JPH0579724B2 - - Google Patents

Info

Publication number
JPH0579724B2
JPH0579724B2 JP2122651A JP12265190A JPH0579724B2 JP H0579724 B2 JPH0579724 B2 JP H0579724B2 JP 2122651 A JP2122651 A JP 2122651A JP 12265190 A JP12265190 A JP 12265190A JP H0579724 B2 JPH0579724 B2 JP H0579724B2
Authority
JP
Japan
Prior art keywords
temperature
alloy
heat storage
storage material
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2122651A
Other languages
Japanese (ja)
Other versions
JPH0417604A (en
Inventor
Takuo Takeshita
Ryoji Nakayama
Tamotsu Ogawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2122651A priority Critical patent/JPH0417604A/en
Priority to DE69009335T priority patent/DE69009335T2/en
Priority to EP90114691A priority patent/EP0411571B1/en
Priority to US07/560,594 priority patent/US5228930A/en
Publication of JPH0417604A publication Critical patent/JPH0417604A/en
Priority to US07/978,911 priority patent/US5338371A/en
Publication of JPH0579724B2 publication Critical patent/JPH0579724B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0573Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes obtained by reduction or by hydrogen decrepitation or embrittlement

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 この発明は、Yを含む希土類元素(以下、Rで
示す)と、FeあるいはFeの一部をCoで置換した
成分(以下、Tで示す)と、Bを主成分としさら
に、Al,Si,Vのうち少なくとも1種以上:0.01
〜5.0原子%を含有した合金(以下、R−T−B
系合金という)を、水素吸蔵−脱水素の水素処理
することにより、磁気特性、特に保磁力および角
型性に優れたR−T−B系磁石合金粉末を製造す
る方法に関するものである。 〔従来の技術〕 一般に、R−T−B系合金を水素吸蔵したのち
脱水素処理することによりR−T−B系磁石合金
粉末を製造する方法は、例えば、特開平1−
132106号公報などに開示されている。 上記特開平1−132106号公報に開示のR−T−
B系磁合金粉末の製造方法は、 強磁性相であるR2T14B型金属間化合物相(以
下、R2T14B相という)を主相とするR−T−B
系合金インゴツトまたはそのインゴツトの粉砕粉
を均質化処理するかまたは均質化処理せずに、所
定の高温度域のH2雰囲気中に保持してH2吸蔵せ
しめ、引き続いて同高温度域を保持しながら排気
し、真空雰囲気下で脱H2処理することにより再
び上記R2T14B相を生成させる方法で、その結果
得られたR−T−B系磁石合金粉末は、平均粒
径:0.05〜50μmの極めて微細なR2T14B相の再結
晶組織を主相とした集合組織を有し、かつ高い磁
気特性を有している。 〔発明が解決しようとする課題〕 上記従来法で製造されたR−T−B系磁石合金
粉末は、優れた磁気特性を有するが、インゴツト
の合金組成は、H2吸蔵および脱H2などの処理条
件の微少な変動などにより、得られたR−T−B
系磁石合金粉末の磁性特性、特に保磁力や角型性
にばらつき、低下などが生じることがあつた。か
かる保磁力や角型性にばらつき、低下などが生じ
たものは廃棄処分せざるを得ず、工学的に大量生
産する場合にかかる事態が発生することは多大の
損害をこうむることになる。 〔課題を解決するための手段〕 そこで、本発明者等は、上記磁気特性、特に保
磁力や角型性にばらつき、低下などが生じたりす
ることなく、安定して優れた磁気特性を有するR
−T−B系磁石合金粉末を製造すべく研究を行つ
た結果、 (a) 温度:750〜950℃のH2雰囲気中において、
R−T−B系合金インゴツトまたは粉末の
R2T14B相は、 R2T14B・RH2+T+T2B ……(1) の変相態を起こし、続けて同温度の脱H2工程
で、 RH2+T+T2B→R2T14B ……(2) の変相態で再びR2T14B相の再結晶集合組織と
なるが、上記(1)式の反応を、R−T−B系合金
インゴツトまたは粉末に、場所によるばらつき
がなく均質に行うためには、室温から温度750
〜950℃に保持するまでの昇温過程を、H2雰囲
気中で行うことがよく、また上記(2)式の反応は
吸熱反応であるために温度低下変動が発生し、
この温度低下変動が発生すると、上記(1)および
(2)式の相変態を経て得られた再結晶集合組織の
磁気特性は低下し、また上記原料としてのR−
T−B系合金インゴツトまたは粉末の容器内充
填個所に応じて温度の低下変動差が生ずること
により、得られたR−T−B系磁石合金粉末の
磁気特性にばらつきや低下が生ずる原因となつ
ていることが解明された。 したがつて、上記温度低下変動の発生を防止
するためには、上記R−T−B系合金インゴツ
トまたは粉末を、蓄熱材とともにH2雰囲気中
高温度に加熱し、引き続いて同温度真空雰囲気
中に保持すると、上記(2)式の吸熱反応による温
度低下変動は上記蓄熱材の保温作用により防止
され、一定の高温度に維持されて、得られたR
−T−B系磁石合金粉末の磁気特性の低下およ
びばらつきがなくなる。 (b) 上記原料としてのR−T−B系合金インゴツ
トまたは粉末の成分組成は、原子百分率で、 R:8〜30%、 B:3〜15%、 Al,Si,Vのうち少なくとも1種:0.01〜
5.0%、 を含有し、残りがTおよび不可避不純物からな
るR−T−B系合金(但し、TはFeまたはFe
の一部をCo:0.01〜40%で置換した成分)を用
いると、上記脱H2工程の温度の低下変動に対
して感受性が鈍くなり、ばらつきの少ない安定
して優れた磁気特性、特に保磁力および角型性
の一層優れたR−T−B系磁石合金粉末が得ら
れる。 という上記(a)および(b)の知見を得たのである。 この発明は、上記知見にもとづいてなされたも
のであつて、 必要に応じて前処理として温度:600〜1200℃
の均質化処理したR−T−B系合金を、蓄熱材と
ともにH2雰囲気中で昇温し、温度:750〜950℃
のH2雰囲気中に保持したのち、引き続いて同温
度の真空雰囲気中に保持し、ついで冷却し、粉砕
する磁気特性に優れたR−T−B系磁石合金粉末
の製造法に特徴を有するものであり、このように
して得られたR−T−B系磁石合金粉末は、さら
に温度:300〜1000℃で熱処理することにより一
層優れた磁気特性が得られるのである。 つぎに、この発明の製造法における条件限定理
由について説明する。 (1) R−T−B系合金 原料として用いるR−T−B系合金は、一般に
インゴツトまたはバルク状のものを用いるが、そ
の他フレーク、粉末など任意の形状を有するもの
でよく、その成分組成は、原子百分率で、 R:8〜30%、 B:3〜15%、 を有し、さらに、 Al,Si,Vのうち少なくとも1種:0.01〜5.0
%、 を含有し、残部Tおよび不可避不純物からなる組
成を有する。上記R−T−B系合金において、 Rは、Yを含む希土類元素のうち1種または2
種以上であるが、特にNd,Prまたはそれらの混
合物が好ましく、これにその他の希土類元素を添
加して用いられているが、その中でも特にTb,
