JP4291501B2 - Broadband transducer - Google Patents

Broadband transducer Download PDF

Info

Publication number
JP4291501B2
JP4291501B2 JP2000225070A JP2000225070A JP4291501B2 JP 4291501 B2 JP4291501 B2 JP 4291501B2 JP 2000225070 A JP2000225070 A JP 2000225070A JP 2000225070 A JP2000225070 A JP 2000225070A JP 4291501 B2 JP4291501 B2 JP 4291501B2
Authority
JP
Japan
Prior art keywords
matching layer
transducer
sound wave
wave propagation
matching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000225070A
Other languages
Japanese (ja)
Other versions
JP2002044786A (en
Inventor
裕徳 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP2000225070A priority Critical patent/JP4291501B2/en
Publication of JP2002044786A publication Critical patent/JP2002044786A/en
Application granted granted Critical
Publication of JP4291501B2 publication Critical patent/JP4291501B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Transducers For Ultrasonic Waves (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、海洋での魚群探知や深度測定等の海洋での使用に好適な広帯域送受波器であって、特に圧電振動子を用いた電気音響変換素子を複数個、配列して構成される素子配列型の広帯域送受波器に関するものである。
【0002】
【従来の技術】
従来の海洋での送受波器では、音響測定精度の向上のため、使用周波数の高周波数化による水中音波の短波長化、あるいは信号応答性の改善を図るための広帯域化等の技術が提案されてきた。特に、広帯域化の技術に関しては、整合層の使用により、かなりの成果が得られていた。
【0003】
一般に、送受波器の電気音響変換素子に使用される整合層は、整合層材料の音響インピーダンス密度に着目し、電気信号と音響信号の変換を行う圧電振動子と水中超音波送受波器における音波伝搬媒体である水の各々の音響インピーダンス密度の幾何平均値を目標として種々の材料から選択されていた。整合層の長さ寸法を圧電振動子の使用周波数における整合層中の音波伝搬波長λの1/4とし、圧電振動子の音響放射面に接着等の方法により、音波の伝搬方向と整合層の長さ方向が一致するように取り付けられていた。
【0004】
上記の整合層による送受波器の広帯域化については、図6(a)に示すように、1個の圧電振動子1aの音響放射面に整合層2aを1層設けた電気音響変換素子を使用する構成が基本の形である。整合層2aを1層設けて得られる帯域幅では充分でない場合には、図6(b)のように、2層目の整合層2bあるいは3層目の整合層2cを設けて多重整合層の構成をとることで、より一層の広帯域化を図っていた。
【0005】
図7(a)に示すような素子配列型の送受波器においても、圧電振動子1bに整合層2dを1層設けた電気音響変換素子を、複数個配列することで、充分な帯域幅が得られなければ、図6に示す送受波器の場合と同様に、図7(b)のように、2層目の整合層2eあるいは3層目の整合層2fを設けて多重整合層化することにより対処するのが一般的であった。
【0006】
【発明が解決しようとする課題】
しかしながら、図7(b)の送受波器のように、多重整合層を設けた電気音響変換素子を複数個、配列する構造とする場合、各電気音響変換素子は1個の圧電振動子に接着等の方法で2層以上の整合層を取り付けていくことで形成されるため、整合層の各層間のずれの防止や接着剤層の厚さの管理等が必要になるなど組立の煩雑化を招き、圧電振動子や整合層間の境界となる接着剤層の増加に伴い特性のばらつきが顕著化するなどの問題があった。
【0007】
さらには、2層目、3層目の整合層として音響インピーダンス密度の異なる材料を使用するが、各整合層の音波伝搬方向の長さ寸法は、それぞれの材料における音波伝搬波長λの1/4とすることが通例で、整合層を1層だけ設けた構成の電気音響変換素子に対して長さ寸法が増大するために、結果として、送受波器の寸法も大きくせざるを得ないという問題もあった。
【0008】
従って、本発明の目的は、素子配列型の広帯域送受波器において、従来の1層の整合層を設けることで得られていた広帯域化の効果に対し、多重整合層という電気音響変換素子の構造の複雑化や長さ寸法の増加を必要とせずに、整合層を1層設けた基本的な構成の電気音響変換素子を組み合わせて使用することで、より広帯域化を達成する広帯域送受波器を提供することである。
【0009】
【課題を解決するための手段】
本発明の広帯域送受波器は、圧電振動子に1層の整合層を設けた電気音響変換素子を、複数個配列して構成される素子配列型の水中超音波送受波器において、前記整合層として材料中を音波が伝搬する方向により音波伝搬速度が異なる速度異方性を有する材料から得た2種類以上の整合層を組み合わせて使用し、なおかつ、整合層の音波伝搬方向の長さを複数の整合層中で音波伝搬速度が中央値ないしは中央値より速い整合層の特性値により定めた長さで統一した広帯域送受波器である。
【0010】
本発明の広帯域送受波器によれば、音波伝搬方向である長さ方向において、寸法が等しく音波伝搬速度が異なる複数種類の整合層を一つの仕様の圧電振動子に付与することで、共振特性のずれた複数の電気音響変換素子が得られ、それらを組み合わせて素子配列を構成することにより、感度特性のずれた電気音響変換素子群の特性を合成した感度特性を有する広帯域送受波器とすることができる。
【0011】
即ち、本発明は、圧電振動子に1層の整合層を付与した電気音響変換素子を複数個、配列し、樹脂モールド等の方法により水密性を持たせた素子配列型の広帯域送受波器において、前記整合層として材料中を音波が伝搬する方向により音波伝搬速度が異なる速度異方性を有する材料から得た2種類以上を組み合わせて使用し、かつ整合層の音波伝搬方向の長さを複数の整合層中で音波伝搬速度が中央値ないしは中央値より速い整合層の特性値により定めた長さで統一する広帯域送受波器である。
【0012】
【発明の実施の形態】
本発明の広帯域送受波器について、以下に説明する。
【0013】
図1は、本発明の実施例による素子配列型の広帯域送受波器であり、2種類の電気音響変換素子の配置を示す上面及び側面から見た断面図である。図1(a)は、広帯域送受波器での正面図を示し、図1(b)は、図1(a)でのAA断面図を示す。
【0014】
従来の構成では、図7のように、素子配列型の送受波器で圧電振動子に1層の整合層を設けた電気音響変換素子を複数個、配列する場合は、1種類の材料から同一の寸法に作られた整合層を各圧電振動子に接着等で付与するため、各々の電気音響変換素子は同一の特性を持つものであった。
【0015】
これは、素子配列型の送受波器が、図6のように、圧電振動子1個で電気音響変換素子を構成する送受波器に対して、指向性の操作や振動子の外径寸法比に起因する結合振動の発生回避を達成するために、音響放射面を細分化した形状の電気音響変換素子を複数個、配列する形で置き換えることを当初の目的として構成されたためである。
【0016】
即ち、図7に示す従来構成の送受波器は、図9に示すような音響放射面形状の電気音響変換素子1個で構成する送受波器を、細分化した電気音響変換素子を16個配列して音響放射面の形状や外径寸法が等しくなるように構成し直したものと言える。
【0017】
ここで、16個の電気音響変換素子は、各々同一特性を持つものであるから、素子配列した送受波器の共振特性は、図9の電気音響変換素子1個の送受波器と同様に、圧電振動子の使用周波数における単一共振が整合層1個の付与により、1次及び2次の2つの共振点を持つ2重共振特性へと変化したものであり、電気音響変換素子を複数個、配列しても共振点がさらに増えることはない。
【0018】
これに対して、本発明の広帯域送受波器では、寸法が等しく音波伝搬速度の異なる複数の整合層を使用することで、2重共振特性の共振点がずれた電気音響変換素子が複数得られ、これらを組み合わせることで、3個以上の共振点を持つ広帯域送受波器を構成している。
【0019】
【実施例】
本発明の実施例による広帯域送受波器について、以下に説明する。
【0020】
本発明の広帯域送受波器では、1種の材料から2種類の特性の異なる整合層を得ている。整合層材料として使用する音波伝搬速度の異方性を有する材料は、ガラス布基材エポキシ樹脂積層板22である。この材料は、基材となるガラス布繊維に沿った方向と、繊維に直交する方向の音波伝搬速度が異なる。
【0021】
従来、ガラス布基材エポキシ樹脂積層板を整合層材料として使用する場合は、ガラス布繊維に沿った方向か或いは繊維に直交する方向のいずれかを整合層としての音波伝搬方向として統一していたが、本実施例では繊維に沿った方向を整合層の音波伝搬方向である長さ方向とした第1の整合層22aを使用し、また、繊維に直交する方向を整合層の音波伝搬方向である長さ方向とした第2の整合層22bを使用している。
【0022】
あるいは、上記の第1の整合層22aと、または第2の整合層22bに替えて、繊維に沿った方向に対して斜めの方向を整合層の音波伝搬向として使用した第3の整合層(図示せず)を加工して使用することも可能である。
【0023】
ガラス布基材エポキシ樹脂積層板では、図3のように、ガラス布繊維に沿ったX、Y方向の音波伝搬速度は、ガラス布繊維に直交するZ方向の音波伝搬速度に対して30%以上、大きい値を示すことから、密度が等しく音波伝搬速度の異なる2種類の整合層が得られることになる。音波伝搬速度の速いガラス布繊維に沿ったXあるいはY方向の特性値で整合層22aの長さ方向寸法Lを決定し、ガラス布繊維に直交するZ方向を音波伝搬方向として用いる整合層22bについても、長さ方向寸法をLとして加工する。
【0024】
これにより、繊維に沿った方向を音波伝搬方向とする整合層22aを、従来と同様に、使用周波数における整合層中の音波伝搬波長λaの1/4の長さとすると、繊維に直交する方向を音波伝搬方向とする整合層22bは、使用周波数において整合層中の音波伝搬波長λbの1/4に対して実質的に30%以上、長い寸法ということになる。
【0025】
実施例では、長さ方向に周波数70kHzで共振する角柱状振動子21に、ガラス布基材エポキシ樹脂積層板22から製作した2種類の整合層22a、22bを接着により付与して、1層の整合層を有する電気音響変換素子23a、23bを得ている。
【0026】
ガラス布基材エポキシ樹脂積層板の材料特性としては、密度ρ=1.9×10(kg/cm)、繊維に沿った方向の音波伝搬速度Ca=3150(m/sec)、繊維に直交する方向の音波伝搬速度Cb=2340(m/sec)であることから、使用周波数70kHzに対して繊維に沿った方向を音波伝搬方向とする整合層22aの長さを波長λの1/4と設定すると、長さ寸法は約L=11.3(mm)と得られ、繊維に直交する方向を音波伝搬方向とする整合層22bについても、この長さで整合層を作製する。
【0027】
図4には、2種類の整合層22a、22bを熱硬化型のエポキシ樹脂接着剤により圧電振動子21に接着して構成した電気音響変換素子23a、23bの外観図を示す。両素子とも寸法は同一になる。グラフには、それぞれのインピーダンス特性を示し、電気音響変換素子23aの特性はインピーダンス周波数特性24a、電気音響変換素子23bの特性はインピーダンス周波数特性24bに示すようになる。
【0028】
ここで、繊維に直交する方向を音波伝搬方向とする整合層22bを接着した電気音響変換素子23bは、繊維に沿った方向を音波伝搬方向とする整合層22aを接着した電気音響変換素子23aに対して1次の共振点が約8kHz低周波側へシフトする。これらの電気音響変換素子23a、23bを組み合わせれば共振特性中に4つの共振点を持つ送受波器が得られる。
【0029】
これに対して、整合層が1種類である従来の送受波器構成では、共振点は2つである。本発明の実施例による広帯域送受波器では、この2種類の電気音響変換素子23a、23bを各々8個使用して4列×4列の素子配列を構成し、素子間及び素子配列の周囲にコルク25を接着して素子の位置決めと周囲からの遮音を行い、信号ケーブル26と接続後にポリウレタンゴムモールド27により全体をモールドして水密性を持たせ、図2(a)に示す従来例の送受波器と同様の寸法の広帯域送受波器を製作した。
