JPH0578828B2 - - Google Patents

Info

Publication number
JPH0578828B2
JPH0578828B2 JP59059372A JP5937284A JPH0578828B2 JP H0578828 B2 JPH0578828 B2 JP H0578828B2 JP 59059372 A JP59059372 A JP 59059372A JP 5937284 A JP5937284 A JP 5937284A JP H0578828 B2 JPH0578828 B2 JP H0578828B2
Authority
JP
Japan
Prior art keywords
phthalocyanine
unstable
type
parts
optical semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59059372A
Other languages
Japanese (ja)
Other versions
JPS60203957A (en
Inventor
Shinichi Tamura
Toshio Seta
Satoshi Mizukami
Masato Oohashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Ink SC Holdings Co Ltd
Original Assignee
Toyo Ink Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Ink Mfg Co Ltd filed Critical Toyo Ink Mfg Co Ltd
Priority to JP59059372A priority Critical patent/JPS60203957A/en
Publication of JPS60203957A publication Critical patent/JPS60203957A/en
Publication of JPH0578828B2 publication Critical patent/JPH0578828B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0664Dyes
    • G03G5/0696Phthalocyanines

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、フタロシアニン誘導体を含むフタロ
シアニン系組成物を用いた保存安定性に優れた光
半導体材料に関する。さらには、電子写真特性、
例えば光感度や繰り返し使用による画質安定性に
優れ、また衛生性にも優れた電子写真感光体等を
提供し得る光半導体材料に関する。 光半導体材料の用途としては、電子写真感光体
をはじめ、太陽電池、電子写真方式による製版材
料、センサー等が挙げられる。 一般に電子写真方式にはゼログラフイー方式の
ごとくセレン、硫化カドミウムなどの光導電体を
金属ドラム上に薄膜状に形成した感光体を暗所に
て帯電させ、光像を照射(露光)し、静電潜像を
形成させた後、トナーにより可視像を作り(現
像)、これを紙等に転写定着する方法、あるいは
エレクトロフアツクス方式のように光導電性層
(感光層)を紙上に設け、この感光体上に帯電、
露光、現像および定着により光導電性層上に永久
可視像を得る方法がある。 電子写真感光体の光半導体材料として現在広く
用いられているものに、無機化合物として無定形
セレン、硫化カドミウム、酸化亜鉛等がある。 一方、有機化合物としては、ポリビニルカルバ
ゾール(PVK)、フタロシアニン、アゾ等が知ら
れている。これらの光半導体は可撓性、加工性に
優れるが、単独では電子写真感度の点で実用に供
したとき十分ではなく、さらに化学増感、光学増
感の手段を併用することによつて増感される。化
学増感剤としては、2,4,7−トリニトロ−9
−フルオレノン(TNF)、2,4,5,7−テト
ラニトロ−9−フルオレノン(TENF)などの
多環もしくは複素環ニトロ化合物、アントラキノ
ンなどのキノン類、およびテトラシアノエチレン
などのニトリル化合物などが知られている。また
光学増感剤としては、キサンテン系染料、キノリ
ン系顔料が知られている。 フタロシアニン光半導体は、有機光半導体の中
でも優れた電子写真感光体が得られるが、通常不
安定型と称するα型、準不安定型であるε型フタ
ロシアニンは、有機溶剤、可塑剤等の有機化合物
と長時間接触したとき、これらフタロシアニンは
徐々に粗大粒子化し、ついには安定型であるβ型
フタロシアニンに変化する。このことはフタロシ
アニンを用いた電子写真感光体の製造にとしても
観察される。すなわち、フタロシアニンは塗料等
のベヒクルや溶剤に分散された状態で見られるよ
うに、フタロシアニン粒子のその大きさ、形態が
変化する、または結晶状態の変化を伴う現象が見
られる、ことにより、フタロシアニンの物性が大
きく変化し、商品価値を損なうことがある。特に
α型およびε型から選ばれる1種の結晶形を有す
る不安定型または準不安定型(結晶形)フタロシ
アニンにこの傾向が強く、その改善が望まれてい
る。例えばフタロシアニン光半導体を樹脂および
有機溶剤に分散させた被覆剤を用いて導電性支持
体に塗布して電子写真感光体を作成する場合、該
被覆剤の保存中にフタロシアニンが集合または凝
集し、さらには、結晶転移またはフタロシアニン
粒子の粗大化を来し、電子写真特性が低下するこ
とが生ずる。あるいは、被覆剤を用いて導電性支
持体に塗布した後、樹脂を熱硬化させる際に、結
晶粒子の粗大化、結晶転移を引き起す。また、低
分子量、融点の比較的低い電荷移動剤を併用した
場合、高温下での使用の際、徐々にフタロシアニ
ンが粗大化、または結晶転移を起し、電子写真特
性が著しく劣化し、従つて実用に当り、α型およ
びε型から選ばれる1種の結晶形を有する不安定
型、準不安定型(結晶形)フタロシアニンを使用
することの欠点となつている。 本発明者等は、上述のような欠点を解決すべく
種々の検討をしたところ、芳香族化合物等の有機
溶剤、可塑剤、その他の低分子有機化合物に対
し、フタロシアニンの結晶を安定化させるフタロ
シアニン誘導体を、不安定型または準不安定型フ
タロシアニン光半導体と組み合わせることによ
り、光感度や経時安定性に優れていることは勿論
非集合性または結晶安定性に優れた光半導体材料
を見出し、本発明を完成させたものである。な
お、本発明において、混合方法としては特に制限
されるものではなく、種々の方法を取り得る。 さらに、本発明は上述のような欠点を解決した
ものであり、衛生性等の問題のある化学増感剤を
必要とせずに、硫化カドミウム感光体に匹敵する
光感度を有すると共に繰り返し使用による感度の
安定性に優れ、さらに工業上有用で、衛生性に優
れたフタロシアニン系組成物を含む光半導体材料
に関するものである。すなわち、不安定型または
準不安定型フタロシアニン光半導体、および該フ
タロシアニンの結晶を安定化させるフタロシアニ
ン誘導体からなる光半導体材料である。 またフタロシアニンに対し、フタロシアニン誘
導体を使用する方法も一部では検討されている。
しかし、これらの方法は光半導体としての特性を
有するフタロシアニンを得るためにフタロシアニ
ン誘導体を添加するものであり、例えばε型フタ
ロシアニンを得るための添加である。 本発明に係わる光半導体材料は、例えば、下記
(1)ないし(5)のような方法で製造または使用するこ
とが出来る。 (A) あらかじめ合成または準備した不安定型また
は準不安定型フタロシアニン光半導体およびフ
タロシアニン誘導体を下記(1)ないし(3)に記述し
た方法で混合する方法、 (B) 塗料製造時に不安定型または準不安定型フタ
ロシアニン光半導体とフタロシアニン誘導体と
を下記(4)ないし(5)に記述した方法で混合する方
法、 等であるが、本発明はこれに限るものではない。 次に混合する方法等の一例を挙げると、(1)不安
定型または準不安定型フタロシアニン光半導体と
フタロシアニン誘導体を公知の方法で機械的にミ
リングすることによつて均一に混合する、(2)不安
定型または準不安定型フタロシアニン光半導体お
よびフタロシアニン誘導体を、通常の混合装置、
例えば粉体を混合するタンブラー等にて混合す
る、(3)不安定型または準不安定型フタロシアニン
光半導体、およびフタロシアニン誘導体を、キシ
レンなど適当な有機溶剤とともにミキサーで混合
する、(4)結着剤樹脂、または結着剤樹脂および溶
剤に、不安定型または準不安定型フタロシアニン
光半導体とフタロシアニン誘導体とを添加し、ボ
ールミル、サンドミル等の装置で分散させる、(5)
不安定型または準不安定型フタロシアニン光半導
体またはフタロシアニン誘導体を結着剤樹脂に分
散したものに、フタロシアニン誘導体または不安
定型または準不安定型フタロシアニン光半導体を
単に添加する、である。 本発明に係わる不安定型または準不安定型フタ
ロシアニン光半導体のフタロシアニンとしては無
金属フタロシアニンまたは金属フタロシアニン、
あるいはこれらの混合物である。金属フタロシア
ニンの金属としては銅、銀、ベリリウム、マグネ
シウム、カルシウム、亜鉛、カドミウム、バリウ
ム、水銀、アルミニウム、ガリウム、インジウ
ム、ランタン、ネオジム、サマリウム、ユーロピ
ウム、ガドリニウム、ジスプロシウム、ホルミウ
ム、ナトリウム、リチウム、イツテルビウム、ル
テチウム、チタン、錫、ハフニウム、鉛、トリウ
ム、バナジウム、アンチモン、クロム、モリブデ
ン、ウラン、マンガン、鉄、コバルト、ニツケ
ル、ロジウム、パラジウム、オスミウム、および
白金等である。また、フタロシアニンの中心核と
して金属原子ではなく、3価以上の原子価を有す
るハロゲン化金属であつてもよい。無金属フタロ
シアニンや銅、コバルト、鉛、亜鉛等の金属フタ
ロシアニンが好ましい。さらに、低ハロゲン化フ
タロシアニンであつてもよい。なお、フタロシア
ニンは顔料としてよく知られている化合物である
が、本発明、において、どのような製法によつて
得られたフタロシアニンでもよい。また、フタロ
シアニンとしては各結晶形を有するものが知られ
ているが、本発明においては不安定型または準不
安定型の結晶形を有するフタロシアニン光半導体
が使用される。例えば、α型、γ型、δ型、ε
型、Χ型等の結晶形であるが、好ましくはα型ま
たはε型である。さらに、ニトロ化フタロシアニ
ン、スルホン化フタロシアニン等の誘導体とフタ
ロシアニンとの混晶としての不安定型または準不
安定型フタロシアニンであつてもよい。 本発明に係わるフタロシアニン誘導体としては
フタロシアニン光半導体の結晶を安定化させるフ
タロシアニン誘導体であれば、いずれも使用でき
る。 フタロシアニン誘導体はフタロシアニン合成時
に、フタロシアニン原料となるフタロニトリル、
フタル酸、無水フタル酸、フタルイミド等とし
て、ベンゼン核が置換基を有するものを用いて、
合成する、またはフタロシアニンを後から変成す
ることにより置換基を導入することができる。 フタロシアニン誘導体の例としては、下記一般
式で表すフタロシアニン誘導体が挙げられる。
The present invention relates to an optical semiconductor material with excellent storage stability using a phthalocyanine composition containing a phthalocyanine derivative. Furthermore, electrophotographic characteristics,
For example, the present invention relates to an optical semiconductor material that can provide an electrophotographic photoreceptor, etc., which has excellent photosensitivity and image quality stability after repeated use, and is also excellent in hygiene. Applications of optical semiconductor materials include electrophotographic photoreceptors, solar cells, electrophotographic plate-making materials, sensors, and the like. Generally, in the electrophotographic method, a photoconductor made of a thin film of photoconductor such as selenium or cadmium sulfide formed on a metal drum is charged in a dark place, and a light image is irradiated (exposed), as in the xerographic method. After forming an electrostatic latent image, a visible image is created with toner (development), and this is transferred and fixed onto paper, etc., or a photoconductive layer (photosensitive layer) is placed on paper as in the electrofax method. A charge is applied to the photoconductor.
There is a method of obtaining a permanent visible image on the photoconductive layer by exposure, development and fixing. Inorganic compounds that are currently widely used as optical semiconductor materials for electrophotographic photoreceptors include amorphous selenium, cadmium sulfide, and zinc oxide. On the other hand, known organic compounds include polyvinylcarbazole (PVK), phthalocyanine, and azo. Although these optical semiconductors have excellent flexibility and processability, they do not have sufficient electrophotographic sensitivity for practical use when used alone, and they can be increased by using chemical sensitization and optical sensitization in combination. It is felt. As a chemical sensitizer, 2,4,7-trinitro-9
