JPH034902B2 - - Google Patents

Info

Publication number
JPH034902B2
JPH034902B2 JP57230735A JP23073582A JPH034902B2 JP H034902 B2 JPH034902 B2 JP H034902B2 JP 57230735 A JP57230735 A JP 57230735A JP 23073582 A JP23073582 A JP 23073582A JP H034902 B2 JPH034902 B2 JP H034902B2
Authority
JP
Japan
Prior art keywords
phthalocyanine
parts
sensitivity
mixture
photoreceptor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57230735A
Other languages
Japanese (ja)
Other versions
JPS59116753A (en
Inventor
Manabu Sawada
Tsuneo Tanaka
Isao Kumano
Tsutomu Naganuma
Shigeru Hirayama
Koji Kumagai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Ink SC Holdings Co Ltd
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Toyo Ink Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd, Toyo Ink Mfg Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP23073582A priority Critical patent/JPS59116753A/en
Publication of JPS59116753A publication Critical patent/JPS59116753A/en
Publication of JPH034902B2 publication Critical patent/JPH034902B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0664Dyes
    • G03G5/0696Phthalocyanines

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Photoreceptors In Electrophotography (AREA)

Description

【発明の詳細な説明】 本発明は特定のフタロシアニン混合物と酸化亜
鉛とを光導電体素子として用いた、感度、耐久性
に優れ、安全性、衛生性においても問題のない電
子写真感光体に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electrophotographic photoreceptor that uses a specific phthalocyanine mixture and zinc oxide as a photoconductor element, has excellent sensitivity and durability, and has no problems in terms of safety and hygiene.

一般に電子写真方式にはゼログラフイー方式の
ごとくセレン、硫化カドミウムなどの光導電体素
子を金属ドラム上に薄膜状に形成した感光体を暗
所にて帯電させ、光像を照射(露光)し、静電潜
像を形成させた後、トナーにより可視像を作り
(現像)、これを紙等に転写定着する方法、あるい
はエレクトロフアツクス方式のように光導電性層
(感光層)を導電紙上に形成し、この感光体上に
帯電、露光、現像および定着により光導電性層上
に永久可視像を得る方法がある。
Generally, in electrophotography, like the xerography method, a photoreceptor in which a photoconductor element such as selenium or cadmium sulfide is formed into a thin film on a metal drum is charged in a dark place, and a light image is irradiated (exposed). After forming an electrostatic latent image, a visible image is created using toner (development), and this is transferred and fixed onto paper, etc., or a photoconductive layer (photosensitive layer) is conductive as in the electrofax method. There is a method in which a permanent visible image is obtained on a photoconductive layer by forming the photoconductive layer on paper, charging it, exposing it to light, developing it, and fixing it on the photoreceptor.

電子写真感光体の光導電体素子としては現在広
く用いられているものに、無機化合物として無定
形セレン、硫化カドミウム、酸化亜鉛等がある。
無定形セレンは光導電体素子としての特性は良好
であるが、製法が蒸着によらねばならず製造がむ
ずかしく、蒸着膜は可撓性がなく、しかも毒性が
強いため、その取り扱いに注意を要し、また高価
であるという欠点がある。硫化カドミウム、酸化
亜鉛は結着剤樹脂に分散させた光導性層の形で用
いられるが、樹脂/光導電体素子の重量比が0.2
〜0.3以下でないと実用性のある感度が得られな
いため、可撓性、平滑度、硬度、引張り強度、耐
摩擦性などの機械的な性質に欠点を有する。した
がつて、そのままでは反復使用に耐えることがで
きず、また、硫化カドミウムには衛生性の問題に
も考慮が必要である。
Photoconductor elements currently widely used for electrophotographic photoreceptors include inorganic compounds such as amorphous selenium, cadmium sulfide, and zinc oxide.
Amorphous selenium has good properties as a photoconductor element, but it is difficult to manufacture because it must be manufactured by vapor deposition, and the vapor-deposited film is not flexible and is highly toxic, so it must be handled with care. However, it also has the disadvantage of being expensive. Cadmium sulfide and zinc oxide are used in the form of a photoconductive layer dispersed in a binder resin, with a resin/photoconductor element weight ratio of 0.2.
Practical sensitivity cannot be obtained unless it is ~0.3 or less, and therefore it has drawbacks in mechanical properties such as flexibility, smoothness, hardness, tensile strength, and abrasion resistance. Therefore, it cannot withstand repeated use as it is, and cadmium sulfide also requires consideration of hygiene issues.