Dyは保磁力を向上させる効果がある。Rの含有
量が8%より低いと、また30%より高いと保磁力
が低下し、高特性が得られない。 Bは、Bの一部をC,N,O,Fで置換しても
よいが、3%より低いと、また15%より高いと保
磁力が低下し高特性が得られない。 Al,Si,Vは、保磁力および角型性を向上さ
せる元素であるが、これら元素は0.01%より低い
とその効果が顕著に表われず、5.0%より高いと、
磁化の値、保磁力が低下し高特性が得られない。 残部のTは、FeまたはFeの一部をCoで置換し
た成分で、Feの一部を0.01〜40%のCoで置換す
ることができ、上記Feの一部をCoで置換するこ
とにより、耐食性、磁気特性、磁気温度特性を改
善することができる。 その他、必要に応じてTi,Nb,Ta,Mo,W
のうち少なくとも1種以上をAl,Si,Vと共に
総量で5.0%以内で添加しても角型性を向上させ
る効果が得られる。 (2) 均質化処理 上記R−T−B系合金は、均質化処理しなくて
もよいが、均質化処理することにより一層均一な
磁気特性を有するR−T−B系磁石合金粉末が得
られ、その温度は、600〜1200℃、好ましくは
1050〜1200℃である。均質化処理温度が600℃よ
り低いと均質化処理に長時間を要するため、工業
的に生産性が悪く、一方、1200℃を越えると溶融
するので好ましくない。 (3) 昇温過程の雰囲気 室温から温度:750〜950℃に保持するまでの昇
温過程をH2雰囲気中で行うと、他の真空および
Ar等の不活性ガス雰囲気で行うのに比べて、上
記(1)式の相変態がばらつきなく、均質に起りやす
い。 (4)H2雰囲気および真空雰囲気における処理温度 500〜1000℃の範囲内の温度のH2雰囲気中にR
−T−B系合金を保持すると、上記(1)式に示され
る相変態が起り、引き続いて同温度の真空雰囲気
中に保持すると上記(2)式の相変態が起り、再結晶
集合組織が得られるが、上記(1)および(2)式の相変
態は、特に750〜950℃で顕著に起り、磁気特性の
優れた再結晶集合組織が得られる。したがつて、
H2雰囲気および真空雰囲気における処理温度は
750〜950℃に定めた。 このようにして得られる再結晶集合組織は、平
均再結晶粒径:0.05〜1.0μmのR2T14B型金属間化
合物相を主相とする再結晶の集合組織であること
が好ましい。 (5) 蓄熱材 上記(2)式は、吸熱反応であるから、750〜950℃
の一定温度に保持しても、保持温度の低下変動が
生じる。上記保持温度の低下変動が生じると、得
られるR−T−B系磁石合金粉末の磁気的異方性
の低下またはばらつきが発生して好ましくない。
上記保持温度低下変動を防止するために、上記(2)
式の相変態時に炉内温度を制御して保持温度の低
下変動を防止する手段も考えられるが、上記炉内
温度の制御によるR−T−B系合金の保持温度低
下変動防止制御は、工業的には難しく、十分な保
持温度の低下変動を防止するために特別な設備を
必要とし、コストも高くなる。 したがつて、この発明では、R−T−B系合金
原料を蓄熱材と共に加熱し、上記750〜950℃内の
一定温度に保持する方法を採用したのである。 上記R−T−B系合金が蓄熱材とともに共存す
ると、上記(2)式の吸熱反応があつても、蓄熱材の
保温作用によりR−T−B系合金の保持温度低下
は起こらず、簡単に750〜950℃の範囲内の一定温
度に保持することができる。上記蓄熱材は、熱容
量が大きく、750〜950℃の水素および真空雰囲気
においてR−T−B系合金と反応しない高融点材
料であれば、いかなる材料で製造されてもよい
が、特にアルミナ、マグネシア、ジルコニアなど
のセラミツクスまたはタングステン、モリブデ
ン、ステンレススチールなどの高融点金属材料が
好ましい。また蓄熱材の形状は、板状、ブロツク
状、塊状、球状など得られたR−T−B系磁石合
金粉末と分離可能な形状であればよい。 つぎに、蓄熱材を用いたこの発明の保持温度低
下防止方法を図面に用いて具体的に説明する。 第1図は、蓄熱材として球状蓄熱材を用いた場
合の断面説明図、 第2図は、蓄熱材として板状蓄熱材を用いた場
合の断面説明図であり、 1は球状蓄熱材、1′は板状蓄熱材、2はR−
T−B系合金ブロツク状インゴツト、3は容器、
4は加熱保持炉である。 第1図に示されるように、R−T−B系合金ブ
ロツク状インゴツト2を球状蓄熱材1とともに加
熱保持炉4内の容器3に充填し、上記加熱保持炉
4内の雰囲気を水素雰囲気にし、750〜950℃の範
囲内の一定温度に保持してR−T−B系合金イン
ゴツトにH2吸蔵せしめ、引き続いて上記加熱保
持炉4内の雰囲気を真空雰囲気にして脱H2処理
しても、球状蓄熱材1が存在することにより吸熱
反応により保持温度の低下変動は起らない。 第2図は、蓄熱材として板状蓄熱材1′を用い、
R−T−B系合金ブロツク状インゴツト2を板状
蓄熱材1′の間に挾んで、第1図と同様にH2吸蔵
−脱H2処理するものである。 第1図および第2図に示されるように、R−T
−B系合金インゴツトを蓄熱材と共存させてH2
処理すると、蓄熱材の熱容量が大きいため、脱
H2処理工程で吸熱反応が起きても保持温度が低
下変動することなく一定温度に保持することがで
き、それによつて得られたR−T−B系磁石合金
粉末は磁気特性の低下やばらつきが防止できる。 〔実施例〕 原料をプラズマ・アーク溶解炉により溶解し、
鋳造して第1表に示される成分組成のR−T−B
系合金インゴツトA〜Vを製造した。 これらR−T−B系合金インゴツトA〜Vをそ
れぞれ温度:1100℃のAr雰囲気中に40時間保持
して均質化処理を行つた。 実施例 1 上記R−T−B系合金インゴツトA〜Vを約10
〜30mm角のブロツク状に割り、R−T−B系合金
ブロツク状インゴツトを作製した。 一方純度:99.9重量%、直径:5mmのアルミナ
ボールを用意し、このアルミナボールを蓄熱材と
して用い、重量比で、R−T−B系合金ブロツク
状インゴツト:蓄熱材=1:1の割合で第1図に
示されるようにアルミナ製容器内に共存せしめ、
加熱炉に装入し、室温から加熱炉の雰囲気を
760Torrの水素ガスとし、温度:850℃に3時間
760Torrの水素雰囲気で保持したのち、続けて温
度:850℃に保持しながら、1時間保持して脱水
素を行つて真空度:1×10-5Torrになるまで排
気し、冷却した。 その後、蓄熱材と上記R−T−B系合金インゴ
ツトとをふるい分けして分離し、上記R−T−B
系合金インゴツトはブラウンミルにて、Ar雰囲
気中、500μm以下になるまで粉砕し、R−T−B
系磁石合金粉末を得た。 得られたR−T−B系磁石合金粉末を3重量%
のエポキシ樹脂と混合し、20KOeの磁場中ある
いは無磁場中、圧力:6Ton/cm2で成形し、温
度:120℃、60分保持して硬化させ、それぞれ磁
場中成形ボンド磁石および無磁場中成形ボンド磁
石を作製した。得られたボンド磁石の磁気特性
(磁束密度Br、保磁力iHc、最大エネルギー積
BHmaxおよび角型性Hk/iHc但しHkは4πI−H
カーブ上でBr×0.9のときの磁場を示す)を測定
し、それらの測定結果を第2表に示した。
[Industrial Application Field] This invention consists of a rare earth element containing Y (hereinafter referred to as R), Fe or a component in which a part of Fe is replaced with Co (hereinafter referred to as T), and B as a main component. Furthermore, at least one of Al, Si, and V: 0.01
Alloy containing ~5.0 at% (hereinafter referred to as R-T-B
The present invention relates to a method for producing an R-T-B magnet alloy powder having excellent magnetic properties, particularly coercive force and squareness, by subjecting an R-T-B magnet alloy powder to hydrogen absorption-dehydrogenation treatment. [Prior Art] In general, a method for producing an R-T-B magnet alloy powder by absorbing hydrogen in an R-T-B alloy and then dehydrogenating it is described, for example, in Japanese Patent Application Laid-Open No.