-Polycyclic or heterocyclic nitro compounds such as fluorenone (TNF), 2,4,5,7-tetranitro-9-fluorenone (TENF), quinones such as anthraquinone, and nitrile compounds such as tetracyanoethylene are known. ing. Furthermore, xanthene dyes and quinoline pigments are known as optical sensitizers. Phthalocyanine photosemiconductors provide excellent electrophotographic photoreceptors among organic photosemiconductors, but alpha-type phthalocyanine, which is usually called an unstable type, and ε-type phthalocyanine, which is a semi-unstable type, cannot be used for long periods with organic compounds such as organic solvents and plasticizers. When in contact for a period of time, these phthalocyanines gradually become coarse particles and finally transform into stable β-type phthalocyanine. This is also observed in the production of electrophotographic photoreceptors using phthalocyanine. In other words, when phthalocyanine is dispersed in a vehicle or solvent such as a paint, the size and shape of phthalocyanine particles change, or a phenomenon accompanied by a change in the crystalline state is observed. The physical properties may change significantly and the product value may be lost. This tendency is particularly strong in unstable or semi-unstable (crystalline) phthalocyanines having one type of crystal form selected from α-type and ε-type, and improvement thereof is desired. For example, when an electrophotographic photoreceptor is prepared by coating a conductive support with a coating material in which phthalocyanine photosemiconductors are dispersed in a resin and an organic solvent, the phthalocyanine aggregates or aggregates during storage of the coating material, and This causes crystal transition or coarsening of phthalocyanine particles, resulting in deterioration of electrophotographic properties. Alternatively, when the resin is thermally cured after being applied to a conductive support using a coating agent, coarsening of crystal particles and crystal transition are caused. In addition, when a charge transfer agent with a relatively low molecular weight and melting point is used in combination, the phthalocyanine gradually becomes coarser or undergoes crystal transition when used at high temperatures, resulting in significant deterioration of electrophotographic properties. In practice, this is a disadvantage of using unstable or semi-unstable (crystalline) phthalocyanine having one type of crystal form selected from α-type and ε-type. The present inventors conducted various studies to solve the above-mentioned drawbacks, and found that phthalocyanine, which stabilizes phthalocyanine crystals against organic solvents such as aromatic compounds, plasticizers, and other low-molecular organic compounds, has been developed. By combining a derivative with an unstable or quasi-unstable phthalocyanine photosemiconductor, we discovered a photosemiconductor material that not only has excellent photosensitivity and stability over time, but also has excellent disaggregation or crystal stability, and completed the present invention. This is what I did. In the present invention, the mixing method is not particularly limited, and various methods may be used. Furthermore, the present invention solves the above-mentioned drawbacks, and has a photosensitivity comparable to that of a cadmium sulfide photoreceptor, without requiring chemical sensitizers that pose problems in terms of hygiene, etc. The present invention relates to an optical semiconductor material containing a phthalocyanine composition that has excellent stability, is industrially useful, and has excellent hygiene properties. That is, it is an optical semiconductor material consisting of an unstable or semi-unstable phthalocyanine optical semiconductor and a phthalocyanine derivative that stabilizes the crystals of the phthalocyanine. Additionally, some methods are being considered using phthalocyanine derivatives for phthalocyanine.
However, in these methods, a phthalocyanine derivative is added to obtain a phthalocyanine having properties as an optical semiconductor, for example, to obtain an ε-type phthalocyanine. The optical semiconductor material according to the present invention is, for example, as follows:
It can be manufactured or used by the methods described in (1) to (5). (A) A method of mixing unstable or semi-unstable phthalocyanine photosemiconductors and phthalocyanine derivatives synthesized or prepared in advance by the methods described in (1) to (3) below; (B) Unstable or semi-unstable phthalocyanine photosemiconductors and phthalocyanine derivatives synthesized or prepared in advance are mixed in the manner described in (1) to (3) below. The method includes a method of mixing a phthalocyanine photosemiconductor and a phthalocyanine derivative using the methods described in (4) and (5) below, but the present invention is not limited thereto. Examples of mixing methods include (1) uniformly mixing an unstable or quasi-unstable phthalocyanine photosemiconductor and a phthalocyanine derivative by mechanical milling using a known method; Regular or semi-unstable phthalocyanine photosemiconductors and phthalocyanine derivatives are mixed using a conventional mixing device.
For example, mixing in a tumbler for mixing powders, (3) mixing unstable or semi-unstable phthalocyanine optical semiconductors and phthalocyanine derivatives with a suitable organic solvent such as xylene in a mixer, (4) binder resin. , or adding an unstable or semi-unstable phthalocyanine photosemiconductor and a phthalocyanine derivative to a binder resin and a solvent, and dispersing it with a device such as a ball mill or sand mill, (5)
The phthalocyanine derivative or the unstable or semi-unstable phthalocyanine photosemiconductor is simply added to the unstable or semi-unstable phthalocyanine photosemiconductor or the phthalocyanine derivative dispersed in a binder resin. Examples of the phthalocyanine of the unstable or semi-unstable phthalocyanine photosemiconductor according to the present invention include metal-free phthalocyanine or metal phthalocyanine;
Or a mixture of these. Metal phthalocyanines include copper, silver, beryllium, magnesium, calcium, zinc, cadmium, barium, mercury, aluminum, gallium, indium, lanthanum, neodymium, samarium, europium, gadolinium, dysprosium, holmium, sodium, lithium, and ytterbium. , lutetium, titanium, tin, hafnium, lead, thorium, vanadium, antimony, chromium, molybdenum, uranium, manganese, iron, cobalt, nickel, rhodium, palladium, osmium, and platinum. Furthermore, the central core of the phthalocyanine may not be a metal atom, but a metal halide having a valence of 3 or more. Metal-free phthalocyanines and metal phthalocyanines such as copper, cobalt, lead, and zinc are preferred. Furthermore, it may be a low halogenated phthalocyanine. Although phthalocyanine is a well-known compound as a pigment, in the present invention, phthalocyanine obtained by any manufacturing method may be used. Further, phthalocyanine having various crystal forms is known, but in the present invention, a phthalocyanine optical semiconductor having an unstable or semi-unstable crystal form is used. For example, α type, γ type, δ type, ε
The crystal form is Χ-type, Χ-type, etc., and α-type or ε-type is preferable. Furthermore, unstable or semi-unstable phthalocyanine as a mixed crystal of phthalocyanine and a derivative such as nitrated phthalocyanine or sulfonated phthalocyanine may be used. As the phthalocyanine derivative according to the present invention, any phthalocyanine derivative that stabilizes the crystal of the phthalocyanine optical semiconductor can be used. Phthalocyanine derivatives are phthalonitrile, which is a raw material for phthalocyanine, during phthalocyanine synthesis.
Using phthalic acid, phthalic anhydride, phthalimide, etc., which have a benzene nucleus with a substituent,
Substituents can be introduced by synthesis or later modification of phthalocyanine. Examples of phthalocyanine derivatives include phthalocyanine derivatives represented by the following general formula.