一方、有機化合物としてはフタロシアニンが知
られており、これは結着剤樹脂中に分散し、導電
基板上に塗布することができ、可撓性、加工性に
優れるが、単独では感度の点で実用上十分でな
く、さらに化学増感、光学増感の手段を併用する
ことによつて増感される。化学増感剤としては、
2,4,7−トリニトロ−9−フルオレノン
(TNF)、2,4,5,7−テトラニトロ−9−
フルオレノン(TENF)などの多環もしくは複
素環ニトロ化合物、アントラキノンなどのキノン
類、テトラメチル−P−フエニレンジアミンなど
の芳香族アミン類、およびテトラシアノエチレン
などのニトリル化合物などが知られている。また
光学増感剤としては、キサンテン系染料、キノリ
ン系染料が知られている。しかし、これらの物質
を実用上十分の感度とするまで添加すると、これ
らの物質自身が耐帯電性、耐光性等に問題がある
ため、連続帯電、露光による疲労現象が著しく実
用上問題がある。また、化学増感剤としてNTF、
TENFは特にすぐれた増感効果をもたらし、実
際、有機光導電体等に対し、よく使用されている
ものである。しかし、これらの物質の価格は非常
に高価であり、実用上必要な感度を得るため、多
量にこれらの物質を加えると、感光体は非常に高
価なものとなる。さらに、TNF、TENF等は人
体への衛生上の問題があり、使用に際し疑念が持
たれている。
On the other hand, phthalocyanine is known as an organic compound, which can be dispersed in a binder resin and coated on a conductive substrate, and has excellent flexibility and processability, but when used alone, it has low sensitivity. This is not sufficient for practical use, and sensitization can be achieved by using chemical sensitization and optical sensitization in combination. As a chemical sensitizer,
2,4,7-trinitro-9-fluorenone (TNF), 2,4,5,7-tetranitro-9-
Polycyclic or heterocyclic nitro compounds such as fluorenone (TENF), quinones such as anthraquinone, aromatic amines such as tetramethyl-P-phenylenediamine, and nitrile compounds such as tetracyanoethylene are known. Furthermore, xanthene dyes and quinoline dyes are known as optical sensitizers. However, if these substances are added until a sensitivity sufficient for practical use is achieved, these substances themselves have problems in charging resistance, light resistance, etc., and fatigue phenomena due to continuous charging and exposure to light become a significant problem in practical use. In addition, NTF as a chemical sensitizer,
TENF has a particularly excellent sensitizing effect and is actually often used for organic photoconductors. However, these substances are very expensive, and if a large amount of these substances is added to obtain the sensitivity required for practical use, the photoreceptor becomes very expensive. Furthermore, TNF, TENF, etc. have hygiene problems for the human body, and their use is questionable.

本発明は上述のような欠点を解決したものであ
り、衛生性等の問題のある化学増感剤を必要とせ
ずに、特に帯電特性が著しく向上し、かつ、感度
および繰り返し使用による耐久性に優れ、さらに
安価で、衛生性に優れた感光層を有する電子写真
感光体に関するものである。すなわち 本発明は、ε型銅フタロシアニン(A)、並びに電
子吸引性基を有するフタロシアニンもしくは電子
吸引性基を有するフタロシアニンと他のフタロシ
アニンとの混合物のアシツドペーステイング処理
されたフタロシアニン誘導体(B)、および酸化亜鉛
(C)との混合物を光導電体素子とすることを特徴と
する電子写真感光体を提供する。
The present invention solves the above-mentioned drawbacks, and does not require chemical sensitizers, which have problems such as hygiene, and significantly improves charging characteristics, and improves sensitivity and durability after repeated use. The present invention relates to an electrophotographic photoreceptor having a photosensitive layer that is excellent, inexpensive, and has excellent hygiene properties. That is, the present invention provides acid pasting-treated phthalocyanine derivatives (B) of ε-type copper phthalocyanine (A), phthalocyanine having an electron-withdrawing group, or a mixture of phthalocyanine having an electron-withdrawing group and other phthalocyanines, and zinc oxide
The present invention provides an electrophotographic photoreceptor characterized in that a photoconductor element is a mixture with (C).

本発明においてε型銅フタロシアニン(A)として
は、本願と同一出願人の特公昭40−2780号公報、
同52−6300号公報、同52−6301号公報に詳記され
ているように、X線回折角を測定すると面間隔
9.72Åに相当する最強線、11.63Åに強線、6.24,
5.10,4.35,4.19,3.87,3.36,3.28、および3.03
Åに弱線を示すものである。なお、このε型銅フ
タロシアニン(A)電子写真プレート用光導電体素子
として優れた効果を示すことは本願と同一出願人
の特公昭52−1667号公報によつて公知となつてい
る。
In the present invention, the ε-type copper phthalocyanine (A) is disclosed in Japanese Patent Publication No. 40-2780, filed by the same applicant as the present application,
As detailed in Publications No. 52-6300 and No. 52-6301, when measuring the X-ray diffraction angle, the interplanar spacing is
Strongest line corresponding to 9.72Å, strong line at 11.63Å, 6.24,
5.10, 4.35, 4.19, 3.87, 3.36, 3.28, and 3.03
A weak line is shown in Å. Incidentally, it is known from Japanese Patent Publication No. 1667-1987, filed by the same applicant as the present application, that this ε-type copper phthalocyanine (A) exhibits excellent effects as a photoconductor element for electrophotographic plates.