This is disclosed in Publication No. 132106, etc. RT- disclosed in the above-mentioned Japanese Patent Application Publication No. 1-132106
The method for producing B-based magnetic alloy powder is to produce R-T-B whose main phase is an R 2 T 14 B type intermetallic compound phase (hereinafter referred to as R 2 T 14 B phase), which is a ferromagnetic phase.
Homogenized alloy ingots or pulverized powder of the ingots are held in an H 2 atmosphere at a predetermined high temperature range with or without homogenization treatment to absorb H 2 , and subsequently maintained at the same high temperature range. This method generates the R 2 T 14 B phase again by removing H 2 in a vacuum atmosphere, and the resulting R-T-B magnet alloy powder has an average particle size of: It has a texture in which the main phase is an extremely fine R 2 T 14 B recrystallized structure of 0.05 to 50 μm, and has high magnetic properties. [Problems to be Solved by the Invention] The R-T-B magnet alloy powder produced by the above-mentioned conventional method has excellent magnetic properties, but the alloy composition of the ingot has problems such as H 2 occlusion and H 2 desorption. Due to slight variations in processing conditions, the obtained R-T-B
The magnetic properties of the system magnet alloy powder, especially the coercive force and squareness, sometimes varied or decreased. Products whose coercive force and squareness vary or deteriorate must be disposed of, and when such a situation occurs in the case of engineering mass production, a great deal of damage will be incurred. [Means for Solving the Problems] Therefore, the present inventors have developed R that has stable and excellent magnetic properties without causing variations or deterioration in the magnetic properties, especially coercive force and squareness.
As a result of research to produce -T-B magnet alloy powder, we found that (a) In an H2 atmosphere at a temperature of 750 to 950°C,
R-T-B alloy ingot or powder
The R 2 T 14 B phase undergoes the following phase transformation: R 2 T 14 B・RH 2 +T+T 2 B...(1), and then in the second de-H step at the same temperature, RH 2 +T+T 2 B→R 2 T 14 B...The phase transformation of (2) results in a recrystallized texture of the R 2 T 14 B phase again, but when the reaction of the above equation (1) is applied to an R-T-B alloy ingot or powder, In order to do it uniformly without variations depending on location, the temperature should be between room temperature and 750°C.
The temperature raising process until the temperature is maintained at ~950°C is often carried out in an H 2 atmosphere, and since the reaction in equation (2) above is an endothermic reaction, temperature drop fluctuations occur.
When this temperature drop fluctuation occurs, the above (1) and
The magnetic properties of the recrystallized texture obtained through the phase transformation of equation (2) deteriorate, and the R-
Differences in temperature drop variations occur depending on the location where the T-B alloy ingot or powder is filled in the container, which causes variations and deterioration in the magnetic properties of the obtained R-T-B magnet alloy powder. It was revealed that Therefore, in order to prevent the occurrence of temperature drop fluctuations, the R-T-B alloy ingot or powder is heated together with a heat storage material to a high temperature in an H2 atmosphere, and then heated in a vacuum atmosphere at the same temperature. When maintained, temperature drop fluctuations due to the endothermic reaction in equation (2) above are prevented by the heat retention effect of the heat storage material, and the obtained R is maintained at a constant high temperature.