【0030】
図1に、本実施例の広帯域送受波器の説明図を示す。この広帯域送受波器における電気音響変換素子23a、23bの配置は、図1に示すように、それぞれが交互に配置されるようにしてある。このようにして得た広帯域送受波器の感度特性は、図2の送波感度周波数特性28、受波感度周波数特性30のようになる。図2には、従来例として、図8に示す送受波器に本実施例で使用した繊維に沿った方向を音波伝搬方向とする整合層22aだけを使用した場合の送波感度周波数特性29、受波感度周波数特性31を併せて示した。
【0031】
従来の構成で得られる送受波器の感度特性に対して、本発明の実施例による広帯域送受波器では、帯域が広がっていることが判る。これは、整合層22aを設けた電気音響変換素子23aの共振特性に対して整合層22bを設けた電気音響変換素子23bの共振特性が低周波側へずれ、これらを混在させて素子配列を行い、2つの素子群の帯域のずれた感度特性を重畳させることで、低周波側へ帯域が拡がるとともに、帯域内の感度変化を抑制する効果が得られることによる。
【0032】
従来の送受波器での多重整合層化は、整合層を多層設けることで圧電振動子を多重共振させ、共振周波数近傍での感度特性の持ち上がりを連続的に繋げ、なおかつ、帯域内の感度変化を抑制することで、広帯域化を達成する方法であったが、本発明の広帯域送受波器では、複数の電気変換音響素子をいくつかの群に分けて、それぞれの素子群に共振特性のずれを与え、これらを組み合わせて素子配列を形成したときに1つの送受波器が複数の共振周波数を持つことを可能にし、多重整合層による圧電振動子の多重共振化の場合と同様の効果を近似的に得られるようにしたものである。
【0033】
本発明の広帯域送受波器によれば、圧電振動子に多重整合層を付与した時のような複雑な特性推定計算は不要であり、1層の整合層を付与した時の特性推定を複数行い、これらの特性の組合せから素子配列を行った後の送受波器としての感度特性が比較的容易に推定できる。
【0034】
また、1つの材料から整合層を複数得られるため、多くの整合層材料を調査し、選択・組合せを行う必要がない。
【0035】
さらに、1つの材料から2種類以上の整合層を得ることには、他の利点もある。例えば、今回の実施例で使用したガラス布基材エポキシ樹脂積層板から得た整合層22a、22bと等しい音波伝搬速度を有する樹脂材料を探した場合、一般の樹脂材料では、音波伝搬速度の速いものほど密度が大きくなる傾向にあるため、整合層22a相当の音波伝搬速度を有する整合層材料の密度が整合層22b相当の音波伝搬速度を有する整合層材料の密度に較べて大きくなるのが普通である。
【0036】
この場合、2種類の電気音響変換素子間の共振のずれは、計算上でも密度が同一の場合に較べて、ずれが小さくなる。また、前記の傾向より、異なる樹脂材料で密度が等しく音波伝搬速度が大きく異なる材料を探し出すことは、非常な困難が伴う。従って、特性の面でも整合層材料の入手の面でも1つの材料から複数の整合層が得られることの利点は大きい。
【0037】
上記の実施例でガラス布基材エポキシ樹脂積層板を整合層として使用し、音波伝搬速度の異方性を有する材料から2種類の整合層を得て組み合わせて使用することで、同一の整合層1種類のみ使用する場合に対して広帯域化の効果が大きく得られることを示したが、本発明は、整合層の材料としてガラス布基材エポキシ樹脂積層板のみ規定するものではなく、速度異方性を有する他の材料であっても、同様の効果が得られる。ただし、その効果の大小は、それぞれ使用する材料の特性に依存するもので、異方性を有する材料であれば、本実施例と全く同じ程度の効果が得られることを保証するものではない。
【0038】
本実施例では、音波伝搬速度の異方性を有する材料としてガラス布基材エポキシ樹脂積層板を使用したが、音波伝搬速度の異方性を有する材料としては布基材あるいは紙基材のエポキシ樹脂積層板やフェノール樹脂積層板等があり、またガラス繊維やカーボン繊維等を一定方向に配向させて成形した樹脂についても、音波伝搬速度の異方性が認められるものが多く、整合層材料として、このような材料を用いることも可能である。
【0039】
本実施例では、ガラス布基材エポキシ樹脂積層板の繊維方向の音波伝搬速度に対して整合層の長さが音波伝搬波長λの1/4となるように寸法を定めたが、これについては、必ずしも波長λの1/4である必要はない。
【0040】
また、本実施例では、ガラス布基材の繊維に沿った方向と繊維に直交する方向を整合層中の音波伝搬方向として利用したが、これらの直交軸から傾いた方向を音波伝搬方向として整合層を加工すれば、さらに音波伝搬速度の異なる整合層を得ることも可能である。
【0041】
【発明の効果】
以上、本発明によれば、整合層を用いる構成としては、最も単純な形態である1層の整合層を設けた電気音響変換素子を配列する方式の送受波器で、材料特性の異なる整合層を使用し、しかも、その材料特性の異なる整合層を1つの材料から得るという簡単な方法で、より広帯域化された広帯域送受波器を提供できるものである。
【図面の簡単な説明】
【図1】本発明の実施例における素子配列型の広帯域送受波器を示す図、2種類の電気音響変換素子の配置を示す上面及び側面から見た断面図。図1(a)は、正面図、図1(b)は、 図1(a)でのAA断面図。
【図2】本発明による水中超音波送受波器と、従来の構成による水中超音波送受波器の感度特性を示すグラフ。図2(a)は、送波電力感度と周波数との関係を示し、図2(b)は、受波電力感度と周波数との関係を示す図。
【図3】ガラス布基材エポキシ樹脂積層板における音波伝搬方向と、同樹脂板から得る整合層の音波伝搬方向と長さ方向の関係を示す図。
【図4】2種類の電気音響変換素子の整合層におけるガラス布基材エポキシ樹脂積層板の繊維方向との関係を示す図。図4(a)は、繊維に沿った方向と、音波伝搬方向をそろえた整合層を持つ電気音響変換素子を示す図、図4(b)は、繊維に沿った方向が、音波伝搬方向と直角をなす整合層を持つ電気音響変換素子を示す図、図4(c)は、それぞれの電気音響変換素子のインピーダンス特性を示す図。
【図5】1個の圧電振動子に1層の整合層を設けた電気音響変換素子を用いた従来の送受波器の上面及び側面から見た断面図。図5(a)は正面図、 図5(b)は、図5(a)におけるBB断面図。
【図6】2層の整合層を加えて多重整合層化した電気音響変換素子を用いた従来の送受波器の側面から見た断面図。
【図7】1個の圧電振動子に1層の整合層を設けた電気音響変換素子を複数個配列した従来の素子配列型の送受波器の上面及び側面から見た断面図。図7(a)は正面図、図7(b)は、図7(a)でのCC断面図。
【図8】2層の整合層を加えて多重整合層化した電気音響変換素子を複数個、配列した従来の送受波器の側面から見た断面図。
【図9】1個の圧電振動子に1層の整合層を設けた電気音響変換素子を用いた従来の送受波器を示す図。図8と音響放射面の形状寸法が等しい構成とした送受波器の上面及び側面から見た断面図。図9(a)は正面図、図9(b)は、図9(a)でのCC断面図。
【符号の説明】
1a,1b,21 圧電振動子
2a〜2f 整合層
22 ガラス布基材エポキシ樹脂積層板
22a,22b 整合層
23a,23b 電気音響変換素子
24a,24b インピーダンス周波数特性
25 コルク
26 信号ケーブル
27 ポリウレタンゴムモールド
28,29 送波感度周波数特性
30,31 受波感度周波数特性
[0001]
BACKGROUND OF THE INVENTION
The present invention is a broadband transmitter / receiver suitable for use in the ocean such as fish school detection and depth measurement in the ocean, and is particularly configured by arranging a plurality of electroacoustic transducers using piezoelectric vibrators. The present invention relates to an element array type broadband transducer.
[0002]
[Prior art]
Conventional ocean transmitters and receivers have proposed technologies such as shortening the wavelength of underwater acoustic waves by increasing the frequency used, or increasing the bandwidth to improve signal response, in order to improve acoustic measurement accuracy. I came. In particular, for broadband technology, considerable results have been obtained through the use of matching layers.
[0003]
In general, the matching layer used in the electroacoustic transducer of the transducer is focused on the acoustic impedance density of the matching layer material, and the acoustic wave in the piezoelectric transducer and the underwater ultrasonic transducer that converts electrical signals and acoustic signals. Various materials were selected from the target of the geometric mean value of the acoustic impedance density of water as a propagation medium. The length dimension of the matching layer is set to ¼ of the sound wave propagation wavelength λ in the matching layer at the operating frequency of the piezoelectric vibrator. It was attached so that the length direction matched.
[0004]
As shown in FIG. 6A, an electroacoustic transducer in which one matching layer 2a is provided on the acoustic radiation surface of one piezoelectric vibrator 1a is used to increase the bandwidth of the transmitter / receiver using the matching layer. The basic structure is the structure to be performed. When the bandwidth obtained by providing one matching layer 2a is not sufficient, a second matching layer 2b or a third matching layer 2c is provided as shown in FIG. By adopting the configuration, it was intended to further broaden the bandwidth.
[0005]
Even in an element array type transducer as shown in FIG. 7A, a sufficient bandwidth can be obtained by arranging a plurality of electroacoustic transducer elements each having a matching layer 2d on the piezoelectric vibrator 1b. If not obtained, as in the case of the transducer shown in FIG. 6, a second matching layer 2e or a third matching layer 2f is provided to form a multiple matching layer as shown in FIG. 7B. It was common to deal with this.