本願発明においては、上記ε型銅フタロシアニ
ン(A)にフタロシアニン誘導体(B)を混合して使用す
ることを特徴とするものであり、アシツドペース
テイングされて微細な粒子であるニトロ基などの
電子吸引性基を有するフタロシアニン誘導体(B)の
存在により、更に光感度などの電子写真特性を向
上せしめることができ、TNFなど衛生上問題の
ある増感剤を用いなくとも実用上問題のない感度
が得られ、かつ、酸化亜鉛(C)を用いることによ
り、繰り返しによる帯電の安定性等の電子写真特
性は、フタロシアニン誘導体の種類、量によつて
も変り得るが、適切な組合せにより、硫化カドミ
ウム等の光導電体素子と同程度の光感度等を得る
ことができ、さらにはそれ以上の耐久性も得られ
る。
The present invention is characterized in that the ε-type copper phthalocyanine (A) is mixed with a phthalocyanine derivative (B), and is acid pasted to form fine particles containing electrons such as nitro groups. Due to the presence of the phthalocyanine derivative (B) having an attractive group, electrophotographic properties such as photosensitivity can be further improved, and sensitivity can be achieved without any practical problems without using sensitizers that pose hygiene problems such as TNF. By using zinc oxide (C), the electrophotographic properties such as the stability of repeated charging may vary depending on the type and amount of the phthalocyanine derivative, but by using an appropriate combination, cadmium sulfide, etc. It is possible to obtain the same level of photosensitivity as the photoconductor element, and even more durability.

電子吸引性基を有するフタロシアニンとして
は、無金属もしくは各種金属フタロシアニンの分
子中のベンゼン核にハロゲン原子、ニトロ基、シ
アノ基、スルホン基、カルボキシル基、スルホア
ミド基、カルボアミド基などの電子吸引性基によ
つて置換されたものである。このフタロシアニン
誘導体はフタロシアニン合成時に、フタロシアニ
ンの原料となるフタロニトリル、フタル酸、無水
フタル酸、フタルイミドとして、上記置換基で置
換されたフタロニトリル、フタル酸、無水フタル
酸、フタルイミドを用いること、もしくは一部併
用することによつて、得られる。フタロシアニン
誘導体の製法としては特に制限されない。また、
フタロシアニン誘導体1分子における置換基の数
としては1〜16個である。
Phthalocyanines with electron-withdrawing groups include metal-free or various metal phthalocyanine molecules with electron-withdrawing groups such as halogen atoms, nitro groups, cyano groups, sulfone groups, carboxyl groups, sulfamide groups, and carboxamide groups in the benzene nucleus. Therefore, it has been replaced. This phthalocyanine derivative can be obtained by using phthalonitrile, phthalic acid, phthalic anhydride, or phthalimide substituted with the above-mentioned substituents as the raw material for phthalocyanine during phthalocyanine synthesis; It can be obtained by using both. The method for producing the phthalocyanine derivative is not particularly limited. Also,
The number of substituents in one molecule of the phthalocyanine derivative is 1 to 16.

上記、電子吸引性基を有するフタロシアニン
は、必要に応じて他の電子吸引性基を有しないフ
タロシアニンと共にアシツドペーステイング処理
し、フタロシアニン誘導体(B)を得る。ここでアシ
ツドペーステイング処理とは、上記電子吸引性基
を有するフタロシアニンあるいは他のフタロシア
ニンを硫酸、オルト硫酸、ピロリン酸、クロロス
ルホン酸、塩酸、ヨウ化水素酸、フツ化水素酸、
臭化水素酸等の無機酸によつて塩を形成せしめ、
有機顔料業界で公知のように水中に投入し、沈殿
したフタロシアニン誘導体を濾過、水洗、乾燥す
る処理法であり、α型結晶形を有するものが得ら
れる。
The above-mentioned phthalocyanine having an electron-withdrawing group is subjected to acid pasting treatment together with other phthalocyanine having no electron-withdrawing group, if necessary, to obtain a phthalocyanine derivative (B). Here, acid pasting treatment refers to phthalocyanine having the above-mentioned electron-withdrawing group or other phthalocyanine to sulfuric acid, orthosulfuric acid, pyrophosphoric acid, chlorosulfonic acid, hydrochloric acid, hydroiodic acid, hydrofluoric acid,
forming a salt with an inorganic acid such as hydrobromic acid,
As is known in the organic pigment industry, this is a treatment method in which a phthalocyanine derivative is poured into water, and the precipitated phthalocyanine derivative is filtered, washed with water, and dried, and a product having an α-type crystal form is obtained.

ε型銅フタロシアニン(A)とフタロシアニン誘導
体(B)との混合重量比は、100/0.01〜200程度、好
ましくは100/0.1〜100程度であり、混合された
全フタロシアニン単位に対して電子吸引性基の数
が0.001個以上、好ましくは0.01個以上であり、
2個以下となるように混合するとよい。
The mixing weight ratio of the ε-type copper phthalocyanine (A) and the phthalocyanine derivative (B) is about 100/0.01 to 200, preferably about 100/0.1 to 100, and has electron-withdrawing properties for all mixed phthalocyanine units. The number of groups is 0.001 or more, preferably 0.01 or more,
It is preferable to mix so that the number is 2 or less.