- Eliminates deterioration and variation in magnetic properties of T-B magnet alloy powder. (b) The composition of the R-T-B alloy ingot or powder as the raw material is R: 8 to 30%, B: 3 to 15%, and at least one of Al, Si, and V in atomic percentage. :0.01~
R-T-B alloy containing 5.0% of
When using a component in which a portion of Co is replaced with Co: 0.01~40%), the sensitivity to the temperature drop fluctuations in the H2 removal process described above becomes less sensitive, and stable and excellent magnetic properties with less variation, especially in terms of retention, are achieved. An R-T-B magnet alloy powder having even better magnetic force and squareness can be obtained. We obtained the above findings (a) and (b). This invention was made based on the above knowledge, and if necessary, as a pretreatment, temperature: 600 to 1200°C.
The homogenized R-T-B alloy was heated together with a heat storage material in an H2 atmosphere to a temperature of 750 to 950℃.
A method for producing R-T-B magnet alloy powder with excellent magnetic properties, in which the powder is held in a H 2 atmosphere of By further heat-treating the RTB magnet alloy powder obtained in this way at a temperature of 300 to 1000°C, even more excellent magnetic properties can be obtained. Next, the reason for limiting the conditions in the manufacturing method of the present invention will be explained. (1) R-T-B alloy The R-T-B alloy used as a raw material is generally in the form of an ingot or bulk, but it may also have any shape such as flakes or powder, and its composition may vary depending on its composition. has R: 8 to 30%, B: 3 to 15%, and at least one of Al, Si, and V: 0.01 to 5.0 in atomic percentage.
%, with the balance consisting of T and unavoidable impurities. In the above R-T-B alloy, R is one or two rare earth elements including Y.
Nd, Pr or a mixture thereof is particularly preferred, and other rare earth elements are added thereto, among which Tb,
Dy has the effect of improving coercive force. If the R content is lower than 8% or higher than 30%, the coercive force decreases and high properties cannot be obtained. A part of B may be substituted with C, N, O, or F, but if it is less than 3% or more than 15%, the coercive force decreases and high characteristics cannot be obtained. Al, Si, and V are elements that improve coercive force and squareness, but if the content of these elements is less than 0.01%, the effect is not noticeable, and if it is more than 5.0%,
Magnetization value and coercive force decrease and high characteristics cannot be obtained. The remaining T is a component in which Fe or part of Fe is replaced with Co. Part of Fe can be replaced with 0.01 to 40% Co, and by replacing part of the Fe with Co, Corrosion resistance, magnetic properties, and magnetic temperature properties can be improved. Other Ti, Nb, Ta, Mo, W as required
Even if at least one of these is added together with Al, Si, and V in a total amount of 5.0% or less, the effect of improving squareness can be obtained. (2) Homogenization treatment The above R-T-B alloy does not need to be homogenized, but by homogenizing it, an R-T-B magnet alloy powder with more uniform magnetic properties can be obtained. temperature is 600-1200℃, preferably
The temperature is 1050-1200℃. If the homogenization temperature is lower than 600°C, the homogenization process will take a long time, resulting in poor industrial productivity.On the other hand, if it exceeds 1200°C, it will melt, which is undesirable. (3) Atmosphere during the heating process If the heating process from room temperature to 750-950°C is carried out in an H2 atmosphere, other vacuum and