【式】 (式中、Pcはフタロシアニン残基、Χはハロ
ゲン原子、ニトロ基、アルコキシ基、フエノキシ
基、炭素数1〜20の置換もしくは無置換のフエニ
ルカルバモイル基またはフエニルスルフアモイル
基のいずれかの置換基を示し、Yは以下に示す(a)
〜(f)等のいずれかの置換基であり、mは0〜2,
nは0〜4で、且つm+n=1〜6を示す。
[Formula] (In the formula, Pc is a phthalocyanine residue, Χ is a halogen atom, a nitro group, an alkoxy group, a phenoxy group, a substituted or unsubstituted phenylcarbamoyl group having 1 to 20 carbon atoms, or a phenylsulfamoyl group) Indicates any substituent, Y is as shown below (a)
-(f) etc., m is 0-2,
n is 0 to 4, and m+n=1 to 6.

【化】 R1,R2はそれぞれ水素原子、置換または無置
換のアルキル基、またはR1とR2とで少なくとも
窒素原子を含むヘテロ環を形成したものを示す。
embedded image R 1 and R 2 each represent a hydrogen atom, a substituted or unsubstituted alkyl group, or R 1 and R 2 together form a heterocycle containing at least a nitrogen atom.

【化】 R3は水素原子、置換または無置換のアルキル
基、またはニトロ基を示す。
embedded image R 3 represents a hydrogen atom, a substituted or unsubstituted alkyl group, or a nitro group.

【化】 R4は水素原子、置換または無置換のアルキル
基、R5は置換または無置換のアルキレン基また
はアリレン基、R6,R7はそれぞれ水素原子、置
換または無置換のアルキル基、またはR6とR7
で少なくとも窒素原子を含むヘテロ環を形成した
ものを示す。 (d)−SO3M1 M1はアルカリ金属またはアルカリ土類金属を
示す。
[Chemical formula] R 4 is a hydrogen atom, a substituted or unsubstituted alkyl group, R 5 is a substituted or unsubstituted alkylene group or arylene group, R 6 and R 7 are each a hydrogen atom, a substituted or unsubstituted alkyl group, or Indicates that R 6 and R 7 form a heterocycle containing at least a nitrogen atom. (d)-SO 3 M 1 M 1 represents an alkali metal or an alkaline earth metal.