酸化亜鉛(C)は光導電体素子としての自体公知の
ものが使用される。酸化亜鉛(C)はε型銅フタロシ
アニン(A)とフタロシアニン誘導体(B)との混合物に
対して、重量比で1/10〜10/10程度、好ましく
は3/10〜6/10の割合で用いられる。
Zinc oxide (C) that is known per se as a photoconductor element is used. Zinc oxide (C) is added at a weight ratio of about 1/10 to 10/10, preferably 3/10 to 6/10, to the mixture of ε-type copper phthalocyanine (A) and phthalocyanine derivative (B). used.

上記ε型銅フタロシアニン(A)、フタロシアニン
誘導体(B)および酸化亜鉛(C)との混合物を電子写真
感光体とするには、結着剤樹脂、溶剤等と共に、
ボールミル、アトライター等の混練分散機で均一
に分散させ、導電性支持体上に塗布して、感光層
を形成する。なお、本発明の電子写真感光体では
導電性支持体上の感光層だけの電子写真感光体は
勿論、バリヤー層、絶縁層、他の光導電体素子の
感光層を積層した電子写真感光体であつてもよ
く、また、増感剤を併用することも可能である。
In order to make an electrophotographic photoreceptor from the mixture of the above-mentioned ε-type copper phthalocyanine (A), phthalocyanine derivative (B) and zinc oxide (C), together with a binder resin, a solvent, etc.
The mixture is uniformly dispersed using a kneading and dispersing machine such as a ball mill or attritor, and coated onto a conductive support to form a photosensitive layer. The electrophotographic photoreceptor of the present invention may include not only an electrophotographic photoreceptor with only a photosensitive layer on a conductive support, but also an electrophotographic photoreceptor with a barrier layer, an insulating layer, and a photosensitive layer of another photoconductor element laminated thereon. It is also possible to use a sensitizer in combination.

結着剤樹脂としてはメラミン樹脂、エポキシ樹
脂、ケイ素樹脂、ポリウレタン樹脂、アクリル樹
脂、キシレン樹脂、塩化ビニル−酢酸ビニル共重
合体樹脂、ポリカーボネート樹脂、繊維素誘導体
などの体積固有抵抗が10Ω以上の絶縁性を有する
結着剤樹脂である。
Binder resins include melamine resins, epoxy resins, silicone resins, polyurethane resins, acrylic resins, xylene resins, vinyl chloride-vinyl acetate copolymer resins, polycarbonate resins, cellulose derivatives, and other insulation materials with a volume resistivity of 10Ω or more. It is a binder resin with properties.

導電性支持体としては、アルミニウム板、導電
処理した紙、導電処理したプラスチツクフイルム
などに塗布し、感光層を形成する。塗布方法とし
ては、必要ならば溶剤を加えて粘度を調整し、エ
アーナイフコーター、ブレードコーター、ロツド
コーター、リバースロールコーター、スプレーコ
ーター、ホツトコーター、スクイーズコーターな
どの塗布方法で被膜形成を行う。塗布後、適当な
乾燥装置を用いて乾燥を行う。
As a conductive support, an aluminum plate, conductively treated paper, conductively treated plastic film, etc. is coated to form a photosensitive layer. As for the coating method, if necessary, a solvent is added to adjust the viscosity, and a film is formed using an air knife coater, a blade coater, a rod coater, a reverse roll coater, a spray coater, a hot coater, a squeeze coater, or the like. After coating, drying is performed using a suitable drying device.

以下、例をあげて本発明を説明する。例中
「部」とは重量部を示す。
The present invention will be explained below by giving examples. In the examples, "parts" indicate parts by weight.

実施例 1 銅フタロシアニン40部、テトラニトロ銅フタロ
シアニン0.5部を98%濃硫酸500部に十分撹拌しな
がら溶解する。溶解した液を水5000部にあけ、銅
フタロシアニン、テトラニトロ銅フタロシアニン
の組成物を析出させた後、濾過、水洗し、減圧下
120℃で乾燥する。
Example 1 40 parts of copper phthalocyanine and 0.5 parts of tetranitrocopper phthalocyanine are dissolved in 500 parts of 98% concentrated sulfuric acid with thorough stirring. Pour the dissolved solution into 5,000 parts of water to precipitate a composition of copper phthalocyanine and tetranitrocopper phthalocyanine, then filter, wash with water, and remove under reduced pressure.
Dry at 120℃.

この様にして得られた組成物50部とε型銅フタ
ロシアニン(Lionol Blue ER.東洋インキ製造(株)
製商品名)100部とをメタノール5000部中に分散
させ均一混合分散液とする。その後、濾過し減圧
下120℃で乾燥し混合物〔〕とし、下記処方に
基き、光導電性組成物を作成する。
50 parts of the composition thus obtained and ε-type copper phthalocyanine (Lionol Blue ER. Toyo Ink Mfg. Co., Ltd.)
Disperse 100 parts of product name) in 5000 parts of methanol to make a uniform mixed dispersion. Thereafter, it is filtered and dried at 120° C. under reduced pressure to obtain a mixture [], and a photoconductive composition is prepared based on the following formulation.