Compared to carrying out in an inert gas atmosphere such as Ar, the phase transformation of the above formula (1) tends to occur uniformly without variation. ( 4 ) Processing temperature in H2 atmosphere and vacuum atmosphere
When the -T-B alloy is held, the phase transformation shown by equation (1) above occurs, and when it is subsequently held in a vacuum atmosphere at the same temperature, the phase transformation shown by equation (2) above occurs, and the recrystallization texture changes. However, the phase transformations of formulas (1) and (2) above occur significantly, especially at 750 to 950°C, and a recrystallized texture with excellent magnetic properties is obtained. Therefore,
The processing temperature in H2 atmosphere and vacuum atmosphere is
The temperature was set at 750-950°C. The recrystallized texture obtained in this manner is preferably a recrystallized texture whose main phase is an R 2 T 14 B-type intermetallic compound phase with an average recrystallized grain size of 0.05 to 1.0 μm. (5) Heat storage material Equation (2) above is an endothermic reaction, so 750 to 950℃
Even if the temperature is maintained at a constant temperature, the holding temperature will decrease and fluctuate. If the holding temperature decreases and fluctuates, the magnetic anisotropy of the obtained RTB magnet alloy powder will decrease or vary, which is not preferable.
In order to prevent the above-mentioned holding temperature drop fluctuation, the above (2)
Although it is possible to prevent the holding temperature from decreasing and fluctuating by controlling the temperature inside the furnace during the phase transformation of the formula, it is difficult to prevent the holding temperature from decreasing and fluctuating for R-T-B alloys by controlling the furnace temperature as described above. This is difficult to achieve, requires special equipment to sufficiently prevent fluctuations in the holding temperature, and increases costs. Therefore, in the present invention, a method is adopted in which the R-T-B alloy raw material is heated together with the heat storage material and maintained at a constant temperature within the above-mentioned range of 750 to 950°C. When the above R-T-B alloy coexists with the heat storage material, even if the endothermic reaction of equation (2) occurs, the holding temperature of the R-T-B alloy does not decrease due to the heat retention effect of the heat storage material, and it is easy to Can be kept at a constant temperature within the range of 750-950℃. The heat storage material may be made of any material as long as it has a large heat capacity and a high melting point that does not react with the R-T-B alloy in a hydrogen or vacuum atmosphere of 750 to 950°C, but is particularly made of alumina, magnesia, etc. , ceramics such as zirconia, or high melting point metal materials such as tungsten, molybdenum, and stainless steel. The heat storage material may have any shape as long as it can be separated from the obtained R-T-B magnet alloy powder, such as a plate, block, lump, or sphere. Next, the method for preventing a drop in holding temperature according to the present invention using a heat storage material will be specifically explained with reference to the drawings. FIG. 1 is a cross-sectional explanatory diagram when a spherical heat storage material is used as a heat storage material, and FIG. 2 is a cross-sectional explanatory diagram when a plate-shaped heat storage material is used as a heat storage material, 1 is a spherical heat storage material, 1 ' is a plate-shaped heat storage material, 2 is R-