[0006]
[Problems to be solved by the invention]
However, in the case of a structure in which a plurality of electroacoustic transducers provided with multiple matching layers are arranged as in the transducer shown in FIG. 7B, each electroacoustic transducer is bonded to one piezoelectric vibrator. Since it is formed by attaching two or more matching layers by the above method, it is necessary to prevent the matching layer from being displaced and to manage the thickness of the adhesive layer. As a result, there has been a problem that the variation in characteristics becomes conspicuous as the adhesive layer serving as a boundary between the piezoelectric vibrator and the matching layer increases.
[0007]
Further, materials having different acoustic impedance densities are used as the second and third matching layers, but the length dimension in the sound wave propagation direction of each matching layer is 1/4 of the sound wave propagation wavelength λ of each material. As a result, the length of the electroacoustic transducer having a single matching layer is increased, and as a result, the size of the transducer must be increased. There was also.
[0008]
Accordingly, an object of the present invention is to provide a structure of an electroacoustic transducer element called a multi-matching layer in contrast to the effect of widening the band obtained by providing a single matching layer in a conventional element array type wide-band transducer. By using a combination of electroacoustic transducers with a basic configuration with a single matching layer without the need for complication or increase in length, a broadband transmitter / receiver that achieves wider bandwidth can be obtained. Is to provide.
[0009]
[Means for Solving the Problems]
The broadband transducer according to the present invention is an element array type underwater ultrasonic transducer configured by arranging a plurality of electroacoustic transducers each having a single matching layer on a piezoelectric vibrator. As a combination of two or more types of matching layers obtained from materials having velocity anisotropy with different sound wave propagation speeds depending on the direction in which the sound waves propagate through the material, and a plurality of matching layer lengths in the sound wave propagation direction are used. Is a broadband transmitter / receiver unified with a length determined by the characteristic value of the matching layer whose sound wave propagation speed is faster than the median or the median.
[0010]
According to the broadband transducer of the present invention, by providing a plurality of types of matching layers having the same dimensions and different sound wave propagation speeds in the length direction, which is the sound wave propagation direction, to a piezoelectric vibrator of one specification, resonance characteristics are obtained. A plurality of electroacoustic transducers with different characteristics can be obtained, and by combining them to form an element array, a broadband transducer having sensitivity characteristics can be obtained by combining the characteristics of the electroacoustic transducer elements with different sensitivity characteristics. be able to.
[0011]
That is, the present invention relates to an element array type broadband transducer in which a plurality of electroacoustic transducers each provided with a single matching layer are arranged on a piezoelectric vibrator, and watertightness is provided by a method such as resin molding. The matching layer is used in combination of two or more types obtained from materials having velocity anisotropy with different sound wave propagation speeds depending on the direction in which sound waves propagate through the material, and the matching layer has a plurality of lengths in the sound wave propagation direction. In this matching layer, the sound wave propagation speed is the median value or a broadband transmitter / receiver that unifies with a length determined by the characteristic value of the matching layer that is faster than the median value.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
The broadband transmitter / receiver of the present invention will be described below.
[0013]
FIG. 1 is an element array type broadband transducer according to an embodiment of the present invention, and is a cross-sectional view seen from the top and side showing the arrangement of two types of electroacoustic transducers. FIG. 1A shows a front view of a broadband transducer, and FIG. 1B shows a cross-sectional view taken along line AA in FIG.
[0014]
In the conventional configuration, as shown in FIG. 7, in the case of arranging a plurality of electroacoustic transducers having a single matching layer on a piezoelectric vibrator in an element array type transducer, the same material is used for one element. The electroacoustic transducers have the same characteristics because the matching layer having the dimensions of 1 is applied to each piezoelectric vibrator by bonding or the like.
[0015]
This is because, as shown in FIG. 6, the element arrangement type transducer is a directivity operation and the outer diameter size ratio of the transducer with respect to the transducer comprising the electroacoustic transducer element by one piezoelectric transducer. This is because, in order to achieve the avoidance of the generation of the coupling vibration caused by the above, it was configured as an initial purpose to replace a plurality of electroacoustic transducers having a shape obtained by subdividing the acoustic radiation surface with an array.
[0016]