【化】 R8は水素原子、置換または無置換のアルキル
基、R9は置換または無置換のアルキレン基また
はアリレン基、R10,R11はそれぞれ水素原子、
置換または無置換のアルキル基、またはR10
R11とで少なくとも窒素原子を含むヘテロ環を形
成したものを示す。 (f)−COOM2 M2はアルカリ金属またはアルカリ土類金属を
示す。) 上記のフタロシアニン誘導体は1例であり、こ
れのみに限定されるものではなく、フタロシアニ
ン光誘導体の粒子を安定化させる誘導体であれ
ば、使用できる。 なお、フタロシアニン誘導体のフタロシアニン
としては無金属フタロシアニンまたは銅、鉄、コ
バルト、ニツケル、マグネシウム、カルシウム、
ナトリウム、リチウム、アルミニウム等の金属フ
タロシアニンである。 本発明の不安定型または準不安定型フタロシア
ニン光半導体とフタロシアニン誘導体との組成割
合は、フタロシアニン光半導体100重量部に対し、
フタロシアニン誘導体が0.001〜40重量部である。
0.001重量部未満では十分な非集合性もしくは結
晶安定性が得られず、さらに感度も劣る、また40
重量部を超えると、暗減衰率が増大し実用に供し
えない。 本発明の光半導体材料は、不安定型または準不
安定型フタロシアニン光半導体とフタロシアニン
誘導体とが実用的にほぼ均一な状態で混合されて
いればよい。上記したような混合方法で得られた
光半導体材料が、優れた保存安定性を有し、かつ
この光半導体材料から得られた電子写真感光体は
良好な電子写真特性を有することは、工業上極め
て優位である。光感度、繰り返しによる感度の安
定等の電子写真特性は、フタロシアニン誘導体の
種類、量によつても変り得るが、適切な組合せに
より、硫化カドミウム等の光半導体材料と同程度
の光感度等を得ることができ、さらにはそれ以上
の耐光性も得られる。 本発明の光半導体材料はこのまま単独で結着剤
樹脂等と共に感光層を形成してもよい。さらに、
場合によつては他のフタロシアニン系光半導体材
料や他の光半導体材料、通常の増感剤を併用する
ことも可能である。蒸着法を利用した感光層であ
つてもよい。 また本発明による光半導体材料は、電荷移動材
料として知られているヒドラゾン系、オキサジア
ゾール系、トリフエニルメタン系、ピラゾロン
系、スチリル系等の化合物と単一層内で併用した
り、積層にした機能分離型によつても使用するこ
とができる。 さらに、必要に応じてフタロシアニン100重量
部に対し、酸化防止剤0.01〜30重量部併用するこ
ともできる。 本発明の光半導体材料を電子写真感光体として
使用するには結着剤樹脂、溶剤等と共に、ボール
ミル、アトライター等の混練分散機で均一に分散
させ、導電性支持体上に塗布して、感光層を形成
する。なお、本発明の光半導体材料を使用した電
子写真感光体では本発明による感光層だけの電子
写真感光体は勿論、バリヤー層、絶縁層、他の光
半導体材料の感光層を積層した電子写真感光体で
あつてもよい。 結着剤樹脂としてはメランミン樹脂、エポキシ
樹脂、ケイ素樹脂、ポリウレタン樹脂、ポリエス
テル樹脂、アクリル樹脂、キシレン樹脂、塩化ビ
ニル−酢酸ビニル共重合体樹脂、ポリカーボネー
ト樹脂、繊維素誘導体などの体積固有抵抗が107
Ωcm以上の絶縁性を有する結着剤樹脂である。 この光半導体材料を電子写真感光体に通常用い
られるアルミニウム板、導電処理した紙、プラス
チツクフイルムなどのシート状またはシリンダー
状などの導電性支持体上に塗布等により施し、感
光層を形成する。塗布方法としては、必要ならば
光半導体材料に溶剤を加えて粘度を調整し、エア
ードクターコーター、ブレードコーター、ロツド
コーター、リバースロールコーター、スプレーコ
ーター、ホツトコーター、スクイーズコータ等の
塗布方法で被膜形成を行う。塗布後、光導電性層
として十分な帯電電位が付与されるようになるま
で適当な乾燥を行う。 また本発明による感光体は、通常、樹脂/光導
電体素子が重量比で1以上であり、例えば、酸化
亜鉛を用いた感光体の場合に比べ樹脂量が多く、
被膜の物理的強度があり、可撓性に富む。また導
電性支持体との接着力が大きい、耐湿性が良好で
ある、経時変化が少ない、毒性上の問題がない、
製造が容易であり安価である等の実用上優れた特
徴を持つ。 なお、本発明の光半導体材料を用いた電子写真
感光体を使用する際に、光源は通常のハロゲンラ
ンプ等の他、レーザー光を用いることもできる。 上記の発明では電子写真感光体を主として説明
してきたが、本発明の光半導体材料を他の用途、
例えば太陽電池、センサー等に利用することもで
きる。 以下、例をあげて本発明を説明する。例中
「部」とは重量部を示す。 実施例 1 ε型銅フタロシアニン 1部 2,5−ビス(4−ジエチルアミノフエニル)
−1,3,4−オキサジアゾール 3部 ピペリジノメチル銅フタロシアニン 0.01部 アクリルポリオール(武田薬品工業(株)製タケラ
ツクA−702) 3.6部 エポキシ樹脂(シエル化学社製エポン1007)
0.5部 キシレン 1.2部 セロソルブアセテート 1.2部 上記組成物を磁性ボールミルにて48時間混練し
て光導電性組成物を得た。 得られた光導電性組成物を製造直後、1ケ月経
過後、3ケ月経過後のそれぞれにつき、保存安定
性を見ると共に、塗布して電子写真特性を調べ
た。 保存安定性については、3ケ月経過後でもフタ
ロシアニンの凝集等は見られず、良好であつた。 電子写真特性の試験は、この光導電性組成物を
厚さ5μのアルミニウム箔と75μのポリエステルフ
イルムとのラミネートフイルムのアルミニウム上
に乾燥膜厚が8μになるようにロールコートし、
110℃に均一に加熱されたオーブン中に1時間置
き、電子写真感光体とした。こうして得られたそ
れぞれのサンプルに対して+5.7KV、コロナギヤ
ツプ10mm,10m/minの帯電スピードでコロナ放
電を与え、放電停止後10秒後に2854°Kのタング
ステン光源にて10Luxの照度で露光した。この時
の露光直前の電位が50%低下するのに要した光の
照射量を感度とした。この様にして測定したサン
プルの最大表面帯電量、暗減衰率、感度、残留電
位を測定したところ、以下の表とおりとなり、、
帯電性、感度ともに実用に十分な値であつた。
[Chemical formula] R 8 is a hydrogen atom, a substituted or unsubstituted alkyl group, R 9 is a substituted or unsubstituted alkylene group or arylene group, R 10 and R 11 are each a hydrogen atom,
Substituted or unsubstituted alkyl group, or R 10 and
Indicates that a heterocycle containing at least a nitrogen atom is formed with R 11 . (f)-COOM 2 M 2 represents an alkali metal or an alkaline earth metal. ) The above-mentioned phthalocyanine derivatives are just one example, and the present invention is not limited thereto, and any derivative that stabilizes the particles of the phthalocyanine photoderivative can be used. In addition, the phthalocyanine of the phthalocyanine derivative includes metal-free phthalocyanine or copper, iron, cobalt, nickel, magnesium, calcium,
Metal phthalocyanines such as sodium, lithium, and aluminum. The composition ratio of the unstable or semi-unstable phthalocyanine photosemiconductor and the phthalocyanine derivative of the present invention is as follows:
The phthalocyanine derivative is 0.001 to 40 parts by weight.
If it is less than 0.001 part by weight, sufficient disaggregation or crystal stability will not be obtained, and sensitivity will also be poor.
If it exceeds parts by weight, the dark decay rate will increase and it cannot be put to practical use. The optical semiconductor material of the present invention only needs to be a mixture of an unstable or semi-unstable phthalocyanine optical semiconductor and a phthalocyanine derivative in a practically uniform state. It is industrially known that the optical semiconductor material obtained by the above-mentioned mixing method has excellent storage stability and that the electrophotographic photoreceptor obtained from this optical semiconductor material has good electrophotographic properties. This is extremely advantageous. Electrophotographic properties such as photosensitivity and stability of sensitivity with repetition may vary depending on the type and amount of phthalocyanine derivatives, but with an appropriate combination, photosensitivity etc. comparable to those of photosemiconductor materials such as cadmium sulfide can be obtained. Furthermore, even higher light resistance can be obtained. The optical semiconductor material of the present invention may be used alone as it is to form a photosensitive layer together with a binder resin or the like. moreover,
