JPH0579729B2 - - Google Patents

Info

Publication number
JPH0579729B2
JPH0579729B2 JP62031609A JP3160987A JPH0579729B2 JP H0579729 B2 JPH0579729 B2 JP H0579729B2 JP 62031609 A JP62031609 A JP 62031609A JP 3160987 A JP3160987 A JP 3160987A JP H0579729 B2 JPH0579729 B2 JP H0579729B2
Authority
JP
Japan
Prior art keywords
steel
strength
rolling
toughness
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62031609A
Other languages
Japanese (ja)
Other versions
JPS63266023A (en
Inventor
Hisae Terajima
Tomoya Koseki
Chiaki Shiga
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP62031609A priority Critical patent/JPS63266023A/en
Publication of JPS63266023A publication Critical patent/JPS63266023A/en
Publication of JPH0579729B2 publication Critical patent/JPH0579729B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) この発明は、直接焼入れ法による引張強さ70Kg
f/mm2以上、降伏比90%以下の高靭性低降伏比高
張力鋼板の製造方法に関し、とくに鋼板の変形態
を増大させ、鋼構造物の安全性増加を目指して高
張力鋼の低降伏比化を図り、橋梁、建築、水圧鉄
管および圧力容器などへの有利な適用を成就しよ
うとするものである。 一般に引張強さが40Kgf/mm2級の軟鋼では、そ
の降伏比の値がおよそ60〜70%程度と低いのに反
し、鋼の引張強さを増大させるにつれて降伏比は
高くなる傾向にあり、近年使用量の増しつつある
引張強さ70〜110Kgf/mm2級の高張力鋼では通常
降伏比が90%以上にも高くなるため、建造物の設
計上の要注意事項とされている。 降伏比は鋼板が降伏したのち破断にいたるまで
の余裕を示すものと考えられ、その値が低いほど
変形態が大きく、一様伸びおよび全伸びが大きい
ので鋼構造物の安全性の点で有利であるのは明ら
かである。 また、鋼構造物の疲労特性向上の面からも低降
伏比の高張力鋼板の開発が要望される。 (従来の技術) 引張強さ70〜110Kgf/mm2もの高張力鋼を製造
するには、その強度確保のために組織をマルテン
サイト主体とする必要があるが、焼入れままでは
靭性が低くかつ板厚方向の強度が不均一である。
従つて、従来焼入れ後600℃程度の温度で焼もど
し処理を施すことによつて鋼板の靭性向上と板厚
方向の強度の均一化とが図られてきたわけである
が、この場合、鋼板の降伏比は90%を超える高い
値となるのは避け難い問題である。 この問題を解決する試みとして、焼もどし工程
を省いて焼入れままでの低降伏比を利用すること
も考えられてはいるが、前述の如く単なる焼入れ
まま鋼板では靭性が低く、とくに板厚方向の強度
が不均一となるために、未だ実用に供しうる鋼板
は製造されていない。 また、二相域焼入れ法によつてマルテンサイト
地にフエライトを混合させた二相混合組織とする
ことによつて降伏比を低下させる試みが80Kgf/
mm2級高張力鋼について報じられている(“低降伏
比80キロ級高張力鋼およびその溶接部の基本特
性”、溶接学会論文集、3−3、1985(参照))。し
かし、この場合もフエライトが軟かいため従来の
焼入れ−焼もどし鋼板と同程度の強度を得るには
炭素当量を従来鋼より高める必要があつて、鋼構
造物建造時に最も重要である鋼板の溶接割れ感受
性が増加する欠点は不可避である。 (発明が解決しようとする問題点) 従来の70〜110Kgf/mm2級鋼の焼入れ−焼もど
し鋼と同等以下の炭素当量で、同等程度の強度を
もち、しかも降伏比を90%以下となし得る低降伏
比高張力鋼の製造を可能にすることにあわせて、
従来の焼入れまま鋼において認められた板厚方向
における強度分布差を低減することが、この発明
の目的とするところである。 (問題点を解決するための手段) この発明は、 C:0.04〜0.14wt%(以下単に%で示す)、 Si:0.03〜0.20%、 Mn:0.60〜1.40%、 Cr:0.30〜1.20%、 Mo:0.30〜1.20%、 V:0.03〜0.10%、 Al:0.02〜0.09%、 B:0.0003〜0.003%および N:0.0045%以下 を、下記式であらわされる炭素当量Ceq.が0.38〜
0.65%を満足する範囲において含有し、残部は実
質的にFeの組成になる鋼スラブを、1000〜1250
℃に加熱後、圧延仕上げ温度が鋼板表面で780〜
850℃となる熱間圧延を施し、該圧延終了後150秒
以内に焼入れを開始することを特徴とする、直接
焼入れ法による引張強さ70Kgf/mm2以上、降伏比
90%以下の高靭性低降伏比高張力鋼板の製造方法
(第1発明)である。 Ceq.=(C)+1/24(Si)+1/6(Mn)+1/5
(Cr)+1/4(Mo) +1/40(Ni)+1/14(V) (式中の元素記号は合金成分含有量(%)) またこの発明は、上記第1発明において、さら
にNiを3.20%以下の範囲で含有させた鋼スラブを
出発材料として用いる極厚高張力鋼板の製造方法
(第2発明)である。 この発明の発想の基礎は概ね次のとおりであ
る。 1 未再結晶オーステナイトが主体となる低温度
での圧延仕上げ後、直接焼入れすることにによ
つてマルテンサイトを強化するとともにその際
とくにBの焼入性向上効果を有効利用して、低
炭素当量化する。 2 未再結晶オーステナイトが主体となる適切な
圧延仕上げ温度の選定によつて板厚方向の強度
変化を少なくする。 3 上記の直接焼入れままで高靭性となるために
必要な化学成分組成を見出し、それに基づいた
成分設計を利用する。 発明者らは多数の鋼を溶製し、そのスラブを
950〜1250℃の種々の温度に加熱後、950〜750℃
の種々の温度で圧延を終了させたのた、所定時間
その温度に保持したのち焼入れることによつて、
圧延仕上げ温度および圧延終了後焼入れまでの時
間が鋼板の強度および靭性におよぼす影響につい
て詳細に調べた。 その結果、再結晶オーステナイト温度域で圧延
を終了して直接焼入れる場合には、圧延終了後焼
入れまでの時間が短時間および長時間いづれにお
いても焼入れままでは十分な靭性が得られず、良
好な靭性を得るにはきわめて狭い範囲の適正時間
しか存在しないことが判明した。 一方、未再結晶オーステナイトが主体となる温
度域で圧延を終了してから焼入れる場合には、圧
延終了後焼入れまでの保持時間が変化しても、か
なり長時間保持でも、焼入れままで十分な靭性を
有する低降伏比の鋼板が得られた。 ここに未再結晶オーステナイト主体の圧延の場
合、圧延終了後焼入れまでの時間が変化しても安
定して高強度、高靭性が得られることに対して
は、Bの挙動が大きく寄与している。 つまりBがオーステナイト粒界に存在するとき
に粒界エネルギを下げて焼入性を向上させるが、
圧延温度が低いとオーステナイト粒界の移動速度
が小さくBの拡散速度も小さいので、Bが安定し
てオーステナイト粒界に長時間まで存在できる。
さらに、低温圧延の場合にはオーステナイト中に
歪が導入され、この歪がマルテンサイト中にもち
きたされるので強度上昇効果をもつ。 その他、焼入れままで靭性が良好な理由の一つ
として、未再結晶オーステナイトは第1図の金属
組織顕微鏡写真に示す如く変形しており、その直
径が小さいため、マルテンサイトが微細化するこ
とが挙げられる。 一例として、次の化学成分(%)、C/0.10、
Si/0.14、Mn/0.94、Ni/0.85、Cr/0.51、
Mo/0.46、V/0.051、Al/0.040、B/0.001、
N/0.0035になる鋼スラブついて、圧延仕上げ温
度およびその後直接焼入れまでの時間を変化させ