That is, the conventional transmitter / receiver shown in FIG. 7 includes 16 subdivided electroacoustic transducers, each of which is composed of one electroacoustic transducer having an acoustic radiation surface shape as shown in FIG. Thus, it can be said that the acoustic radiation surface is reconfigured so that the shape and the outer diameter are equal.
[0017]
Here, since the 16 electroacoustic transducers have the same characteristics, the resonance characteristics of the transducers arranged in the element are the same as those of the transducer of one electroacoustic transducer in FIG. A single resonance at the operating frequency of the piezoelectric vibrator is changed to a double resonance characteristic having two primary and secondary resonance points by providing one matching layer, and a plurality of electroacoustic transducers are provided. Even if arranged, the resonance point does not increase further.
[0018]
On the other hand, in the broadband transducer according to the present invention, by using a plurality of matching layers having the same dimensions and different sound wave propagation velocities, a plurality of electroacoustic transducers in which the resonance points of the double resonance characteristics are shifted can be obtained. By combining these, a broadband transducer having three or more resonance points is configured.
[0019]
【Example】
A broadband transducer according to an embodiment of the present invention will be described below.
[0020]
In the broadband transducer according to the present invention, two types of matching layers having different characteristics are obtained from one type of material. The material having the anisotropy of the sound wave velocity used as the matching layer material is the glass cloth base epoxy resin laminate 22. This material has different sound wave propagation speeds in the direction along the glass cloth fiber as the base material and in the direction perpendicular to the fiber.
[0021]
Conventionally, when a glass cloth base epoxy resin laminate is used as a matching layer material, either the direction along the glass cloth fiber or the direction perpendicular to the fiber has been unified as the sound wave propagation direction as the matching layer. However, in this embodiment, the first matching layer 22a in which the direction along the fiber is the length direction that is the sound wave propagation direction of the matching layer is used, and the direction orthogonal to the fiber is the sound wave propagation direction of the matching layer. A second matching layer 22b having a certain length direction is used.
[0022]
Alternatively, in place of the first matching layer 22a or the second matching layer 22b, a third matching layer (in which a direction oblique to the direction along the fiber is used as the sound wave propagation direction of the matching layer ( It is also possible to process and use (not shown).
[0023]
In the glass cloth base epoxy resin laminate, as shown in FIG. 3, the sound wave propagation speed in the X and Y directions along the glass cloth fiber is 30% or more with respect to the sound wave propagation speed in the Z direction perpendicular to the glass cloth fiber. Since it shows a large value, two types of matching layers having the same density and different sound wave propagation speeds can be obtained. About the matching layer 22b which determines the length direction dimension L of the matching layer 22a with the characteristic value in the X or Y direction along the glass cloth fiber having a high sound wave propagation speed, and uses the Z direction orthogonal to the glass cloth fiber as the sound wave propagation direction. Is processed with L in the length direction.
[0024]
As a result, if the matching layer 22a whose direction along the fiber is the sound wave propagation direction is ¼ of the sound wave propagation wavelength λa in the matching layer at the operating frequency, the direction perpendicular to the fiber is The matching layer 22b having the sound wave propagation direction has a length that is substantially 30% or longer with respect to ¼ of the sound wave propagation wavelength λb in the matching layer at the use frequency.
[0025]
In the embodiment, two types of matching layers 22a and 22b manufactured from a glass cloth base epoxy resin laminated plate 22 are applied to a prismatic vibrator 21 that resonates at a frequency of 70 kHz in the length direction by bonding. Electroacoustic transducers 23a and 23b having matching layers are obtained.
[0026]
As the material properties of the glass cloth base epoxy resin laminate, the density ρ = 1.9 × 10 3 (kg / cm 3 ), the sound wave propagation velocity Ca = 3150 (m / sec) along the fiber, Since the sound wave propagation velocity Cb in the orthogonal direction is 2340 (m / sec), the length of the matching layer 22a having the sound wave propagation direction in the direction along the fiber with respect to the use frequency of 70 kHz is ¼ of the wavelength λ. Is set to about L = 11.3 (mm), and the matching layer 22b having the direction perpendicular to the fiber as the sound wave propagation direction is also formed with this length.
[0027]
FIG. 4 shows an external view of electroacoustic transducers 23a and 23b configured by bonding two types of matching layers 22a and 22b to the piezoelectric vibrator 21 with a thermosetting epoxy resin adhesive. Both elements have the same dimensions. The graph shows the respective impedance characteristics. The characteristics of the electroacoustic transducer 23a are represented by the impedance frequency characteristics 24a, and the characteristics of the electroacoustic transducer 23b are represented by the impedance frequency characteristics 24b.
[0028]