T-B alloy block ingot, 3 is a container,
4 is a heating and holding furnace. As shown in FIG. 1, an R-T-B alloy block ingot 2 is filled together with a spherical heat storage material 1 into a container 3 in a heating and holding furnace 4, and the atmosphere in the heating and holding furnace 4 is changed to a hydrogen atmosphere. , the RTB alloy ingot is held at a constant temperature within the range of 750 to 950°C to absorb H 2 , and then the atmosphere in the heating and holding furnace 4 is made into a vacuum atmosphere to remove H 2 . However, due to the presence of the spherical heat storage material 1, the holding temperature does not decrease due to an endothermic reaction. In Figure 2, a plate-shaped heat storage material 1' is used as the heat storage material,
An R-T-B alloy block-shaped ingot 2 is sandwiched between plate-shaped heat storage materials 1' and subjected to H 2 occlusion and H 2 removal treatment in the same manner as shown in FIG. As shown in FIGS. 1 and 2, R-T
-H2 by coexisting B-based alloy ingot with heat storage material
When treated, the heat storage material has a large heat capacity, so it can be desorbed.
Even if an endothermic reaction occurs during the H 2 treatment process, the holding temperature can be maintained at a constant temperature without any fluctuations, and the resulting R-T-B magnet alloy powder will have lower magnetic properties and less variation. can be prevented. [Example] Raw materials are melted in a plasma arc melting furnace,
R-T-B with the composition shown in Table 1 after casting
Alloy ingots A to V were produced. These RTB alloy ingots A to V were each held in an Ar atmosphere at a temperature of 1100° C. for 40 hours to perform a homogenization treatment. Example 1 Approximately 10 pieces of the above R-T-B alloy ingots A to V
It was divided into blocks of ~30 mm square to produce R-T-B alloy block ingots. On the other hand, alumina balls with a purity of 99.9% by weight and a diameter of 5 mm were prepared, and the alumina balls were used as a heat storage material in a weight ratio of R-T-B alloy block ingot: heat storage material = 1:1. As shown in Figure 1, coexisting in an alumina container,
Charge the heating furnace and change the atmosphere of the heating furnace from room temperature.
Hydrogen gas at 760 Torr, temperature: 850℃ for 3 hours
After being maintained in a hydrogen atmosphere of 760 Torr, the temperature was maintained at 850° C. for 1 hour to perform dehydrogenation, and the atmosphere was evacuated to a vacuum level of 1×10 −5 Torr, followed by cooling. Thereafter, the heat storage material and the R-T-B alloy ingot are sieved and separated, and the R-T-B alloy ingot is separated from the R-T-B alloy ingot.
The alloy ingots are ground in a brown mill in an Ar atmosphere to a size of 500 μm or less, and then subjected to R-T-B.
A magnet alloy powder was obtained. 3% by weight of the obtained R-T-B magnet alloy powder
epoxy resin, molded in a magnetic field of 20 KOe or in no magnetic field at a pressure of 6Ton/cm 2 , held at a temperature of 120°C for 60 minutes to harden, and formed a bonded magnet in a magnetic field and molded in a non-magnetic field, respectively. A bonded magnet was produced. Magnetic properties of the obtained bonded magnet (magnetic flux density Br, coercive force iHc, maximum energy product
BHmax and squareness Hk/iHc, where Hk is 4πI−H
(showing the magnetic field when Br×0.9 on the curve) was measured, and the measurement results are shown in Table 2.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 Yを含む希土類元素(以下、Rで示す):8
〜30原子%、 B:3〜15原子%、 を含有し、さらに、 Al,Si,Vのうち少なくとも1種:0.01〜5.0
原子%を含有し、残りがFeおよび不可避不純物
からなる合金を、蓄熱材と共に水素ガス雰囲気中