て板厚50mmの鋼板を製造し、これらが鋼板の強度
および靭性におよぼす影響について調べた結果を
第2図に示す。 同図から明らかなように、再結晶オーステナイ
ト組織の場合には、前述の如く圧延終了後直接焼
入れまでの時間による強度変化が大きく、低強度
の場合には靭性が不良であることが認められる。 一方、未再結晶オーステナイト主体の場合に
は、強度、靭性の経時変化は150秒保持まで認め
られずいずれも十分な値を示している。また降伏
比も85%以下と低い。 第3図は、上記の鋼スラブを未再結晶オーステ
ナイト域主体で圧延し直接焼入れした鋼板の板厚
方向の硬さ分布を示したものであり、図中には同
じ鋼スラブを用いて従来の再加熱焼入れ法を施用
した場合の焼入れまま材の硬さ分布を併示した。 前者の場合には、板厚中心部の温度が高く鋼板
表層部に近づく程温度が低い状態にある圧延後の
状態から直接焼入れるために、板厚中心部の焼入
性が高く、鋼板表層部ほど焼入性が劣化する。一
方板厚中心部程焼入れ時の冷却速度が遅い。従つ
てこれらが調和し図に示すような均一な硬さ(換
言すれば強度)を有する。 (作用) つぎに、各成分の限定理由を述べる。 Cは、マルテンサイトの強化に最も有効な成分
であるが、0.04%未満では強化効果が小さく、強
度を得るためには他の合金成分を多量に添加する
必要が生じ好ましくない。一方、0.14%を超える
とマルテンサイトが脆弱化して靭性の劣化を招
く。 Siは、脱酸剤としての作用の他に合金元素とし
ての役割を持ち、この発明においては炭化物の析
出に影響を与えるので極めて重要な成分である。
Siが0.03%未満では脱酸剤としての効果は得られ
ず、一方その量が0.20%を超えると低Si化による
靭性の向上効果が期待できない。また第3図の結
果は、Siによつて著しく影響されることも大きな
特徴であつて、0.03〜0.2%の範囲にすることが
必要である。 Mnは、強度確保のために0.60%以上必要であ
るが、1.40%を超えると溶接性や加工性を劣化さ
せるので0.60〜1.40%の範囲とする。 Crは、0.30%未満では強度上昇効果にに乏し
く、一方1.20%を超えると直接焼入れ時に炭化物
を析出し、靭性劣化の一因となる。 Moは、焼入れ性向上および整粒効果の点から
必要であり、その効果を得るには0.3%以上必要
である。しかし1.2%を超えるとその効果が減少
するので経済性の面から0.3〜1.2%に限定する。 Vは、溶接熱影響部の軟化度軽減のために必要
であるが、0.03%未満ではその効果はほとんど得
られず、一方0.10%を超えると熱影響部の靭性を
劣化させて好ましくないので0.03〜0.10%に限定
する。 Alは、脱酸剤として必要であるが、0.02%未満
では脱酸効果は少なく、一方0.09%を超えると靭
性を著しく低下させる。したがつて、その添加範
囲を0.02〜0.09%に限定する。 Bは、極く微量で鋼板の焼入れ性を高めるので
きわめて重要な成分である。とくにこの発明の鋼
の開発の上で最も重要な成分と云える。 しかし、その添加量が0.0003%未満の場合には
Bによる焼入れ性向上効果は期待できず、一方
0.003%を超えるとB析出物を形成して焼入れ性
向上に有効なB量を減少させるだけでなく、B析
出物自体も焼入れ性を低下させるので好ましくな
い。 Nは、BN等の窒化物を形成してBの焼入れ性
向上効果を低減するだけでなく靭性劣化を招くこ
とから可能な限り低減することが好ましい。
0.0045%以下とする場合には鋼板の靭性を損なう
ことなくBを効果的に作用せしめる。 次に、炭素当量Ceq.が0.38%未満であると70Kg
f/mm2以上の引張強さと良好な靭性とを同時に得
ることは困難となり、また溶接熱影響部の軟化を
生じる。一方、Ceq.が0.65%を超えると溶接割れ
感受性が増して割れ防止予熱温度が高くなり、溶
接施工能率の面から好ましくない。 以上必須成分について説明したが、この発明で
は、靭性確保の目的で3.20%以下の範囲において
Niを含有させることができる。ここにNi量を
3.20%以下に限定したのは3.20%を超えて多量に
添加してもさらなる靭性の向上効果は期待でき
ず、むしろ経済性を損なうことによる。 さらに、スラブ加熱温度の変化による材質バラ
ツキを避けて安定した材質の鋼板を製造するため
にはスラブ加熱温度を限定する必要がある。 この発明において、加熱温度が1250℃を超える
と、オーステナイト粒の粗大化に伴う焼入れ性の
向上によつて強度は得られるものの、靭性が劣化
し、一方、スラブ加熱温度が1000℃未満の場合に
はオーステナイト粒が細粒化し、それに伴う焼入
れ性の劣化によつて強度の低下が生じ、それに伴
なつて靭性も劣化する。 従つて、安定した強度と靭性を備えた鋼板を製
造するためには、圧延前のスラブは1000〜1250℃
の温度範囲に加熱する必要がある。 圧延仕上げ温度も鋼板の材質に大きく影響す
る。圧延仕上げ温度としては鋼板表面温度で780
〜850℃の範囲が適切である。 というのは、この発明では、未再結晶オーステ
ナイトが主体となる低温度で圧延を実施し、細か
な粒でしかも焼入れ性を確保することが肝要であ
るが、表面温度が780℃に満たない低温度では鋼
の焼入れ性が低下し、図4に示すように、強度、
靭性の劣化を招き、一方表面温度が850℃を超え
ると、板厚の大きな鋼板の場合、中央部の温度が
900℃以上にも達し、大きな再結晶オーステナイ
ト粒となる結果、やはり靭性の劣化を招くからで
ある。 図4に、C/0.10,Si/0.14,Mn/0.94,Ni/
0.85,Cr//0.51,Mo/0.46,V/0.051,Al/
0.040,B/0.001,N/0.0035になる鋼スラブを、
1150℃に加熱したのち、種々の仕上げ温度で板厚
50mmに圧延し、ついで60秒後に直接焼入れして得
た鋼材の、仕上げ圧延における鋼板表面温度と強
度および靭性との関係について調べた結果を示
す。 (実施例) 表1は、この発明に従う化学組成を有する鋼塊
と好適成分範囲を逸脱した化学組成の鋼塊、計3
鋼塊を溶製し、スラブ加熱温度、圧延仕上げ温
度、圧延終了後から焼入れまでの時間を違えて板
厚50mmの鋼板を製造したのち、各鋼板について板
厚1/4および1/2位置におけるY.S.,T.S.および−
60℃で2mmVノツチシヤルピー吸収エネルギを調
べた結果である。
(Industrial Application Field) This invention has a tensile strength of 70 kg by direct quenching.
f/mm 2 or more and a yield ratio of 90% or less, the method of manufacturing high-toughness, low-yield-ratio high-strength steel plates, with the aim of increasing the deformation of steel plates and increasing the safety of steel structures. The aim is to achieve advantageous application to bridges, architecture, penstocks, pressure vessels, etc. In general, mild steel with a tensile strength of 40Kgf/ mm2 class has a low yield ratio of about 60 to 70%, but as the tensile strength of steel increases, the yield ratio tends to increase. High-strength steel with a tensile strength of 70 to 110 Kgf/mm 2 , which has been increasingly used in recent years, usually has a yield ratio as high as 90% or more, so it is an important consideration when designing buildings. The yield ratio is considered to indicate the margin from when a steel plate yields until it breaks, and