混合物〔〕 10部 アクリルポリオール(タケラツクUA−702、
武田薬品工業製商品名) 25部 エポキシ樹脂(エピコート#1007、シエル化学
製商品名) 2部 メチルエチルケトン 26部 セロソルブアセテート 26部 以上の組成物を磁性ボールミルにて48時間練肉
後、酸化亜鉛(堺化学工業製SAZEX#2000)35
部を添加し、さらに10時間練肉し、光導電性組成
物を得る。
Mixture [] 10 parts Acrylic polyol (Takerakku UA-702,
Takeda Pharmaceutical Co., Ltd. (trade name) 25 parts Epoxy resin (Epicote #1007, Ciel Chemical Co., Ltd. trade name) 2 parts Methyl ethyl ketone 26 parts Cellosolve acetate 26 parts Chemical Industry SAZEX #2000) 35
% and further kneaded for 10 hours to obtain a photoconductive composition.

次に、この光導電性組成物を厚さ5μのアルミ
ニウム泊と75μのポリエステルフイルムとのラミ
ネートフイルムのアルミニウム上に乾燥膜厚が
8μになるようにロールコートし、110℃に均一加
熱されたオーブン中に1時間置き、電子写真感光
体とした。こうして得られたサンプルに対して+
6.0KV、コロナギヤツプ10mm、10m/minの帯電
スピードでコロナ放電を与え、放電停止後10秒後
に2854Kのタングステン光源にて10Luxの照度で
露光する。この時の露光直前の電位が50%低下す
るのに要した光の照射量を感度とした。この様に
して測定したサンプルは最大表面電位570V、暗
減衰率2%、感度2.5Lux・sec.,残留電位15Vで
あり、帯電性、感度ともに実用に十分な値を示し
た。この感光体を用いて下記の様な現像転写方式
により画像を作成した。
This photoconductive composition was then applied to the aluminum of a laminate film of 5μ thick aluminum film and 75μ thick polyester film to a dry film thickness.
It was roll coated to a thickness of 8μ and placed in an oven uniformly heated to 110° C. for 1 hour to prepare an electrophotographic photoreceptor. For the sample obtained in this way, +
Corona discharge is applied at 6.0 KV, corona gap 10 mm, and charging speed of 10 m/min, and 10 seconds after the discharge stops, it is exposed to a 2854 K tungsten light source with an illuminance of 10 Lux . The amount of light irradiation required for the potential immediately before exposure to decrease by 50% at this time was defined as the sensitivity. The sample measured in this manner had a maximum surface potential of 570 V, a dark decay rate of 2%, a sensitivity of 2.5 L ux ·sec., and a residual potential of 15 V, showing values sufficient for practical use in both chargeability and sensitivity. Using this photoreceptor, an image was created by the following development and transfer method.

感光体にコロナ放電により正電荷を与え100W
引伸用タングステン光源を用いてポジフイルム原
画を10Luxで1秒間投影し、感光体上に静電潜像
を形成させ、その後負荷電の粉体トナーにて可視
像を得る。その上に上質紙を密着させ紙背面より
正帯電のコロナ放電にて+5KVの印加電位で可
視像を転写し、赤外線ランプにて定着した。この
操作により得られた画像は極めて原画に忠実で地
汚れのない鮮明かつコントラストの高い画像が得
られた。さらに、帯電保持性については、繰り返
し複写を行つても電子写真特性に変化はなく、
15000枚の複写物が初期の画質と同程度であつた。
Positive charge is given to the photoreceptor by corona discharge at 100W.
A positive film original image is projected at 10 Lux for 1 second using a tungsten light source for enlargement to form an electrostatic latent image on the photoreceptor, and then a visible image is obtained using negatively charged powder toner. A piece of high-quality paper was placed on top of it, and a visible image was transferred from the back of the paper using a positively charged corona discharge with an applied potential of +5KV, and fixed using an infrared lamp. The image obtained by this operation was extremely faithful to the original, and a clear, high-contrast image with no background smudges was obtained. Furthermore, regarding charge retention, there is no change in electrophotographic properties even after repeated copying.
The 15,000 copies were of similar quality to the original.

比較例 1 実施例1に示す混合物〔〕の代りにε型銅フ
タロシアニン単独で実施例1と同様にして光導電
性組成物として電子写真感光体とした場合の電子
写真特性を調べると、最大表面電位780V、暗減
衰率38%、感度17.4Lux・sec.,残留電位25Vであ
り、増感剤を用いない場合、感度において実用性
に乏しい値であつた。
Comparative Example 1 When the electrophotographic properties were investigated when an electrophotographic photoreceptor was prepared as a photoconductive composition using ε-type copper phthalocyanine alone instead of the mixture [] shown in Example 1 in the same manner as in Example 1, it was found that the maximum surface The potential was 780 V, the dark decay rate was 38%, the sensitivity was 17.4 Lux ·sec., and the residual potential was 25 V, which were impractical values in sensitivity when no sensitizer was used.