で昇温し、温度:750〜950℃の水素ガス雰囲気中
に保持したのち、引き続いて温度:750〜950℃の
真空雰囲気中に保持し、ついで、冷却し、粉砕す
ることを特徴とする磁気特性に優れた希土類磁石
粉末の製造法。 2 R:8〜30原子%、 B:3〜15原子%、 を含有し、さらに、 Al,Si,Vのうち少なくとも1種:0.01〜5.0
原子%を含有し、残りがFeおよび不可避不純物
からなる合金を、温度:600〜1200℃に保持して
均質化処理を行ない、 上記均質化処理した上記合金を、蓄熱材に共に
水素ガス雰囲気中で昇温し、温度:750〜950℃の
水素ガス雰囲気中に保持したのち、引き続いて温
度:750〜950℃の真空雰囲気中に保持し、 ついで、冷却し、粉砕することを特徴とする磁
気特性に優れた希土類磁石合金粉末の製造法。 3 上記合金は、 R:8〜30原子%、 B:3〜15原子%、 Co:0.01〜40原子%、 を含有し、さらに、 Al,Si,Vのうち少なくとも1種:0.01〜5.0
原子%を含有し、残りがFeおよび不可避不純物
からなる合金であることを特徴とする請求項1ま
たは2記載の磁気特性に優れた希土類磁石粉末の
製造法。 4 上記合金は、粉砕インゴツト、バルク、フレ
ークまたは粉末であることを特徴とする請求項
1,2または3記載の磁気特性に優れた希土類磁
石粉末の製造法。 5 上記蓄熱材は、高融点材料、好ましくはセラ
ミツクスまたは高融点金属材料からなることを特
徴とする請求項1,2,3または4項記載の磁気
特性に優れた希土類磁石粉末の製造法。
[Claims] 1 Rare earth element containing Y (hereinafter referred to as R): 8
~30 at%, B: 3 to 15 at%, and at least one of Al, Si, and V: 0.01 to 5.0
atomic%, with the remainder consisting of Fe and unavoidable impurities, is heated together with a heat storage material in a hydrogen gas atmosphere, held in a hydrogen gas atmosphere at a temperature of 750 to 950°C, and then heated to a temperature of 750°C. A method for producing rare earth magnet powder with excellent magnetic properties, which comprises holding in a vacuum atmosphere at ~950°C, then cooling and pulverizing. 2 Contains R: 8 to 30 at%, B: 3 to 15 at%, and further contains at least one of Al, Si, and V: 0.01 to 5.0
atomic%, with the remainder consisting of Fe and unavoidable impurities, is homogenized at a temperature of 600 to 1200°C, and the homogenized alloy is placed in a hydrogen gas atmosphere as a heat storage material. The magnetic material is heated at a temperature of 750 to 950°C, held in a hydrogen gas atmosphere, then held in a vacuum atmosphere at a temperature of 750 to 950°C, and then cooled and pulverized. A method for producing rare earth magnet alloy powder with excellent properties. 3 The above alloy contains R: 8 to 30 at%, B: 3 to 15 at%, Co: 0.01 to 40 at%, and furthermore, at least one of Al, Si, and V: 0.01 to 5.0.
3. The method for producing rare earth magnet powder with excellent magnetic properties according to claim 1 or 2, wherein the alloy contains atomic percent of Fe and the remainder consists of Fe and unavoidable impurities. 4. The method for producing rare earth magnet powder with excellent magnetic properties according to claim 1, 2 or 3, wherein the alloy is a pulverized ingot, bulk, flake or powder. 5. The method for producing rare earth magnet powder with excellent magnetic properties according to claim 1, 2, 3 or 4, wherein the heat storage material is made of a high melting point material, preferably ceramics or a high melting point metal material.
JP2122651A 1989-07-31 1990-05-11 Manufacture of rare earth element magnet alloy powder having excellent magnetic characteristic Granted JPH0417604A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2122651A JPH0417604A (en) 1990-05-11 1990-05-11 Manufacture of rare earth element magnet alloy powder having excellent magnetic characteristic
DE69009335T DE69009335T2 (en) 1989-07-31 1990-07-31 Rare earth powder for permanent magnet, manufacturing process and bonded magnet.
EP90114691A EP0411571B1 (en) 1989-07-31 1990-07-31 Rare earth permanent magnet powder, method for producing same and bonded magnet
US07/560,594 US5228930A (en) 1989-07-31 1990-07-31 Rare earth permanent magnet power, method for producing same and bonded magnet
US07/978,911 US5338371A (en) 1989-07-31 1992-11-19 Rare earth permanent magnet powder, method for producing same and bonded magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2122651A JPH0417604A (en) 1990-05-11 1990-05-11 Manufacture of rare earth element magnet alloy powder having excellent magnetic characteristic