Here, the electroacoustic transducer 23b bonded with the matching layer 22b whose direction perpendicular to the fiber is the sound wave propagation direction is bonded to the electroacoustic transducer 23a bonded with the matching layer 22a whose direction along the fiber is the sound wave propagation direction. On the other hand, the primary resonance point shifts to the low frequency side of about 8 kHz. When these electroacoustic transducers 23a and 23b are combined, a transducer having four resonance points in the resonance characteristics can be obtained.
[0029]
On the other hand, in the conventional transducer configuration with one type of matching layer, there are two resonance points. In the broadband transducer according to the embodiment of the present invention, each of the two types of electroacoustic transducer elements 23a and 23b is used to form a 4 × 4 element array, and between elements and around the element array. The cork 25 is bonded to position the element and sound is insulated from the surroundings. After the connection with the signal cable 26, the whole is molded with a polyurethane rubber mold 27 to provide watertightness, and the conventional transmission / reception shown in FIG. A broadband transmitter / receiver with the same dimensions as the wave generator was manufactured.
[0030]
FIG. 1 is an explanatory diagram of a broadband transducer according to this embodiment. The arrangement of the electroacoustic transducers 23a and 23b in this broadband transducer is such that they are alternately arranged as shown in FIG. The sensitivity characteristics of the broadband transducer thus obtained are as shown in the transmission sensitivity frequency characteristic 28 and the reception sensitivity frequency characteristic 30 of FIG. In FIG. 2, as a conventional example, the transmission sensitivity frequency characteristic 29 when only the matching layer 22a having the direction along the fiber used in this embodiment as the sound wave propagation direction is used in the transducer shown in FIG. The reception sensitivity frequency characteristic 31 is also shown.
[0031]
It can be seen that the bandwidth of the wideband transducer according to the embodiment of the present invention is broader than the sensitivity characteristics of the transducer obtained with the conventional configuration. This is because the resonance characteristics of the electroacoustic transducer 23b provided with the matching layer 22b shift to the low frequency side with respect to the resonance characteristics of the electroacoustic transducer 23a provided with the matching layer 22a, and the elements are arranged by mixing them. This is because, by superimposing the sensitivity characteristics of the two element groups that are out of band, the band is expanded toward the low frequency side, and the effect of suppressing the sensitivity change in the band is obtained.
[0032]
Multi-matching layers in conventional transducers are made by providing multiple matching layers to cause multiple resonances of the piezoelectric vibrator, continuously increasing the sensitivity characteristics near the resonance frequency, and changing the sensitivity within the band. However, in the wideband transducer of the present invention, a plurality of electrical conversion acoustic elements are divided into several groups, and the resonance characteristics of each element group are shifted. When these are combined to form an element array, one transducer can have multiple resonance frequencies, approximating the same effect as in the case of multiple resonance of a piezoelectric vibrator using multiple matching layers It is intended to be obtained.
[0033]
According to the wideband transducer of the present invention, complicated characteristic estimation calculation such as when a multiple matching layer is added to a piezoelectric vibrator is unnecessary, and multiple characteristic estimations when a single matching layer is added are performed. The sensitivity characteristics as a transducer after the element arrangement is performed from the combination of these characteristics can be estimated relatively easily.
[0034]
Further, since a plurality of matching layers can be obtained from one material, it is not necessary to investigate many selection layer materials and make selections and combinations.
[0035]
Furthermore, obtaining two or more matching layers from one material has other advantages. For example, when searching for a resin material having a sound wave propagation speed equal to the matching layers 22a and 22b obtained from the glass cloth base epoxy resin laminate used in the present embodiment, a general resin material has a high sound wave propagation speed. Since the density tends to increase, the density of the matching layer material having the sound wave propagation speed equivalent to the matching layer 22a is usually larger than the density of the matching layer material having the sound wave propagation speed equivalent to the matching layer 22b. It is.
[0036]
In this case, the deviation of resonance between the two types of electroacoustic transducers is smaller than the case where the density is the same in calculation. In addition, from the above tendency, it is very difficult to find a material with different resin materials having the same density and greatly different sound wave propagation speeds. Therefore, the advantage of obtaining a plurality of matching layers from one material is great both in terms of characteristics and availability of the matching layer material.
[0037]