the lower the value, the greater the deformation, and the greater the uniform elongation and total elongation, which is advantageous in terms of the safety of steel structures. It is clear that Furthermore, from the perspective of improving the fatigue properties of steel structures, there is a need for the development of high-strength steel plates with low yield ratios. (Prior technology) In order to manufacture high-strength steel with a tensile strength of 70 to 110 Kgf/ mm2 , it is necessary to make the structure mainly martensite in order to ensure its strength, but if as-quenched, the toughness is low and the plate The strength in the thickness direction is uneven.
Therefore, conventionally, tempering treatment at a temperature of about 600°C after quenching has been used to improve the toughness of steel plates and make the strength uniform in the thickness direction. It is an unavoidable problem that the ratio is high, exceeding 90%. As an attempt to solve this problem, it has been considered to omit the tempering process and utilize the low yield ratio of as-quenched steel sheets, but as mentioned above, simply as-quenched steel sheets have low toughness, especially in the thickness direction. Because of the non-uniform strength, steel plates that can be put to practical use have not yet been manufactured. In addition, an attempt was made to lower the yield ratio by creating a two-phase mixed structure in which ferrite was mixed with martensite using a two-phase region quenching method.
It has been reported about mm 2 class high tensile strength steel ("Basic characteristics of low yield ratio 80 kg class high strength steel and its welded parts", Journal of the Welding Society of Japan, 3-3, 1985 (reference)). However, in this case as well, since ferrite is soft, in order to obtain the same strength as conventional hardened and tempered steel sheets, it is necessary to increase the carbon equivalent compared to conventional steel, and this requires welding of steel sheets, which is most important when constructing steel structures. The disadvantage of increased cracking susceptibility is inevitable. (Problems to be solved by the invention) Quenching and tempering of conventional 70 to 110 Kgf/mm grade 2 steel, which has a carbon equivalent equal to or less than that of the tempered steel, has the same strength, and has a yield ratio of less than 90%. In addition to making it possible to manufacture high-strength steels with low yield ratios,
It is an object of the present invention to reduce the strength distribution difference in the thickness direction observed in conventional as-quenched steel. (Means for Solving the Problems) This invention includes: C: 0.04 to 0.14 wt% (hereinafter simply indicated in %), Si: 0.03 to 0.20%, Mn: 0.60 to 1.40%, Cr: 0.30 to 1.20%, Mo: 0.30 to 1.20%, V: 0.03 to 0.10%, Al: 0.02 to 0.09%, B: 0.0003 to 0.003% and N: 0.0045% or less, and the carbon equivalent Ceq. expressed by the following formula is 0.38 to 0.38
A steel slab containing 1000 to 1250
After heating to ℃, the rolling finishing temperature on the steel plate surface is 780 ~
Tensile strength of 70 Kgf/mm 2 or more, yield ratio by direct quenching method, characterized by hot rolling at 850℃ and quenching starting within 150 seconds after the end of the rolling.
A method for manufacturing a high tensile strength steel plate with a low yield ratio of 90% or less (first invention). Ceq.=(C)+1/24(Si)+1/6(Mn)+1/5
