、11……圧電磁器、12……キルクゴム、1
3……ケーブル、14……1/4波長音響整合層、
15……フランジ、16……ウレタンモールド。
Fig. 1 is a diagram showing the transmission characteristics of a receiver used in the underwater acoustic data transmission device according to the present invention, Fig. 2 is a diagram showing the sensitivity characteristics of receiver A, and Fig. 3 is a diagram showing the sensitivity of receiver B. Figure 4 is a diagram showing the sensitivity characteristics of the transmitter, Figure 5 is a diagram showing the relationship between the characteristic acoustic impedance of the matching layer on the receiver side and the transmission bandwidth, and Figure 6 is a diagram showing the relationship between the transmitter side matching layer and the transmission bandwidth. A diagram showing the relationship between the characteristic acoustic impedance of the side matching layer and the sensitivity product at the center frequency, FIG. 7 is a structural diagram showing an example of an underwater ultrasonic transducer equipped with a 1/4 wavelength acoustic matching layer, FIG. 8 is a functional block diagram showing a typical underwater data transmission device used for this type of data transmission, and FIG. 9 is a diagram showing the sensitivity product (transmission characteristics) of a conventional underwater acoustic data transmission device. In the figure, 1...electric signal generator, 2...sensor,
3...Modulator, 4...Amplifier, 5...Transmitter, 6
... Wave receiver, 7 ... Demodulator, 8 ... Display and recording device, 11 ... Piezoelectric ceramic, 12 ... Kirk rubber, 1
3... Cable, 14... 1/4 wavelength acoustic matching layer,
15...flange, 16...urethane mold.

Claims (1)

【特許請求の範囲】[Claims] 1 水中音波伝搬路を伝送路として利用する水中
音響データ伝送装置において用いられる複数個の
送受波器の圧電磁器の共振周波数を同一とし、送
波用及び受波用いづれか一方の送受波器における
圧電磁器の前面に音響インピーダンスが3W 2 C
(ZW:水の音響インピーダンス、ZC:圧電磁器の
音響インピーダンス)と略等しいか又はそれ以下
の1/4波長音響整合層を設けると共に他方の送受
波器における圧電磁器の前面に音響インピーダン
スが前記3W 2 Cよりも大きい1/4波長音響整合
層を設けことを特徴とする水中音響データ伝送装
置。
1 The resonant frequency of the piezoelectric ceramics of the plurality of transducers used in an underwater acoustic data transmission device that uses an underwater acoustic wave propagation path as a transmission path is the same, and the piezoelectric ceramic in either the transducer for wave transmission or for wave reception The acoustic impedance in front of the porcelain is 3W 2 C
(Z W : Acoustic impedance of water, Z C : Acoustic impedance of piezoelectric ceramic) A 1/4 wavelength acoustic matching layer approximately equal to or less than that is provided, and the acoustic impedance is set in front of the piezoelectric ceramic in the other transducer. An underwater acoustic data transmission device characterized by providing a 1/4 wavelength acoustic matching layer larger than 3W 2 C.
JP26733987A 1987-10-22 1987-10-22 Underwater acoustic data transmitter Granted JPH01109897A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26733987A JPH01109897A (en) 1987-10-22 1987-10-22 Underwater acoustic data transmitter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26733987A JPH01109897A (en) 1987-10-22 1987-10-22 Underwater acoustic data transmitter

Publications (2)

Publication Number Publication Date
JPH01109897A JPH01109897A (en) 1989-04-26
JPH0580200B2 true JPH0580200B2 (en) 1993-11-08

Family

ID=17443447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26733987A Granted JPH01109897A (en) 1987-10-22 1987-10-22 Underwater acoustic data transmitter

Country Status (1)

Country Link
JP (1) JPH01109897A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5719824A (en) * 1996-05-07 1998-02-17 Airmar Technology Corp. Transducer assembly with acoustic damping

Also Published As

Publication number Publication date
JPH01109897A (en) 1989-04-26

Similar Documents

Publication Publication Date Title
TW200718050A (en) Acoustically communicating data signals across an electrical isolation barrier
US4427912A (en) Ultrasound transducer for enhancing signal reception in ultrasound equipment
WO1989005445A1 (en) An acoustic emission transducer and an electrical oscillator
JPH0580200B2 (en)
JPH05167540A (en) Ultrasonic communication method
US3253674A (en) Ceramic microphone
JPS6025956B2 (en) Ultrasonic transducer
JPH01270499A (en) Ultrasonic element
JPS6367149B2 (en)
JP4291500B2 (en) Broadband transducer
JP4213797B2 (en) Ultrasonic transducer
JPS6018096A (en) Composite transducer
JP2985817B2 (en) Multi-frequency acoustic buoy
JPS6120199B2 (en)
JPS62295531A (en) Submarine data transmission method
JP4291501B2 (en) Broadband transducer
JPS6216695Y2 (en)
JPS62154999A (en) Ultrasonic transmitter-receiver
JP2944174B2 (en) Sound insulation method of ultrasonic sensor and sound insulation material based on it
JPH06327098A (en) Ultrasonic wave transmitter-receiver
JPS6126397A (en) Ultrasonic transmitter-receiver
JPS6313640B2 (en)
SU1050096A1 (en) Acoustic surface wave delay line
JPH0241999Y2 (en)
JPS6055798A (en) Ultrasonic wave transmitting and receiving device