By using the glass cloth base epoxy resin laminate as the matching layer in the above embodiment, and obtaining two types of matching layers from materials having anisotropy in sound wave propagation velocity, and using them in combination, the same matching layer Although it has been shown that the effect of broadening the bandwidth can be greatly obtained when only one type is used, the present invention does not prescribe only the glass cloth base epoxy resin laminate as the material of the matching layer, and is anisotropic in speed. The same effect can be obtained even with other materials having properties. However, the magnitude of the effect depends on the characteristics of the material used, and it is not guaranteed that the same effect as in this embodiment can be obtained as long as the material has anisotropy.
[0038]
In this example, the glass cloth base epoxy resin laminate was used as the material having the anisotropy of the sound wave propagation speed, but the material having the anisotropy of the sound wave propagation speed was an epoxy of the cloth base material or the paper base material. There are resin laminates, phenol resin laminates, etc., and many of the resins molded with glass fiber or carbon fiber oriented in a certain direction have anisotropy in the sound wave propagation speed. Such a material can also be used.
[0039]
In this example, the dimension was determined so that the length of the matching layer was 1/4 of the sound wave propagation wavelength λ with respect to the sound wave propagation speed in the fiber direction of the glass cloth base epoxy resin laminate. However, it is not always necessary to be 1/4 of the wavelength λ.
[0040]
In this example, the direction along the fiber of the glass cloth base material and the direction orthogonal to the fiber are used as the sound wave propagation direction in the matching layer, but the direction inclined from these orthogonal axes is matched as the sound wave propagation direction. If the layer is processed, it is also possible to obtain matching layers with different acoustic wave propagation velocities.
[0041]
【The invention's effect】
As described above, according to the present invention, the configuration using a matching layer is a transducer of a system in which electroacoustic transducers having a single matching layer, which is the simplest form, are arranged. In addition, a broadband transmitter / receiver having a wider bandwidth can be provided by a simple method in which matching layers having different material properties are obtained from a single material.
[Brief description of the drawings]
FIG. 1 is a diagram showing an element array type broadband transducer according to an embodiment of the present invention, and is a cross-sectional view seen from the top and side showing the arrangement of two types of electroacoustic transducers. 1A is a front view, and FIG. 1B is a cross-sectional view taken along line AA in FIG.
FIG. 2 is a graph showing sensitivity characteristics of an underwater ultrasonic transducer according to the present invention and an underwater ultrasonic transducer according to a conventional configuration. FIG. 2A shows the relationship between transmission power sensitivity and frequency, and FIG. 2B shows the relationship between reception power sensitivity and frequency.
FIG. 3 is a diagram showing a relationship between a sound wave propagation direction in a glass cloth base epoxy resin laminate and a sound wave propagation direction and a length direction of a matching layer obtained from the resin plate.
FIG. 4 is a diagram showing a relationship between fiber directions of glass cloth base epoxy resin laminates in matching layers of two types of electroacoustic transducers. FIG. 4A is a diagram showing an electroacoustic transducer having a matching layer in which the direction along the fiber and the sound wave propagation direction are aligned, and FIG. 4B shows the direction along the fiber as the sound wave propagation direction. The figure which shows the electroacoustic transducer which has the matching layer which makes a right angle, FIG.4 (c) is a figure which shows the impedance characteristic of each electroacoustic transducer.
FIG. 5 is a cross-sectional view of a conventional transducer using an electroacoustic transducer in which a single matching layer is provided on a single piezoelectric vibrator, as viewed from the top and side. 5A is a front view, and FIG. 5B is a BB cross-sectional view in FIG.
FIG. 6 is a cross-sectional view seen from the side of a conventional transducer using an electroacoustic transducer having a multi-matching layer by adding two matching layers.
FIG. 7 is a cross-sectional view seen from the top and side of a conventional element array type transducer in which a plurality of electroacoustic transducers each having a single matching layer provided on one piezoelectric vibrator are arrayed. Fig.7 (a) is a front view, FIG.7 (b) is CC sectional drawing in Fig.7 (a).
FIG. 8 is a cross-sectional view as seen from the side of a conventional transducer in which a plurality of electroacoustic transducer elements that are made into multiple matching layers by adding two matching layers are arranged.
FIG. 9 is a diagram showing a conventional transducer using an electroacoustic transducer in which one matching layer is provided in one piezoelectric vibrator. Sectional drawing seen from the upper surface and side surface of the transducer which made the structure with the same shape dimension of FIG. 8 and an acoustic radiation surface. 9A is a front view, and FIG. 9B is a CC cross-sectional view in FIG. 9A.
[Explanation of symbols]
1a, 1b, 21 Piezoelectric vibrators 2a-2f Matching layer 22 Glass cloth base epoxy resin laminates 22a, 22b Matching layers 23a, 23b Electroacoustic transducers 24a, 24b Impedance frequency characteristics 25 Cork 26 Signal cable 27 Polyurethane rubber mold 28 , 29 Transmission sensitivity frequency characteristics 30,31 Reception sensitivity frequency characteristics