(Cr) + 1/4 (Mo) + 1/40 (Ni) + 1/14 (V) (The element symbol in the formula is the alloy component content (%)) Further, in the first invention, this invention further includes Ni. This is a method for manufacturing an extra-thick high-strength steel plate (second invention) using a steel slab containing 3.20% or less as a starting material. The basis of the idea of this invention is roughly as follows. 1 After rolling and finishing at a low temperature in which unrecrystallized austenite is the main component, the martensite is strengthened by direct quenching, and at this time, the hardenability improving effect of B is particularly effectively utilized to achieve a low carbon equivalent. Quantify. 2. Reduce strength changes in the plate thickness direction by selecting an appropriate rolling finishing temperature where unrecrystallized austenite is the main component. 3. Find out the chemical composition necessary to achieve high toughness with the above direct quenching process, and use the composition design based on it. The inventors melted a large amount of steel and created a slab of it.
After heating to various temperatures of 950-1250℃, 950-750℃
By finishing rolling at various temperatures, holding at that temperature for a predetermined period of time, and then quenching,
The effects of finishing rolling temperature and the time from completion of rolling to quenching on the strength and toughness of steel sheets were investigated in detail. As a result, when direct quenching is performed after rolling in the recrystallized austenite temperature range, sufficient toughness cannot be obtained with quenching, regardless of whether the time from completion of rolling to quenching is short or long. It has been found that there is only a very narrow range of suitable times to obtain toughness. On the other hand, when quenching is performed after finishing rolling in a temperature range in which unrecrystallized austenite is the main component, even if the holding time after finishing rolling and quenching changes or even if the holding time is considerably long, quenching is still sufficient. A steel plate with low yield ratio and high toughness was obtained. In the case of rolling mainly composed of unrecrystallized austenite, the behavior of B greatly contributes to the fact that high strength and toughness can be stably obtained even if the time from completion of rolling to quenching changes. . In other words, when B exists at austenite grain boundaries, it lowers grain boundary energy and improves hardenability.
When the rolling temperature is low, the movement speed of the austenite grain boundaries is low and the diffusion speed of B is also low, so that B can stably exist at the austenite grain boundaries for a long time.
Furthermore, in the case of low-temperature rolling, strain is introduced into the austenite, and this strain is carried over into the martensite, which has the effect of increasing strength. Another reason why the toughness is good even after quenching is that the unrecrystallized austenite is deformed as shown in the metallographic micrograph in Figure 1, and its diameter is small, so it is difficult for the martensite to become fine. Can be mentioned. As an example, the following chemical components (%), C/0.10,
Si/0.14, Mn/0.94, Ni/0.85, Cr/0.51,
Mo/0.46, V/0.051, Al/0.040, B/0.001,
Figure 2 shows the results of investigating the effects of these changes on the strength and toughness of the steel plates produced by manufacturing steel plates with a thickness of 50 mm by varying the rolling finishing temperature and the time until direct quenching for steel slabs with a diameter of N/0.0035. Shown below. As is clear from the figure, in the case of a recrystallized austenite structure, the strength changes greatly depending on the time from completion of rolling to direct quenching as described above, and it is recognized that the toughness is poor in the case of low strength. On the other