Depending on the case, it is also possible to use other phthalocyanine-based optical semiconductor materials, other optical semiconductor materials, and ordinary sensitizers in combination. It may also be a photosensitive layer using a vapor deposition method. Furthermore, the optical semiconductor material according to the present invention can be used in combination with compounds such as hydrazone-based, oxadiazole-based, triphenylmethane-based, pyrazolone-based, styryl-based, etc., which are known as charge transfer materials, in a single layer or in a laminated manner. It can also be used as a functionally separated type. Furthermore, if necessary, 0.01 to 30 parts by weight of an antioxidant can be used in combination with 100 parts by weight of phthalocyanine. In order to use the optical semiconductor material of the present invention as an electrophotographic photoreceptor, it is uniformly dispersed together with a binder resin, a solvent, etc. using a kneading and dispersing machine such as a ball mill or attritor, and coated on a conductive support. Form a photosensitive layer. Note that electrophotographic photoreceptors using the photosemiconductor material of the present invention include not only electrophotographic photoreceptors with only the photosensitive layer according to the invention, but also electrophotographic photoreceptors with a barrier layer, an insulating layer, and photosensitive layers of other photosemiconductor materials laminated. It can be a body. Examples of binder resins include melamine resin, epoxy resin, silicone resin, polyurethane resin, polyester resin, acrylic resin, xylene resin, vinyl chloride-vinyl acetate copolymer resin, polycarbonate resin, and cellulose derivatives with a volume resistivity of 10. 7
A binder resin with insulation properties of Ωcm or more. This photosemiconductor material is applied by coating onto a sheet-like or cylindrical conductive support such as an aluminum plate, conductively treated paper, or plastic film, which is commonly used in electrophotographic photoreceptors, to form a photosensitive layer. As for the coating method, if necessary, add a solvent to the optical semiconductor material to adjust the viscosity, and form a film using an air doctor coater, blade coater, rod coater, reverse roll coater, spray coater, hot coater, squeeze coater, etc. . After coating, appropriate drying is performed until a sufficient charging potential is applied as a photoconductive layer. Further, the photoreceptor according to the present invention usually has a resin/photoconductor element weight ratio of 1 or more, and has a larger amount of resin than a photoreceptor using zinc oxide, for example.
The film has physical strength and is highly flexible. It also has strong adhesion to conductive supports, good moisture resistance, little change over time, and no toxicity problems.
It has excellent practical characteristics such as being easy to manufacture and inexpensive. In addition, when using the electrophotographic photoreceptor using the optical semiconductor material of the present invention, a laser beam can also be used as a light source in addition to a normal halogen lamp or the like. In the above invention, the electrophotographic photoreceptor has been mainly explained, but the optical semiconductor material of the present invention can be used for other purposes,
For example, it can also be used for solar cells, sensors, etc. The present invention will be explained below by giving examples. In the examples, "parts" indicate parts by weight. Example 1 ε-type copper phthalocyanine 1 part 2,5-bis(4-diethylaminophenyl)
-1,3,4-oxadiazole 3 parts Piperidinomethyl copper phthalocyanine 0.01 part Acrylic polyol (Takerak A-702 manufactured by Takeda Pharmaceutical Co., Ltd.) 3.6 parts Epoxy resin (Epon 1007 manufactured by Ciel Chemical Co., Ltd.)
0.5 parts xylene 1.2 parts cellosolve acetate 1.2 parts The above composition was kneaded in a magnetic ball mill for 48 hours to obtain a photoconductive composition. Immediately after production, after one month, and after three months, the resulting photoconductive composition was checked for storage stability and coated to examine its electrophotographic properties. The storage stability was good, with no aggregation of phthalocyanine observed even after 3 months. In testing the electrophotographic properties, this photoconductive composition was roll coated onto aluminum in a laminate film of 5 μm thick aluminum foil and 75 μm polyester film to a dry film thickness of 8 μm.
It was placed in an oven uniformly heated to 110° C. for 1 hour to prepare an electrophotographic photoreceptor. A corona discharge was applied to each sample thus obtained at +5.7 KV, a corona gap of 10 mm, and a charging speed of 10 m/min, and 10 seconds after the discharge stopped, the sample was exposed to light at an illuminance of 10 Lux using a 2854°K tungsten light source. The amount of light irradiation required for the potential immediately before exposure to decrease by 50% at this time was defined as the sensitivity. The maximum surface charge, dark decay rate, sensitivity, and residual potential of the sample measured in this way were as shown in the table below.
Both chargeability and sensitivity were values sufficient for practical use.