比較例 2 実施例1の混合物〔〕 10部 アクリルポリオール(タケラツクUA−702、
武田薬品工業製商品名) 36部 エポキシ樹脂(エピコート#1007、シエル化学
製商品名) 6部 メチルエチルケトン 20部 セロソルブアセテート 20部 上記処方により実施例1と同様にして光導電性
組成物として電子写真感光体とした場合の電子写
真特性を調べると、最大表面電位580V、暗減衰
率11%、感度15Lux・sec.,残留電位20Vであり、
感度の向上は見られたが、繰り返し帯電保持性に
おいて問題があり、1000枚後には画像の濃度低下
があつた。
Comparative Example 2 Mixture of Example 1 [] 10 parts acrylic polyol (Takerak UA-702,
36 parts Epoxy resin (Epicote #1007, trade name manufactured by Ciel Chemical Co., Ltd.) 6 parts Methyl ethyl ketone 20 parts Cellosolve acetate 20 parts Electrophotographic photosensitive composition was prepared in the same manner as in Example 1 using the above formulation. When examining the electrophotographic characteristics when used as a body, the maximum surface potential is 580V, the dark decay rate is 11%, the sensitivity is 15L ux・sec., and the residual potential is 20V.
Although an improvement in sensitivity was observed, there was a problem with repeated charge retention, and the image density decreased after 1000 sheets.

実施例 2 無金属フタロシアニン40部、モノニトロ銅フタ
ロシアニン1.5部を98%濃硫酸1000部に十分撹拌
しながら溶解する。溶解した液を水10000部に注
入し、フタロシアニン系組成物を析出した後、濾
過、水洗し、減圧下120℃で乾燥する。
Example 2 40 parts of metal-free phthalocyanine and 1.5 parts of mononitro copper phthalocyanine are dissolved in 1000 parts of 98% concentrated sulfuric acid with thorough stirring. The dissolved solution is poured into 10,000 parts of water to precipitate the phthalocyanine composition, which is then filtered, washed with water, and dried at 120°C under reduced pressure.

この様にして得られた組成物をε型銅フタロシ
アニン(Lionol Blue ER)100部に対し、30部
混合し、以下は実施例1と同様な方法で混合物
〔〕とし、下記処方に基き、光導電性組成物を
作成する。
30 parts of the composition thus obtained was mixed with 100 parts of ε-type copper phthalocyanine (Lionol Blue ER), and a mixture [] was prepared in the same manner as in Example 1. Create a conductive composition.

混合物〔〕 10部 アクリル樹脂(T−coat PFX−7120、東洋イ
ンキ製(株)製商品名) 40部 シリコーン樹脂(信越シリコーンKR−211、
信越化学製商品名) 15部 メチルエチルケトン 35部 トルエン 25部 以上の組成物を磁性ボールミルにて48時間練肉
後、酸化亜鉛(実施例1と同じ。)35部を添加し、
さらに10時間練肉し、光導電性組成物を得る。実
施例1と同様にしてこの光導電性組成物を約80μ
の硬質アルミニウム板上に膜厚が6μになるよう
にロールコートし、被膜形成後、150℃に均一加
熱されたオーブン中に15分間置き電子写真感光体
とした。
Mixture [] 10 parts acrylic resin (T-coat PFX-7120, trade name manufactured by Toyo Ink Co., Ltd.) 40 parts silicone resin (Shin-Etsu Silicone KR-211,
Shin-Etsu Chemical (product name) 15 parts Methyl ethyl ketone 35 parts Toluene 25 parts The above composition was milled in a magnetic ball mill for 48 hours, and 35 parts of zinc oxide (same as in Example 1) was added.
The mixture is further kneaded for 10 hours to obtain a photoconductive composition. This photoconductive composition was prepared in the same manner as in Example 1 to about 80 μm.
The film was roll coated onto a hard aluminum plate to a thickness of 6 μm, and after the film was formed, it was placed in an oven uniformly heated to 150° C. for 15 minutes to form an electrophotographic photoreceptor.

こうして得られた感光体に対して、実施例1と
同様な方式で最大表面電位、暗減衰率,感度を測
定した結果、最大表面電位580V、暗減衰率2.3
%、感度は3.5Lux・sec.と極めて帯電保持性の良
好な感光体を得た。
The maximum surface potential, dark decay rate, and sensitivity of the thus obtained photoreceptor were measured in the same manner as in Example 1. As a result, the maximum surface potential was 580 V, and the dark decay rate was 2.3.
%, the sensitivity was 3.5L ux ·sec., and a photoreceptor with extremely good charge retention was obtained.

この感光体を用いて実施例1と同様な方式で画
像を作成したところ、鮮明且つ原稿に忠実でコン
トラストの高いしかも実施例1と同様に反復使用
に耐えうる電子写真感光体が得られた。
When an image was created using this photoreceptor in the same manner as in Example 1, an electrophotographic photoreceptor that was clear, faithful to the original, high in contrast, and durable for repeated use as in Example 1 was obtained.