hand, in the case where the unrecrystallized austenite was the main component, no changes in strength and toughness over time were observed until the test was held for 150 seconds, and both showed sufficient values. The yield ratio is also low at less than 85%. Figure 3 shows the hardness distribution in the thickness direction of a steel plate obtained by rolling the above-mentioned steel slab mainly in the unrecrystallized austenite region and directly quenching it. The hardness distribution of the as-quenched material when the reheating and quenching method was applied is also shown. In the former case, the hardenability is high at the center of the sheet thickness and the surface layer of the steel sheet is hardened because the temperature at the center of the sheet is high and the temperature is lower as it approaches the surface layer of the steel sheet. Hardenability deteriorates as the area increases. On the other hand, the cooling rate during quenching is slower at the center of the plate thickness. Therefore, these elements are in harmony and have uniform hardness (in other words, strength) as shown in the figure. (Function) Next, the reason for limiting each component will be described. C is the most effective component for strengthening martensite, but if it is less than 0.04%, the strengthening effect is small, and in order to obtain strength, it is necessary to add large amounts of other alloy components, which is not preferable. On the other hand, if it exceeds 0.14%, martensite becomes brittle and its toughness deteriorates. Si has a role as an alloying element in addition to acting as a deoxidizing agent, and is an extremely important component in this invention because it affects the precipitation of carbides.
If the Si content is less than 0.03%, no effect as a deoxidizing agent can be obtained, and on the other hand, if the amount exceeds 0.20%, the effect of improving toughness by reducing the Si content cannot be expected. Another major feature of the results shown in FIG. 3 is that it is significantly affected by Si, which needs to be in the range of 0.03 to 0.2%. Mn is required to be at least 0.60% to ensure strength, but if it exceeds 1.40%, weldability and workability deteriorate, so the content should be in the range of 0.60 to 1.40%. If Cr is less than 0.30%, the effect of increasing strength is poor, while if it exceeds 1.20%, carbides will precipitate during direct quenching, contributing to deterioration of toughness. Mo is necessary from the viewpoint of improving hardenability and grain size regulating effect, and 0.3% or more is required to obtain this effect. However, if it exceeds 1.2%, the effect decreases, so it is limited to 0.3 to 1.2% from the economic point of view. V is necessary to reduce the softening degree of the weld heat affected zone, but if it is less than 0.03%, this effect will hardly be obtained, while if it exceeds 0.10%, it will deteriorate the toughness of the heat affected zone, which is undesirable. Limited to ~0.10%. Al is necessary as a deoxidizing agent, but if it is less than 0.02%, the deoxidizing effect will be small, while if it exceeds 0.09%, the toughness will be significantly reduced. Therefore, the addition range is limited to 0.02 to 0.09%. B is an extremely important component because it improves the hardenability of steel sheets even in extremely small amounts. In particular, it can be said to be the most important component in the development of the steel of this invention. However, if the amount added is less than 0.0003%, no effect of improving hardenability due to B can be expected;