Claims (1)

圧電振動子に1層の整合層を付与した電気音響変換素子を複数個、配列し樹脂モールド等の方法により水密性を持たせた素子配列型の広帯域送受波器において、前記整合層として材料中を音波が伝搬する方向により音波伝搬速度が異なる速度異方性を有する材料から得た2種類以上を組み合わせて使用し、かつ整合層の音波伝搬方向の長さを複数の整合層中で音波伝搬速度が中央値ないしは中央値より速い整合層の特性値により定めた長さで統一したことを特徴とする広帯域送受波器。In an element array type broadband transducer in which a plurality of electroacoustic transducers each provided with a single matching layer on a piezoelectric vibrator are arranged and made watertight by a method such as resin molding, the matching layer is made of a material. Are used in combination of two or more materials obtained from materials with velocity anisotropy that have different sound wave propagation speeds depending on the direction of sound wave propagation, and the length of the sound wave propagation direction of the matching layer is propagated in multiple matching layers. A broadband transmitter / receiver characterized in that the speed is unified with a length determined by a characteristic value of a matching layer whose median or faster than the median.
JP2000225070A 2000-07-26 2000-07-26 Broadband transducer Expired - Lifetime JP4291501B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000225070A JP4291501B2 (en) 2000-07-26 2000-07-26 Broadband transducer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000225070A JP4291501B2 (en) 2000-07-26 2000-07-26 Broadband transducer