【表】 さらにこのサンプルについて、帯電・露光を繰
り返し行い、感度の変化を測定した結果、繰り返
し安定性に優れた感光体であり、硫化カドミウム
感光体の光感度に匹敵する値を示した。また上記
感光体をプラス帯電させ、ポジ像のテストパター
ンで白色露光後、マイナス帯電現像トナーで現像
することにより、いずれも6〜7Lux・secの露光
量でテストパターンに忠実で、しかも鮮明なコン
トラストの優れた画像が得られた。 比較例 1 実施例1の光導電性組成物においてフタロシア
ニン誘導体を使用せずに光導電性組成物を作り、
実施例1と同様に試験したところ、製造直後では
実施例1の製造直後に比べ、若干劣る程度、実施
例1と比較して大きな差はないが、1ケ月経過後
ではフタロシアニンの凝集が見られ、β型への結
晶転移が見られ、感度20Lux・secとなつた。 実施例 2〜3 実施例1のε型銅フタロシアニンおよびフタロ
シアニン誘導体を下記表のフタロシアニンおよび
フタロシアニン誘導体に替え、電子写真感光体と
し、同様の方法で最大表面帯電量、暗減衰率、感
度、残留電位を測定した。
[Table] Furthermore, this sample was repeatedly charged and exposed to light, and changes in sensitivity were measured. As a result, it was found to be a photoreceptor with excellent repeat stability, and exhibited a photosensitivity comparable to that of a cadmium sulfide photoreceptor. In addition, by positively charging the photoreceptor, exposing it to white light with a positive image test pattern, and developing it with negatively charged developing toner, the exposure amount is 6 to 7 Lux sec, which is faithful to the test pattern, and provides clear contrast. An excellent image was obtained. Comparative Example 1 A photoconductive composition was prepared without using the phthalocyanine derivative in the photoconductive composition of Example 1,
When tested in the same manner as in Example 1, it was found that immediately after production, it was slightly inferior compared to immediately after production in Example 1, and there was no significant difference compared to Example 1, but after one month, aggregation of phthalocyanine was observed. , a crystal transition to the β type was observed, and the sensitivity was 20 Lux·sec. Examples 2 to 3 The ε-type copper phthalocyanine and phthalocyanine derivative of Example 1 were replaced with the phthalocyanine and phthalocyanine derivative shown in the table below to prepare an electrophotographic photoreceptor, and the maximum surface charge amount, dark decay rate, sensitivity, and residual potential were determined in the same manner. was measured.