If it exceeds 0.003%, B precipitates are formed, which not only reduces the amount of B effective for improving hardenability, but also B precipitates themselves deteriorate hardenability, which is not preferable. N forms nitrides such as BN, which not only reduces the hardenability improvement effect of B but also causes toughness deterioration, so it is preferable to reduce it as much as possible.
When the content is 0.0045% or less, B can work effectively without impairing the toughness of the steel plate. Next, if the carbon equivalent Ceq. is less than 0.38%, 70Kg
It becomes difficult to simultaneously obtain a tensile strength of f/mm 2 or more and good toughness, and the weld heat affected zone becomes softened. On the other hand, when Ceq. The essential components have been explained above, but in this invention, for the purpose of ensuring toughness, in the range of 3.20% or less
Ni can be contained. Here is the amount of Ni
The reason why it is limited to 3.20% or less is because even if it is added in a large amount exceeding 3.20%, no further improvement in toughness can be expected, but rather it impairs economic efficiency. Furthermore, in order to avoid variations in material quality due to changes in slab heating temperature and to manufacture steel plates of stable material, it is necessary to limit the slab heating temperature. In this invention, when the heating temperature exceeds 1250°C, strength is obtained by improving hardenability due to coarsening of austenite grains, but toughness deteriorates; on the other hand, when the slab heating temperature is less than 1000°C, In this case, the austenite grains become finer, and the resulting deterioration of hardenability causes a decrease in strength, and along with this, the toughness also deteriorates. Therefore, in order to produce steel plates with stable strength and toughness, the temperature of the slab before rolling must be 1000-1250℃.
need to be heated to a temperature range of The finishing temperature of rolling also has a large effect on the material quality of the steel sheet. The rolling finishing temperature is 780 as the steel plate surface temperature.
A range of ~850°C is suitable. This is because, in this invention, it is important to carry out rolling at a low temperature where unrecrystallized austenite is the main component, and to ensure fine grains and hardenability. As the temperature increases, the hardenability of steel decreases, and as shown in Figure 4, the strength and
On the other hand, if the surface temperature exceeds 850℃, the temperature in the center of a thick steel plate will decrease.
This is because the temperature reaches 900°C or higher, resulting in large recrystallized austenite grains, which also leads to deterioration of toughness. Figure 4 shows C/0.10, Si/0.14, Mn/0.94, Ni/
0.85, Cr//0.51, Mo/0.46, V/0.051, Al/
A steel slab of 0.040, B/0.001, N/0.0035,
After heating to 1150℃, plate thickness is adjusted at various finishing temperatures.
The results of an investigation of the relationship between the steel sheet surface temperature and strength and toughness during finish rolling of steel materials obtained by rolling to 50 mm and then directly quenching after 60 seconds are shown. (Example) Table 1 shows a total of 3 steel ingots, including a steel ingot with a chemical composition according to the present invention and a steel ingot with a chemical composition outside the preferred composition range.
After melting a steel ingot and manufacturing steel plates with a thickness of 50 mm by varying the slab heating temperature, rolling finishing temperature, and time from the end of rolling to quenching, each steel plate was measured at the 1/4 and 1/2 thickness positions. YS, TS and −
This is the result of examining the absorbed energy of 2 mmV notch at 60°C.