Publications (2)

Publication Number Publication Date
JP2002044786A JP2002044786A (en) 2002-02-08
JP4291501B2 true JP4291501B2 (en) 2009-07-08

Family

ID=18718907

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000225070A Expired - Lifetime JP4291501B2 (en) 2000-07-26 2000-07-26 Broadband transducer

Country Status (1)

Country Link
JP (1) JP4291501B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009141451A (en) * 2007-12-04 2009-06-25 Nippon Ceramic Co Ltd Ultrasonic wave transceiver
JP5263834B2 (en) * 2009-06-09 2013-08-14 独立行政法人港湾空港技術研究所 Underwater image acquisition device

Also Published As

Publication number Publication date
JP2002044786A (en) 2002-02-08

Similar Documents

Publication Publication Date Title
CN102662166B (en) Multimode broadband circular array transducer
JP3556582B2 (en) Ultrasound diagnostic equipment
US9308554B2 (en) Ultrasonic/acoustic transducer
CN103841499B (en) One kind application is prestressed to stack piezoelectric circular transducer
CN101909230A (en) Broadband underwater acoustic transducer using composite material of metal, piezoelectric ceramics and polymer
CN100389890C (en) Transducer array and production thereof
AU2020103892A4 (en) Sensing element used to fabricate high-frequency, wideband and high-sensitivity underwater acoustic transducer and fabrication method thereof
CN112040382B (en) High-bandwidth underwater acoustic transducer based on acoustic impedance gradient matching layer
CN107005768A (en) Ultrasonic transducer and its manufacture method with the flexible printed circuit board including thick metal layers
WO2012070613A1 (en) Ultrasound probe
JP4291501B2 (en) Broadband transducer
JP4291500B2 (en) Broadband transducer
US20190257930A1 (en) Multi frequency piston transducer
Brown et al. Cylindrical transducer for producing an acoustic spiral wave for underwater navigation (L)
JP2972741B1 (en) Composite oscillator
US20130241350A1 (en) Ultrasonic probe
US20190272816A1 (en) Hybrid transducer apparatus and methods of manufacture and use
CN101311747A (en) Wide-band transducer for synthesis aperture
JPH0116391B2 (en)
JPH09271098A (en) Electro-acoustic transducer
US8817575B1 (en) Transducer for high pressure environment
US7180827B2 (en) Surface acoustic antenna for submarines
JP2006266968A (en) Echo sounder transducer
JP2003230194A (en) Ultrasonic probe
KR101753492B1 (en) The ultrasonic transducer having backing layer comprising materials having different acoustic impedances and method for manufacturing thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090325

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090403

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130410

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140410

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350