【表】【table】

【表】 (Cupc,NiPcは銅、ニツケルフタロシアニン
の残基を、カツコ外の数字は分析による平均置換
数を示す。)
[Table] (Cupc and NiPc are copper and nickel phthalocyanine residues, and the numbers outside the brackets indicate the average number of substitutions based on analysis.)

【表】 (上段は実施例2、下段は実施例3をしめす。) 実施例 5 銅フタロシアニン40部、テトラニトロ銅フタロ
シアニン0.5部を98%濃硫酸500部に十分攪拌しな
がら溶解する。溶解した液を水5000部にあけ、フ
タロシアニンの組成物を析出させた後、濾過、水
洗し、減圧下120℃で乾燥する。得られた組成物
のX線回析ではα型結晶構造を有していた。 次に、この組成物1部、P−N−ジエチルアミ
ノベンズアルデヒド−N,N−ジフエニルヒドラ
ゾン2.5部、ピペリジノスルホンアミド銅フタロ
シアニン 部、タケラツクA−702 3.6部、エ
ポン1007 0.5部、メチルエチルケトン1.2部およ
びセロソルブアセテート1.2部からなる組成物を
実施例1と同様にして光電電性組成物としたとこ
ろ、3ケ月経過後でも、変化は見られず、さら
に、電子写真感光体としても、最大表面帯電量
620V、暗減衰率4.6%、感度1.9Luxsec、残留電
位40Vであり、良好な結果が得られた。 比較例 2 実施例5の光導電性組成物においてフタロシア
ニン誘導体を使用せずに光導電性組成物を作り、
実施例5と同様に試験したところ、製造直後では
ほとんど変らないが、3ケ月経過後ではフタロシ
アニンの凝集が見られ、β型への結晶転移がみら
れ、感度18Lux・secとなり、感度が約1/18で、
実用に耐えるものとは言えない。 実施例 6〜7 実施例5のフタロシアニンおよびフタロシアニ
ン誘導体を下記表のフタロシアニンおよびフタロ
シアニン誘導体に替え、電子写真感光体とし、同
様の方法で最大表面帯電量、暗減衰率、感度、残
留電位を測定した。
[Table] (The upper row shows Example 2, and the lower row shows Example 3.) Example 5 40 parts of copper phthalocyanine and 0.5 parts of tetranitrocopper phthalocyanine are dissolved in 500 parts of 98% concentrated sulfuric acid with thorough stirring. The dissolved solution is poured into 5000 parts of water to precipitate the phthalocyanine composition, which is then filtered, washed with water, and dried at 120°C under reduced pressure. X-ray diffraction analysis of the resulting composition revealed that it had an α-type crystal structure. Next, 1 part of this composition, 2.5 parts of PN-diethylaminobenzaldehyde-N,N-diphenylhydrazone, 1 part of piperidinosulfonamide copper phthalocyanine, 3.6 parts of Takerac A-702, 0.5 parts of Epon 1007, and 1.2 parts of methyl ethyl ketone. When a composition consisting of 1.2 parts of cellosolve acetate and 1.2 parts of cellosolve acetate was made into a photoelectric composition in the same manner as in Example 1, no change was observed even after 3 months. amount
Good results were obtained at 620V, dark decay rate 4.6%, sensitivity 1.9Luxsec, and residual potential 40V. Comparative Example 2 A photoconductive composition was prepared without using the phthalocyanine derivative in the photoconductive composition of Example 5,
When tested in the same manner as in Example 5, there was almost no change immediately after production, but after 3 months, aggregation of phthalocyanine was observed, crystal transition to the β type was observed, and the sensitivity was 18 Lux·sec, which was approximately 1. /18,
It cannot be said that it is practical. Examples 6 to 7 The phthalocyanine and phthalocyanine derivative of Example 5 were replaced with the phthalocyanine and phthalocyanine derivative shown in the table below to prepare an electrophotographic photoreceptor, and the maximum surface charge amount, dark decay rate, sensitivity, and residual potential were measured in the same manner. .