【表】【table】

【表】 化学組成、スラブ加熱温度、圧延仕上げ温度、
圧延終了後から焼入れまでの時間のいずれもがこ
の発明の範囲内にある場合には板厚1/4および1/2
位置いずれにおいても良好な強度と靭性を有する
低降伏比の高張力鋼板が得られている。 一方、上記製造条件のいずれか一つが欠けると
化学組成が同一であつても強度および1/2t位置
における靭性が低く、またかりに強度は得られて
も1/2t位置における靭性が極めて低い。さらに
製造条件がこの発明範囲であつても化学組成が範
囲外の場合は、1/4tおよび1/2tいずれの位置に
おいても靭性は低かつた。 (発明の効果) 引張強さ70〜110Kgf/mm2級の高張力鋼を用い
る橋梁、建築、海洋構造物、水圧鉄管および圧力
容器等の鋼構造物の安全性を高めることができる
ので、これらの分野に広く適用することが可能で
ある。
[Table] Chemical composition, slab heating temperature, rolling finishing temperature,
If the time from the end of rolling to quenching is both within the scope of this invention, the plate thickness is 1/4 and 1/2.
A high tensile strength steel plate with a low yield ratio and good strength and toughness was obtained at any position. On the other hand, if any one of the above manufacturing conditions is lacking, the strength and toughness at the 1/2t position will be low even if the chemical composition is the same, and even if strength is obtained, the toughness at the 1/2t position will be extremely low. Furthermore, even if the manufacturing conditions were within the range of this invention, if the chemical composition was outside the range, the toughness was low at both the 1/4t and 1/2t positions. (Effect of the invention) The safety of steel structures such as bridges, buildings, marine structures, penstocks, and pressure vessels that use class 2 high tensile strength steel with a tensile strength of 70 to 110 Kgf/mm can be improved. It can be widely applied to the following fields.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、未再結晶オーステナイトの変形の様
子を示した金属組織顕微鏡写真、第2図は、鋼板
の強度と靭性におよぼす圧延仕上げ温度および圧
延終了後直接焼入れまでの時間の影響を示したグ
ラフ、第3図は、硬さの板厚方向分布を示す比較
グラフ、第4図は、鋼板の強度と靭性におよぼす
圧延仕上げ温度の影響を示すグラフである。
Figure 1 is a metallographic micrograph showing the deformation of unrecrystallized austenite, and Figure 2 shows the effects of finishing rolling temperature and time from completion of rolling to direct quenching on the strength and toughness of steel sheets. The graph, FIG. 3, is a comparison graph showing the distribution of hardness in the sheet thickness direction, and FIG. 4 is a graph showing the influence of rolling finishing temperature on the strength and toughness of the steel sheet.

Claims (1)

【特許請求の範囲】 1 C:0.04〜0.14wt%、 Si:0.03〜0.20wt%、 Mn:0.60〜1.40wt%、 Cr:0.30〜1.20wt%、 Mo:0.30〜1.20wt%、 V:0.03〜0.10wt%、 Al:0.02〜0.09wt%、 B:0.0003〜0.003wt%および N:0.0045wt%以下 を、下記式であらわされる炭素当量Ceq.が0.38〜
0.65wt%を満足する範囲において含有し、残部は
実質的にFeの組成になる鋼スラブを、1000〜
1250℃に加熱後、圧延仕上げ温度が鋼板表面で
780〜850℃となる熱間圧延を施し、該圧延終了後
150秒以内に焼入れを開始することを特徴とする、
直接焼入れ法による引張強さ70Kgf/mm2以上、降
伏比90%以下の高靭性低降伏比高張力鋼板の製造
方法。 Ceq.=(C)+1/24(Si)+1/6(Mn)+1/5
(Cr)+1/4(Mo) +1/40(Ni)+1/14(V) (式中の元素記号は合金成分含有量(wt%)) 2 C:0.04〜0.14wt%、 Si:0.03〜0.20wt%、 Mn:0.60〜1.40wt%、 Cr:0.30〜1.20wt%、 Mo:0.30〜1.20wt%、 V:0.03〜0.10wt%、 Al:0.02〜0.09wt%、 B:0.0003〜0.003wt%、 N:0.0045wt%以下および Ni:3.20wt%以下 を、下記式であらわされる炭素当量Ceq.が0.38〜
0.65wt%を満足する範囲において含有し、残部は
実質的にFeの組成になる鋼スラブを、1000〜
1250℃に加熱後、圧延仕上げ温度が鋼板表面で
780〜850℃となる熱間圧延を施し、該圧延終了後
150秒以内に焼入れを開始することを特徴とする、
直接焼入れ法による引張強さ70Kgf/mm2以上、降
伏比90%以下の高靭性低降伏比高張力鋼板の製造
方法。 Ceq.=(C)+1/24(Si)+1/6(Mn)+1/5
(Cr)+1/4(Mo) +1/40(Ni)+1/14(V) (式中の元素記号は合金成分含有量(wt%))
[Claims] 1 C: 0.04-0.14wt%, Si: 0.03-0.20wt%, Mn: 0.60-1.40wt%, Cr: 0.30-1.20wt%, Mo: 0.30-1.20wt%, V: 0.03 ~0.10wt%, Al: 0.02~0.09wt%, B: 0.0003~0.003wt% and N: 0.0045wt% or less, and the carbon equivalent Ceq. expressed by the following formula is 0.38 ~
A steel slab containing Fe within a range satisfying 0.65wt%, with the remainder being substantially Fe, from 1000 to
After heating to 1250℃, the rolling finishing temperature is reached at the steel plate surface.
After hot rolling to a temperature of 780 to 850℃,
Characterized by starting quenching within 150 seconds,
A method for producing a high tensile strength steel plate with a tensile strength of 70 Kgf/mm 2 or more and a yield ratio of 90% or less using a direct quenching method. Ceq.=(C)+1/24(Si)+1/6(Mn)+1/5
(Cr) + 1/4 (Mo) + 1/40 (Ni) + 1/14 (V) (Element symbols in the formula are alloy component content (wt%)) 2 C: 0.04 to 0.14 wt%, Si: 0.03 to 0.20wt%, Mn: 0.60-1.40wt%, Cr: 0.30-1.20wt%, Mo: 0.30-1.20wt%, V: 0.03-0.10wt%, Al: 0.02-0.09wt%, B: 0.0003-0.003wt %, N: 0.0045wt% or less and Ni: 3.20wt% or less, carbon equivalent Ceq. expressed by the following formula is 0.38 ~
A steel slab containing Fe within a range satisfying 0.65wt%, with the remainder being substantially Fe, from 1000 to
After heating to 1250℃, the rolling finishing temperature is reached at the steel plate surface.
After hot rolling to a temperature of 780 to 850℃,
Characterized by starting quenching within 150 seconds,
A method for producing a high tensile strength steel plate with a tensile strength of 70 Kgf/mm 2 or more and a yield ratio of 90% or less using a direct quenching method. Ceq.=(C)+1/24(Si)+1/6(Mn)+1/5
(Cr) + 1/4 (Mo) + 1/40 (Ni) + 1/14 (V) (Element symbols in the formula are alloy component content (wt%))
JP62031609A 1986-12-25 1987-02-16 Manufacture of high-tensile steel plate combining high toughness with low yielding ratio and having <=90% yielding ratio by direct quenching method Granted JPS63266023A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62031609A JPS63266023A (en) 1986-12-25 1987-02-16 Manufacture of high-tensile steel plate combining high toughness with low yielding ratio and having <=90% yielding ratio by direct quenching method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP30804886 1986-12-25
JP61-308048 1986-12-25
JP62031609A JPS63266023A (en) 1986-12-25 1987-02-16 Manufacture of high-tensile steel plate combining high toughness with low yielding ratio and having <=90% yielding ratio by direct quenching method