実施例 3 銅フタロシアニン40部、テトラシアノコバルト
フタロシアニン0.5部を氷酢酸200部に分散させ、
撹拌しながら10部の98%硫酸を滴下し、10時間撹
拌した後、固形物を濾別し、さらにアンモニアガ
スを通じフタロシアニン系組成物を析出させた
後、水洗をし、減圧下120℃で乾燥する。
Example 3 40 parts of copper phthalocyanine and 0.5 part of tetracyanocobalt phthalocyanine were dispersed in 200 parts of glacial acetic acid,
10 parts of 98% sulfuric acid was added dropwise while stirring, and after stirring for 10 hours, the solid matter was filtered out, and the phthalocyanine composition was precipitated through ammonia gas, washed with water, and dried at 120°C under reduced pressure. do.

この様にして得られた混合物〔〕を下記の処
方に基き、光導電性組成物を作成する。
A photoconductive composition is prepared from the mixture thus obtained according to the following formulation.

混合物〔〕 10部 ε型銅フタロシアニン 5部 分岐ポリエステルポリオール(デスモフエン
#800、日本ポリウレタン工業製商品名) 52部 セロソルブアセテート 120部 ポリイソシアネート化合物(デスモジユールN
−75、日本ポリウレタン工業製商品名) 8.4部 以上のような組成物で上記5点の内上部4点を
磁性ボールミルにて30時間常温で練肉後、酸化亜
鉛(実施例1と同じ。)50部を混合してさらに10
時間練肉し、次いでポリイソシアネート化合物を
添加し光導電性組成物とする。
Mixture [] 10 parts ε-type copper phthalocyanine 5 parts branched polyester polyol (Desmophene #800, trade name manufactured by Nippon Polyurethane Industries) 52 parts Cellosolve acetate 120 parts Polyisocyanate compound (Desmodyur N
-75, trade name manufactured by Nippon Polyurethane Industry Co., Ltd.) 8.4 parts The upper four points of the above five points were kneaded in a magnetic ball mill at room temperature for 30 hours using the above composition, and then mixed with zinc oxide (same as in Example 1). Mix 50 parts and add 10
The mixture is milled for a period of time, and then a polyisocyanate compound is added to form a photoconductive composition.

得られた光導電性組成物を75μのポリエステル
フイルム上に純度99.99%のアルミニウム粉末を
10torrの真空度で約1μの厚さに真空蒸着した基板
上に膜厚が15μになるようロールコートし、被膜
形成後、120℃に均一加熱されたオーブン中に30
分間置き、電子写真感光体を得た。
The resulting photoconductive composition was coated with 99.99% pure aluminum powder on a 75μ polyester film.
Roll-coat the film to a thickness of 15μ on a substrate vacuum-deposited to a thickness of approximately 1μ at a vacuum level of 10torr.
This was left for a minute to obtain an electrophotographic photoreceptor.

こうして得られた感光体に対して実施例1と同
様な方法で測定した結果、最大表面電位950V、
暗減衰率1.2%、感度3.5Lux・sec.の極めて帯電保
持性および繰り返し帯電性の良好な被膜強度の高
い感光体を得た。この感光体を用いて実施例1と
同様に画像を作成したところ、原稿パターンに忠
実で鮮明な画像を得た。
The photoreceptor thus obtained was measured in the same manner as in Example 1, and the maximum surface potential was 950V.
A photoreceptor with a dark decay rate of 1.2%, a sensitivity of 3.5L ux ·sec., excellent charge retention and repeated chargeability, and a high coating strength was obtained. When an image was created using this photoreceptor in the same manner as in Example 1, a clear image faithful to the original pattern was obtained.

実施例 4 トリニトロ銅フタロシアニン50部を98%濃硫酸
600部に十分撹拌しながら溶解する。溶解した液
を水6000部にあけ、α型トリニトロ銅フタロシア
ニンの組成物を析出させた後、濾過、水洗し、減
圧下120℃で乾燥する。この様にして得られた組
成物50部とε型銅フタロシアニン100部とを用い、
他は実施例1と同様な方式で光導電性組成物と
し、電子写真感光体とした場合の電子写真特性を
調べると最大表面電位720V、暗減衰率3%、感
度29Lux・sec.残留電位7Vであり、繰り返し帯電
性が良好であつた。
Example 4 50 parts of trinitrocopper phthalocyanine in 98% concentrated sulfuric acid
Dissolve in 600 parts with sufficient stirring. The dissolved solution is poured into 6000 parts of water to precipitate a composition of α-type trinitrocopper phthalocyanine, which is then filtered, washed with water, and dried at 120°C under reduced pressure. Using 50 parts of the composition thus obtained and 100 parts of ε-type copper phthalocyanine,
Otherwise, a photoconductive composition was prepared in the same manner as in Example 1, and the electrophotographic properties were examined when it was used as an electrophotographic photoreceptor.The maximum surface potential was 720V, the dark decay rate was 3%, and the sensitivity was 29L ux・sec.Residual potential The voltage was 7V, and the repeatability of charging was good.