【表】 3ケ月経過後の結果を示す。【table】 The results are shown after 3 months.

【表】 実施例 8 ε型銅フタロシアニン10部、ピペリジノスルホ
ンアミド銅フタロシアニン0.1部、ポリエステル
樹脂(東洋紡製Vyoln RV−200)2部、テトラ
ヒドロフラン40部、トルエン10部からなる組成物
を実施例1とほぼ同様に0.5μの厚さで塗装し、電
荷発生層を形成した。 次に、Vylon RV−200 10部、N−エチルカル
バゾール−3−カルボアルデヒドメチルフエニル
ヒドラゾン10部、テトラヒドロフラン50部の混合
液を上記電荷発生層に約10μの厚さに塗布し、80
℃で乾燥し、積層型感光体を得た。 得られた感光体に対し、温度0℃〜45℃におい
て、湿度10%〜85%の環境下での電子写真特性を
調べたところ、最大表面帯電量1200±100V、暗
減衰率1.5%、感度3.6±0.5Luxsec、残留電位80V
であり、ほとんど変化が少なく、十分に実用に耐
えるものであつた。
[Table] Example 8 Example of a composition consisting of 10 parts of ε-type copper phthalocyanine, 0.1 part of piperidinosulfonamide copper phthalocyanine, 2 parts of polyester resin (Vyoln RV-200 manufactured by Toyobo Co., Ltd.), 40 parts of tetrahydrofuran, and 10 parts of toluene. A charge generation layer was formed by coating in a thickness of 0.5μ in the same manner as in 1. Next, a mixed solution of 10 parts of Vylon RV-200, 10 parts of N-ethylcarbazole-3-carbaldehydemethylphenylhydrazone, and 50 parts of tetrahydrofuran was applied to the charge generation layer to a thickness of about 10 μm.
It was dried at ℃ to obtain a laminated photoreceptor. The electrophotographic properties of the obtained photoreceptor were investigated in an environment with a temperature of 0°C to 45°C and a humidity of 10% to 85%, and the results showed that the maximum surface charge amount was 1200±100V, the dark decay rate was 1.5%, and the sensitivity was 3.6±0.5Luxsec, residual potential 80V
, there were almost no changes, and it was sufficiently usable.

Claims (1)

【特許請求の範囲】[Claims] 1 α型およびε型から選ばれる1種の結晶形を
有する不安定型もしくは準不安定型結晶形フタロ
シアニン光半導体および、該フタロシアニンの結
晶を有機溶剤に対し安定化させるフタロシアニン
誘導体を含むことを特徴とする光半導体材料。
1 An unstable or semi-unstable crystalline phthalocyanine photosemiconductor having one type of crystalline form selected from α-type and ε-type, and a phthalocyanine derivative that stabilizes the phthalocyanine crystal against organic solvents. Optical semiconductor materials.
JP59059372A 1984-03-29 1984-03-29 Photosemiconductor material Granted JPS60203957A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59059372A JPS60203957A (en) 1984-03-29 1984-03-29 Photosemiconductor material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59059372A JPS60203957A (en) 1984-03-29 1984-03-29 Photosemiconductor material

Publications (2)

Publication Number Publication Date
JPS60203957A JPS60203957A (en) 1985-10-15
JPH0578828B2 true JPH0578828B2 (en) 1993-10-29

Family

ID=13111373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59059372A Granted JPS60203957A (en) 1984-03-29 1984-03-29 Photosemiconductor material

Country Status (1)

Country Link
JP (1) JPS60203957A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5429645A (en) * 1977-08-09 1979-03-05 Toyo Ink Mfg Co Production of photoconductive material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5429645A (en) * 1977-08-09 1979-03-05 Toyo Ink Mfg Co Production of photoconductive material

Also Published As

Publication number Publication date
JPS60203957A (en) 1985-10-15

Similar Documents

Publication Publication Date Title
JPH0326381B2 (en)
JP3569422B2 (en) Crystalline oxotitanyl phthalocyanine, electrophotographic photoreceptor using the same, and image forming method
JPH027061A (en) Electrophotographic sensitive body
JPH0358507B2 (en)
US3706554A (en) Photoconductive composition
JPS58178363A (en) Electrophotographic receptor
JPS6073541A (en) Photoconductive material
JPH0578828B2 (en)
JPS6095441A (en) Photosemiconductor material
US4618554A (en) Electrophotographic photoreceptor having photosensitive layer made of a phthalocyanine treated with an acrylic resin
JPS5921021B2 (en) electrophotographic photoreceptor
JPS59105649A (en) Photoconductive material
JPH0420181B2 (en)
JPH034902B2 (en)
JPS6245983B2 (en)
JP2817589B2 (en) Electrophotographic photoreceptor
JPS6161380B2 (en)
JPH0220093B2 (en)
JPH034903B2 (en)
JPH0356634B2 (en)
JPS60243660A (en) Photosensitive body
JPS62121460A (en) Electrophotographic sensitive body
JPS59116755A (en) Electrophotographic sensitive body
JPH0477906B2 (en)
JPS6073542A (en) Photosemiconductive element