Publications (2)

Publication Number Publication Date
JPH0417604A JPH0417604A (en) 1992-01-22
JPH0579724B2 true JPH0579724B2 (en) 1993-11-04

Family

ID=14841254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2122651A Granted JPH0417604A (en) 1989-07-31 1990-05-11 Manufacture of rare earth element magnet alloy powder having excellent magnetic characteristic

Country Status (1)

Country Link
JP (1) JPH0417604A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06151132A (en) * 1992-10-29 1994-05-31 Mitsubishi Materials Corp Manufacture of powder of anisotropic magnet material and manufacture of magnet using anisotropic magnet material powder obtained by same manufacture
US5643491A (en) * 1992-12-28 1997-07-01 Aichi Steel Works, Ltd. Rare earth magnetic powder, its fabrication method, and resin bonded magnet
US6444052B1 (en) 1999-10-13 2002-09-03 Aichi Steel Corporation Production method of anisotropic rare earth magnet powder

Also Published As

Publication number Publication date
JPH0417604A (en) 1992-01-22

Similar Documents

Publication Publication Date Title
EP0556751B1 (en) Alloy ingot for permanent magnet, anisotropic powders for permanent magnet, method for producing same and permanent magnet
EP0411571B1 (en) Rare earth permanent magnet powder, method for producing same and bonded magnet
US5580396A (en) Treatment of pulverant magnetic materials and products thus obtained
WO1994015345A1 (en) Rare earth magnetic powder, method of its manufacture, and resin-bonded magnet
JPH04245403A (en) Rare earth-fe-co-b-based anisotropic magnet
JP2586198B2 (en) Rare earth-Fe-B permanent magnet powder and bonded magnet with excellent magnetic anisotropy and corrosion resistance
JPH03129702A (en) Rare-earth-fe-b-based permanent magnet powder and bonded magnet excellent in magnetic anisotropy and corrosion resistance
JP2625163B2 (en) Manufacturing method of permanent magnet powder
JPH024901A (en) Manufacture of rare earth element-fe-b series alloy magnet powder
JP2576672B2 (en) Rare earth-Fe-Co-B permanent magnet powder and bonded magnet with excellent magnetic anisotropy and corrosion resistance
JPS63238215A (en) Production of anisotropic magnetic material
JPH06128610A (en) Production of anisotropic rare-earth alloy powder for permanent magnet
JPH0579724B2 (en)
JPH0579723B2 (en)
JP3645312B2 (en) Magnetic materials and manufacturing methods
JPH07176418A (en) High-performance hot-pressed magnet
JP2010255098A (en) Rare earth alloy powder, method for producing the same, compound for anisotropic bond magnet, and anisotropic bond magnet
JP2586199B2 (en) Rare earth-Fe-Co-B permanent magnet powder and bonded magnet with excellent magnetic anisotropy and corrosion resistance
JPH04260302A (en) Magnetic powder and its manufacture and bonded magnet
JPH06124812A (en) Nitride magnet powder and its synthesizing method
JPH08176617A (en) Production of rare-earth element-iron-boron alloy magnet powder excellent in magnetic anisotropy
JP2827643B2 (en) Method for producing rare earth-Fe-B based magnet alloy powder
JP2753430B2 (en) Bonded magnet
JPH06112019A (en) Nitride magnetic material
JPH06151137A (en) Powder of rare earth magnet material with excellent anisotropy

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081104

Year of fee payment: 15

LAPS Cancellation because of no payment of annual fees