実施例 5 実施例4において、トリニトロ銅フタロシアニ
ンに代えてテトラシアノ銅フタロシアニンを用い
る他は同様な方法で電子写真感光体とした場合の
電子写真特性を調べると最大表面電位830V、暗
減衰率3.7%、感度3.1Lux・sec.残留電位3Vであ
り、繰り返し帯電性が良好であつた。
Example 5 An electrophotographic photoreceptor was prepared in the same manner as in Example 4 except that tetracyanocopper phthalocyanine was used instead of trinitrocopper phthalocyanine.The electrophotographic properties were investigated and the maximum surface potential was 830V, the dark decay rate was 3.7%, Sensitivity was 3.1L ux ·sec. Residual potential was 3V, and repeat charging performance was good.

Claims (1)

【特許請求の範囲】[Claims] 1 ε型銅フタロシアニン(A)、並びに電子吸引性
基を有するフタロシアニンもしくは電子吸引性基
を有するフタロシアニンと他のフタロシアニンと
の混合物のアシツドペーステイング処理されたフ
タロシアニン誘導体(B)、および酸化亜鉛(C)との混
合物を光導電体素子とすることを特徴とする電子
写真感光体。
1 ε-type copper phthalocyanine (A), a phthalocyanine derivative (B) treated with acid pasting of a phthalocyanine having an electron-withdrawing group or a mixture of a phthalocyanine having an electron-withdrawing group and other phthalocyanines, and zinc oxide ( An electrophotographic photoreceptor characterized in that a photoconductor element is a mixture of C).
JP23073582A 1982-12-24 1982-12-24 Electrophotographic sensitive body Granted JPS59116753A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23073582A JPS59116753A (en) 1982-12-24 1982-12-24 Electrophotographic sensitive body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23073582A JPS59116753A (en) 1982-12-24 1982-12-24 Electrophotographic sensitive body

Publications (2)

Publication Number Publication Date
JPS59116753A JPS59116753A (en) 1984-07-05
JPH034902B2 true JPH034902B2 (en) 1991-01-24

Family

ID=16912475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23073582A Granted JPS59116753A (en) 1982-12-24 1982-12-24 Electrophotographic sensitive body

Country Status (1)

Country Link
JP (1) JPS59116753A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2636254B2 (en) * 1987-08-27 1997-07-30 富士ゼロックス株式会社 Electrophotographic photoreceptor
US5656407A (en) * 1993-06-29 1997-08-12 Mita Industrial Co., Ltd. Photosensitive material for electrophotography

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2054118A1 (en) * 1970-11-04 1972-05-10 Hauffe K Bipolar charge-/discharge-able coating - for xerography with zinc oxide and photoconductive organic pigment in resin
JPS51129303A (en) * 1975-05-02 1976-11-10 Toyo Ink Mfg Co Printing plate
JPS521667A (en) * 1975-06-24 1977-01-07 Hitachi Ltd Centrifugal dehydration type of foam disrupting device
JPS5374430A (en) * 1976-12-15 1978-07-01 Ricoh Co Ltd Electrophotographic light sensitive material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2054118A1 (en) * 1970-11-04 1972-05-10 Hauffe K Bipolar charge-/discharge-able coating - for xerography with zinc oxide and photoconductive organic pigment in resin
JPS51129303A (en) * 1975-05-02 1976-11-10 Toyo Ink Mfg Co Printing plate
JPS521667A (en) * 1975-06-24 1977-01-07 Hitachi Ltd Centrifugal dehydration type of foam disrupting device
JPS5374430A (en) * 1976-12-15 1978-07-01 Ricoh Co Ltd Electrophotographic light sensitive material

Also Published As

Publication number Publication date
JPS59116753A (en) 1984-07-05

Similar Documents

Publication Publication Date Title
JPH0326381B2 (en)
JPH0358507B2 (en)
JPS5921022B2 (en) print version
JPH034902B2 (en)
JPH0326828B2 (en)
JP4329244B2 (en) Hydroxygallium phthalocyanine pigment, method for producing the same, electrophotographic photosensitive member and electrophotographic image forming apparatus using the same
JPH034903B2 (en)
JPH0327111B2 (en)
JPH05100458A (en) Electrophotographic sensitive body
JPS59116755A (en) Electrophotographic sensitive body
JP2850665B2 (en) Electrophotographic photoreceptor
JPS58178363A (en) Electrophotographic receptor
JPS59105649A (en) Photoconductive material
JPH0220093B2 (en)
JPH0533393B2 (en)
JPS5921021B2 (en) electrophotographic photoreceptor
JP2981994B2 (en) Image forming method
JPH0420181B2 (en)
JPH0359425B2 (en)
JPH0578828B2 (en)
JPS6245983B2 (en)
JPS6161380B2 (en)
JPS61181867A (en) Phthalocyanine composition and electrophotographic material obtained by using same
JP2004018600A (en) Method of manufacturing phthalocyanine pigment, phthalocyanine pigment, electrophotographic photoreceptor, processing cartridge and electrophotographic apparatus
JPH045983B2 (en)