Publications (2)

Publication Number Publication Date
JPS63266023A JPS63266023A (en) 1988-11-02
JPH0579729B2 true JPH0579729B2 (en) 1993-11-04

Family

ID=17976254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62031609A Granted JPS63266023A (en) 1986-12-25 1987-02-16 Manufacture of high-tensile steel plate combining high toughness with low yielding ratio and having <=90% yielding ratio by direct quenching method

Country Status (1)

Country Link
JP (1) JPS63266023A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101246466B1 (en) 2010-09-29 2013-03-21 현대제철 주식회사 METHOD OF MANUFACTURING EXCELLENT FORMABILITY HOT ROLLED STEEL SHEET HAVING 1000MPa GRADE AND HOT ROLLED STEEL SHEET FABRICATED USING THEREOF

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6123715A (en) * 1984-07-10 1986-02-01 Nippon Steel Corp Manufacture of high tensile and high toughness steel sheet

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6123715A (en) * 1984-07-10 1986-02-01 Nippon Steel Corp Manufacture of high tensile and high toughness steel sheet

Also Published As

Publication number Publication date
JPS63266023A (en) 1988-11-02

Similar Documents

Publication Publication Date Title
CN1075117C (en) Ultra-high strength secondary hardening steels with excellent toughness and weldability and method thereof
US4572748A (en) Method of manufacturing high tensile strength steel plates
JPH0127128B2 (en)
JP4071906B2 (en) Manufacturing method of steel pipe for high tension line pipe with excellent low temperature toughness
JPH04285119A (en) Production of thick-walled high tensile strength steel plate excellent in toughness at low temperature
JPS63286517A (en) Manufacture of high-tensile steel with low yielding ratio
JPS6141968B2 (en)
JP5130472B2 (en) Method for producing high-tensile steel material with excellent weld crack resistance
JP5008879B2 (en) High strength steel plate with excellent strength and low temperature toughness and method for producing high strength steel plate
JPH06128631A (en) Production of high manganese ultrahigh tensile strength steel excellent in low temperature toughness
CN114480949B (en) 690 MPa-grade low-yield-ratio weather-resistant welding structural steel, steel plate and manufacturing method thereof
JPS6167717A (en) Manufacture of high tension steel plate having superior strength and toughness in its weld heat-affected zone
JPH0579728B2 (en)
JPH02129317A (en) Production of 80kgf/mm2 class high tension steel having excellent weldability
JPS63183123A (en) Production of high tensile steel having excellent low-temperature toughness after linear and spotty reheating
KR910003883B1 (en) Making process for high tension steel
JPH0579729B2 (en)
JP2706133B2 (en) Method for producing low yield ratio, high toughness, high strength steel sheet
JPS6256518A (en) Production of high strength steel sheet for high heat input welding
JPH05112823A (en) Manufacture of 490n/mm2 class fire resistant steel excellent in toughness of high heat input welded joint
JPH0247525B2 (en)
JPS5980717A (en) Manufacture of unnormalized ni steel for low temperature use with superior toughness at high heat input welded joint
JPS62149845A (en) Cu precipitation type steel products having excellent toughness of welded zone and its production
JPH06145787A (en) Production of high tensile strength steel excellent in weldability
JP3956634B2 (en) Steel sheet with excellent toughness and method for producing the same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees