JPH0358507B2 - - Google Patents

Info

Publication number
JPH0358507B2
JPH0358507B2 JP58157912A JP15791283A JPH0358507B2 JP H0358507 B2 JPH0358507 B2 JP H0358507B2 JP 58157912 A JP58157912 A JP 58157912A JP 15791283 A JP15791283 A JP 15791283A JP H0358507 B2 JPH0358507 B2 JP H0358507B2
Authority
JP
Japan
Prior art keywords
phthalocyanine
parts
resin
charge
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58157912A
Other languages
Japanese (ja)
Other versions
JPS6050539A (en
Inventor
Shinichi Tamura
Tsuneo Tanaka
Masato Oohashi
Michiji Hikosaka
Toshio Seta
Satoshi Mizukami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minolta Co Ltd
Toyo Ink SC Holdings Co Ltd
Original Assignee
Minolta Co Ltd
Toyo Ink Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minolta Co Ltd, Toyo Ink Mfg Co Ltd filed Critical Minolta Co Ltd
Priority to JP58157912A priority Critical patent/JPS6050539A/en
Priority to CA000461573A priority patent/CA1252331A/en
Priority to GB08421718A priority patent/GB2145835B/en
Priority to FR8413345A priority patent/FR2551561B1/en
Publication of JPS6050539A publication Critical patent/JPS6050539A/en
Publication of JPH0358507B2 publication Critical patent/JPH0358507B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0664Dyes
    • G03G5/0696Phthalocyanines

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Photoreceptors In Electrophotography (AREA)
  • Light Receiving Elements (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は導電性支持体上に電荷発生層および電
荷輸送層を形成してなる電子写真感光体に関す
る。 一般に電子写真方式にはゼログラフイー方式の
ごとくセレン、硫化カドミウムなどの光導電体素
子を金属ドラム上に薄膜状に形成した感光体を暗
所にて帯電させ、光像を照射(露光)し、静電潜
像を形成させた後、トナーにより可視像を作り
(現像)、これを紙等に転写定着する方法、あるい
はエレクトロフアツクス方式のように光導電性層
(感光層)を紙上に設け、この感光体上に帯電、
露光、現像および定着により光導電性層上に永久
可視像を得る方法がある。 電子写真感光体の光導電体材料として現在広く
用いられているものに、無機化合物として無定形
セレン、硫化カドミウム、硫化亜鉛等がある。無
定形セレンは光導電体材料としての特性は良好で
あるが、製法が蒸着によらねばならず製造がむず
かしく、蒸着膜は可撓性がなく、しかも毒性が強
いため、その取り扱いに注意を要し、また高価で
あるという欠点がある。硫化カドミウム、酸化亜
鉛は結着剤樹脂に分散させた光導電性層の形で用
いられるが、樹脂/光導電体材料の重量比が0.2
〜0.3以下でないと実用性のある感度が得られな
いため、可撓性、平滑度、硬度、引張り強度、耐
摩擦性などの機械的な性質に欠点を有する。した
がつて、そのままでは反復使用に耐えることがで
きない。硫化カドミウムには衛生性の問題にも考
慮が必要である。 一方、有機化合物としてはポリビニルカルバゾ
ール(PVK)、フタロシアニン等が知られてい
る。これらの光導電体材料は可撓性、加工性に優
れるが、単独では電子写真感度の点で実用に供し
たとき十分でなく、さらに化学増感、光学増感の
手段を併用することによつて増感される。化学増
感剤としては、2,4,7−トリニトロ−9−フ
ルオレノン(TNF)、2,4,5,7−テトラニ
トロ−9−フルオレノン(TENF)などの多環
もしくは複素環ニトロ化合物、アントラキノンな
どのキノン類、およびテトラシアノエチレンなど
のニトリル化合物などが知られている。また光学
増感剤としては、キサンテン系染料、キノリン系
染料が知られている。しかし、これらの物質を電
子写真感光体用に実用に供する感度が得られるま
で添加すると、これらの物質自身が耐帯電性、耐
光性等に問題があるため、連続帯電、露光による
疲労現象が著しく、実用上問題がある。また、化
学増感剤としてTNF,TENFは特にすぐれた増
感効果をもたらし、実際、有機光導電体等に対
し、よく使用されているものである。しかし、こ
れらの物質の価格は高価であり、実用上必要な感
度を得るため、多量にこれらの物質を加えると、
感光体は価格上の点だけでなく、さらに衛生上の
問題があり、使用に際し疑念が持たれる。 また、フタロシアニンに対しフタロシアニン誘
導体を使用する方法も一部では検討されている。
この方法では強力な機械的混合処理を必要とする
ものであり、確かにこの方法によつてフタロシア
ニンとフタロシアニン誘導体とが均一に混合さ
れ、電子写真特性の優れた電子写真感光体が得ら
れるが、かなり長時間に及ぶ機械的混合処理は多
大な労力を必要とするものであり、この方法の実
施は、工業上大きな制約を受ける。さらに、電子
写真感光体として要求される物性を、必ずしも十
分満たしているとは言えない点も見られる。 一方、機能分離型積層感光体として、誘電性支
持体上に、電荷発生層および電荷輸送層を形成す
る手段も種々検討されている。この積層感光体に
は誘電性支持体に電荷発生層/電荷輸送層、また
は積層順を変えて電荷発生層/電荷輸送層を形成
するものが知られている。この積層感光体は、一
般に単層感光体に見られるような発生電荷のトラ
ツプへの捕捉に起因するインダクシヨン効果が減
少し、階調性が良くなる利点を有している。 本発明は特定のフタロシアニン系電荷発生材料
を用いた電荷発生層とすることにより、階調性は
勿論、感度等の電子写真特性に優れた機能分離型
積層感光体を提供するものである。 すなわち、フタロシアニン100重量部およびフ
タロシアニン分子のベンゼン核がニトロ基、シア
ノ基、ハロゲン原子、スルホン基およびカルボキ
シル基から選ばれる少なくとも1種の電子吸引性
基によつて置換されたフタロシアニン誘導体0.01
〜20重量部を、フタロシアニンと塩を形成し得る
無機酸と混合した後、水もしくは塩基性物質によ
つて析出せしめて得られた電荷発生材料を含む層
(電荷発生層)および電荷輸送層を導電性支持体
上に形成してなる電子写真感光体である。 本発明に係わるフタロシアニンとしては無金属
フタロシアニンまたは金属フタロシアニン、ある
いはこれらの混合物である。金属フタロシアニン
の金属としては銅,銀,ベリリウム,マグネシウ
ム,カルシウム,亜鉛,カドミウム,バリウム,
水銀,アルミニウム,ガリウム,インジウム,ラ
ンタン,ネオジム,サマリウム,ユーロピウム,
ガドリニウム,ジスプロシウム,ホルミウム,エ
ルビウム,ツリウム,イツテルビウム,ルテチウ
ム,チタン,錫,ハフニウム,鉛,トリウム,バ
ナジウム,アンチモン,クロム,モリブデン,ウ
ラン,マンガン,鉄,コバルト,ニツケル,ロジ
ウム,パラジウム,オスミウム,および白金等で
ある。また、フタロシアニンの中心核として金属
原子ではなく、3価以上の原子価を有するハロゲ
ン化金属であつてもよい。無金属フタロシアニン
や銅,コバルト,鉛,亜鉛等の金属フタロシアニ
ンが好ましい。さらに、低ハロゲン化フタロシア
ニンであつてもよい。なお、フタロシアニンは顔
料としてよく知られている化合物であるが、本発
明において、どのような製法によつて得られたフ
タロシアニンでもよく、顔料において知られてい
るように、クルードと称されているフタロシアニ
ンは勿論、顔料化されたフタロシアニンを用いて
もよい。 本発明に係わるフタロシアニン誘導体としては
フタロシアニン分子のベンゼン核がニトロ基,シ
アノ基,ハロゲン原子,スルホン基およびカルボ
キシル基から選ばれる少なくとも1種の電子吸引
性基によつて置換されたものである。このフタロ
シアニン誘導体はフタロシアニン合成時に、フタ
ロシアニンの原料となるフタロニトリル,フタル
酸,無水フタル酸,フタルイミドとして、上記置
換基で置換されたフタロニトリル,フタル酸,無
水フタル酸,フタルイミドを用いること、もしく
は一部併用することによつて得られる。フタロシ
アニン誘導体の製法としては特に制限されない。
また、フタロシアニン誘導体1分子における置換
基の数としては1〜16個、好ましくは1〜8個、
より好ましくは1〜4個である。置換基の数は、
製造法によつて異なるが、数の異なるものが混合
している状態が多い。なお、フタロシアニン誘導
体として、例えばニトロ基およびシアノ基を有す
るもの、ニトロ基を有するフタロシアニン誘導体
およびシアノ基を有するフタロシアニン誘導体を
混合して使用してもよい。さらに、本発明のフタ
ロシアニン誘導体以外のフタロシアニン誘導体を
一部併用することもできる。 また、フタロシアニン誘導体のフタロシアニン
としては無金属フタロシアニンまたは銅,ニツケ
ル,コバルト,鉄,ナトリウム,リチウム,カル
シウム,マグネシウム,アルミニウム等の金属フ
タロシアニンである。フタロシアニンとフタロシ
アニン誘導体との組成割合は、フタロシアニン
100重量部に対し、フタロシアニン誘導体が0.01
〜20重量部である。好ましくはフタロシアニン誘
導体を0.1〜5重量部である。0.01重量部未満で
は十分な感度が得られず、また、20重量部を超え
ると、暗減衰率が増大し実用に供しえない。 次に、フタロシアニンおよびフタロシアニン誘
導体の製造方法につき、代表的な例を挙げる。ま
ずフタロジニトリルおよびもしくはニトロ基やシ
アノ基によつて置換されたフタロジニトリルと金
属塩の存在下または不存在下、アンモニアアルコ
ラートのような強塩基触媒とともに、アルコール
等の有機溶媒中で加熱するニトリル法、無水フタ
ル酸およびもしくはニトロ基やシアノ基によつて
置換した無水フタル酸,尿素,金属塩をモリブデ
ン酸,アンモニウム等を触媒として溶媒の存在下
もしくは不存在下に加熱する方法がある。その
他、アミノイミノイソインドレニン等を用いる方
法でもよい。 本発明に用いられるフタロシアニンと塩を形成
し得る無機酸としては、硫酸,オルトリン酸,ピ
ロリン酸,クロロスルホン酸,塩基,ヨウ化水素
酸,フツ化水素酸,臭化水素酸等が用いられる。
これら無機酸はフタロシアニンのアシツドペース
テイング法、アシツドスラリー法等の従来より知
られている方法に使用されているものが用いられ
る。また、方法としても、従来より知られている
方法が適用される。例えば、フタロシアニンを上
記の無機酸に溶解し、その後、水等に溶液を注入
する方法(アシツドペーステイング法)、フタロ
シアニンの無機酸塩スラリーとし、水等に注入す
る方法(アシツドスラリー法)、あるいはフタロ
シアニンの無機酸塩をアンモニアガス等の塩基性
物質によつて塩を分解し、フタロシアニンを析出
させる方法等がある。 以上のようにして得られた電荷発生材料を、導
電性支持体上に、または電荷輸送層上に、結着剤
樹脂と共に被覆手段により電荷発生層を形成す
る、溶剤と共に被覆手段により電荷発生層を形成
する、あるいは蒸着法、スパツタリング法等によ
り電荷発生層を形成することができる。なお、後
2者の方法では保護層をさらに設ける方法以外
は、導電性支持体/電荷発生層/電荷輸送層の積
層順が好ましい。 電荷発生層を結着剤樹脂と共に形成する場合、
結着剤樹脂,溶剤等と共に、ボールミル,アトラ
イター等の混練分散機で均一に分散させ、導電性
支持体上に塗布して、電荷発生層を形成する。 結着剤樹脂としてはメラミン樹脂,エポキシ樹
脂,ケイ素樹脂,ポリウレタン樹脂,ポリエステ
ル樹脂,アルキツド樹脂,アクリル樹脂,キシレ
ン樹脂,塩化ビニル−酢酸ビニル共重合体樹脂,
ポリカーボネート樹脂,繊維素誘導体などの体積
固有抵抗が10Ωcm以上の絶縁性を有する結着剤樹
脂、あるいはポリビニルカルバゾール等の結着剤
樹脂である。 この電荷発生材料、結着剤樹脂等を含む組成物
を電子写真感光体に通常用いられるアルミニウム
板、導電処理した紙、プラスチツクフイルムなど
の導電性支持体上に塗布し、感光層を形成する。
塗布方法としては、必要ならば組成物に溶剤を加
えて粘度を調整し、エアードクターコーター,ブ
レードコーター,ロツドコーター,リバースロー
ルコーター,スプレーコーター,ホツトコータ
ー,スクイーズコーター,グラビアコーター等の
塗布方式で被膜形成を行う。塗布後、必要に応じ
て適当な乾燥を行う。 また本発明による電荷発生層は、樹脂/電荷発
生材料が重量比で1以上であり、例えば、酸化亜
鉛を用いた感光体の場合に比べ樹脂量が多く、被
膜の物理的強度があり、可撓性に富む。また導電
性支持体との接着力が大きい、耐湿性が良好であ
る、経時変化が少ない、毒性上の問題がない、製
造が容易であり安価である等の実用上優れた特徴
を持つ。 電荷発生層の厚さは、0.01〜10μm程度であり、
蒸着法、スパツタリング法以外では、0.5〜10μm
程度あり、蒸着法等では0.01〜2μm程度である。 電荷発生層上に積層する電荷輸送層は、電荷発
生層で発生した電荷を感光体表面まで移動させる
層であり、電荷発生層の感光領域の光に対して透
明であることが望ましく、電荷輸送材料単独また
はこれを樹脂中に分散、溶解させた形で電荷発生
層の上または導電性支持体上に形成される。単独
電荷輸送材料としてはポリビニルカルバゾールお
よびその誘導体、あるいはセレン蒸着膜等も使用
できる。一方樹脂中に分散、溶解させる場合に
は、樹脂としてポリカーボネート,ポリエステル
等を使用でき、このときの樹脂に対する電荷輸送
材料の重量比は0.1〜0.8望ましくは0.3〜0.6とす
ることが適当である。また、電荷輸送層の厚さは
特に限定されないが、通常5〜50μmとすること
が適当である。 本発明における電荷輸送材料としては、例えば
カルバゾール,N−エチルカルバゾール,N−ビ
ニルカルバゾール,N−イソプロピルカルバゾー
ル,N−フエニルカルバゾール,テトラセン,ク
リセン,ピレン,ペリレン,2−フエニルナフタ
レン,アザピレン,2.3−ベンゾクリセン,3.4−
ベンゾピレン,フルオレン,1.2−ベンゾフルオ
レン,2.3−ベンゾフルオレン,4−(2−フルオ
レニルアゾ)レゾルシノール,4−(2−フルオ
レニルアゾ)m−クレゾール,2−P−アニソー
ルアミノフルオレン,P−ジエチルアミノ−アゾ
ベンゼン,1−(2−チアゾリルアゾ)−2−ナフ
トール,4−アニソールアミノアゾベンゼン,カ
ジオン,N,N−ジメチル−P−フエニルアゾア
ニリン,P−(ジメチルアミノ)スチルベン,1.4
−ビス(2−メチルスチリル)ベンゼン,9−
(4−ジエチルアミノスチリル)アントラセン,
2.5−ビス(4−ジエチルアミノフエノール)−
1.3.5−オキサジアゾール,1−フエニル−3−
(P−ジエチルアミノスチリル)−5−(P−ジエ
チルアミノフエニル)ピラゾリン,1−フエニル
−3−メチル−5−ピラゾロンおよび2−(m−
ナフチル)−3−フエニルオキサゾール,P−ジ
エチルアミノベンズアルデヒド−(ジフエニルヒ
ドラゾン)等を挙げることができる。 また、樹脂(結着剤)としては、ポリ塩化ビニ
ル,塩化ビニル−酢酸ビニル共重合体,ポリカー
ボネート,ポリスチレン,スチレン−ブタジエン
共重合体,ポリエステル,ポリビニルカルバゾー
ル,ポリウレタン,エポキシ樹脂,フエノキシ樹
脂,ポリアミド,アクリル樹脂およびシリコーン
樹脂等を挙げることができる。 本発明において、電荷発生層およびまたは電荷
輸送層に、必要に応じて、ε型フタロシアニン、
β型フタロシアニン,フタロシアニン以外の光導
電体素子、あるいは増感剤、その他の添加剤を加
えることができる。 本発明の電子写真感光体は印刷版作製用の電子
写真体としても使用することができる。 本発明の電子写真感光体はインダクシヨン効果
が減少していることにより階調性が良好となり、
感度にも優れ、さらに導電性支持体/電荷発生
層/電荷輸送層の構成では特に帯電、露光などの
プロセス繰り返しに伴う疲労現象が改善されると
いう利点もある。 以下、実施例および比較例により本発明を説明
する。例中「部」とは重量部を示す。 実施例 1 銅フタロシアニン40部、モノニトロ銅フタロシ
アニン1部を98%濃硫酸500部に十分撹拌しなが
ら溶解する。溶解した液を水1000部に十分撹拌し
ながら注入し、銅フタロシアニン,モノニトロ銅
フタロシアニン組成物を析出させた後、ロ過・水
洗し、減圧下120℃で乾燥した。 この組成物10部、アクリルポリオール(武田薬
品工業(株)製)36部、エポキシ樹脂(シエル化学社
製)5部およびメチルエチルケトン:セロソルブ
アセテート(1:1)50部からなる組成物をボー
ルミルにより、24時間混練して、光導電性塗料を
調整し、この塗料をアルミニウム支持体上に約
1μとなるように塗布し、電荷発生層を形成した。 次にポリカーボネート樹脂(帝人化成製)10
部、ポリエステル樹脂(グツドイヤー製)3部を
テトラヒドロフランおよびトルエン溶媒100部で
混合した。溶媒の重量比は9:1である。次にp
−ジエチルアミノベンズアルデヒド−(ジフエニ
ルヒドラゾン)9部をシリコンオイル0.02部と共
に添加した。この液を電荷発生層の上に約15μと
なるように塗布し、80℃で乾燥して電荷輸送層を
形成し、積層感光体を得た。 実施例 2 無金属フタロシアニン30部、ジニトロ銅フタロ
シアニン0.5部を98%濃硫酸500部に十分撹拌しな
がら溶解する。溶解した液を水3000部に注入しフ
タロシアニン系組成物を析出させた後、ロ過・水
洗し、減圧下120℃で乾燥する。この組成物5部
と熱可塑性アクリル樹脂OXL−97(三井東圧製)
20重量部、酢酸ブチル:セロソルブアセテート
(1:1)30部からなる組成物をボールミルによ
り24時間混練して光導電性塗料を調整し、この塗
料をアルミニウム支持体上に約1μとなるように
塗布し、電荷発生層を形成した。 次にポリカーボネート樹脂(帝人化成製)10
部、ポリエステル樹脂(グツドイヤー製)5部、
アクリル樹脂(三菱化成製)5部をテトラヒドロ
フラン:トルエン(9:1)150部で溶解させた。
次にこの中に2,5−ビス(4ジエチルアミノフ
エニル)1,3,4−オキサジアゾール12部をシ
リコンオイル0.02部と共に添加した。この液を電
荷発生層上に約15μとなるよう塗布し、80℃で乾
燥し、電荷輸送層を形成し、積層型感光体を得
た。 実施例 3 実施例2の電荷輸送層形成において、2,5−
ビス(4−ジエチルアミノフエニル)1,3,4
−オキサジアゾールのかわりに1−フエニル−3
−(p−ジエチルアミノスチリル)−5−(p−ジ
エチルアミノフエニル)−2−ピラゾリンを添加
したこと以外は実施例2と全く同様の方法で感光
体を作製した。 比較例 1 β型銅フタロシアニン10部と熱硬化性アクリル
樹脂32部、メラミン樹脂8部および酢酸ブチル:
セロソルブアセテート(1:1)50部からなる組
成物をボールミルにより24時間混練して光導電性
塗料を調整し、この塗料をアルミニウム支持体上
に約1μとなるように塗布し、電荷発生層を形成
した。 次に、実施例1の電荷輸送層と同様にして、電
荷発生層の上に約15μとなるよう塗布し、80℃で
乾燥し、電荷輸送層を形成し、積層型感光体を得
た。 比較例 2 比較例の処方の中からβ型銅フタロシアニンを
無金属フタロシアニンにかえた以外は比較例1と
全く同様の方法で感光体を作成した。 次に以上の感光体を市販のカールソン方式電子
写真複写機を用いて−6.5KVのコロナ帯電を0.2
秒間行つた時の表面電位(V)および各Vが1/2にな
るに要する露光量(E1/2)を測定し、次表の結
果を得た。
The present invention relates to an electrophotographic photoreceptor comprising a charge generation layer and a charge transport layer formed on a conductive support. Generally, in electrophotography, like the xerography method, a photoreceptor in which a photoconductor element such as selenium or cadmium sulfide is formed into a thin film on a metal drum is charged in a dark place, and a light image is irradiated (exposed). After forming an electrostatic latent image, a visible image is created with toner (development), and this is transferred and fixed onto paper, etc., or a photoconductive layer (photosensitive layer) is placed on paper as in the electrofax method. The photoreceptor is charged,
There is a method of obtaining a permanent visible image on the photoconductive layer by exposure, development and fixing. Inorganic compounds that are currently widely used as photoconductor materials for electrophotographic photoreceptors include amorphous selenium, cadmium sulfide, zinc sulfide, and the like. Amorphous selenium has good properties as a photoconductor material, but it is difficult to manufacture because it must be manufactured by vapor deposition, and the vapor-deposited film is not flexible and is highly toxic, so it must be handled with care. However, it also has the disadvantage of being expensive. Cadmium sulfide, zinc oxide is used in the form of a photoconductive layer dispersed in a binder resin, with a resin/photoconductor material weight ratio of 0.2.
Practical sensitivity cannot be obtained unless it is ~0.3 or less, and therefore it has drawbacks in mechanical properties such as flexibility, smoothness, hardness, tensile strength, and abrasion resistance. Therefore, it cannot withstand repeated use as it is. Hygiene issues with cadmium sulfide also need to be considered. On the other hand, polyvinylcarbazole (PVK), phthalocyanine, etc. are known as organic compounds. Although these photoconductor materials have excellent flexibility and processability, they do not have sufficient electrophotographic sensitivity for practical use when used alone, and they can be improved by combining chemical sensitization and optical sensitization. It becomes sensitized. Chemical sensitizers include polycyclic or heterocyclic nitro compounds such as 2,4,7-trinitro-9-fluorenone (TNF) and 2,4,5,7-tetranitro-9-fluorenone (TENF), anthraquinone, etc. quinones, and nitrile compounds such as tetracyanoethylene are known. Furthermore, xanthene dyes and quinoline dyes are known as optical sensitizers. However, if these substances are added to an electrophotographic photoreceptor until a practical level of sensitivity is obtained, these substances themselves have problems with charging resistance, light resistance, etc., and fatigue phenomena due to continuous charging and exposure to light will be significant. , there are practical problems. Further, as chemical sensitizers, TNF and TENF have particularly excellent sensitizing effects, and are actually often used for organic photoconductors and the like. However, these substances are expensive, and in order to obtain the sensitivity required for practical use, adding large amounts of these substances results in
Photoreceptors are not only expensive, but also have hygienic problems, and their use is questionable. In addition, some studies are also considering methods of using phthalocyanine derivatives for phthalocyanine.
This method requires a strong mechanical mixing treatment, and it is true that this method allows phthalocyanine and phthalocyanine derivative to be mixed uniformly, resulting in an electrophotographic photoreceptor with excellent electrophotographic properties. The mechanical mixing process, which lasts for quite a long time, requires a great deal of effort, and the implementation of this method is subject to significant industrial constraints. Furthermore, it can be seen that the physical properties required for an electrophotographic photoreceptor are not necessarily fully satisfied. On the other hand, various means for forming a charge generation layer and a charge transport layer on a dielectric support have been studied as a function-separated layered photoreceptor. Known laminated photoreceptors include those in which a charge generation layer/charge transport layer is formed on a dielectric support, or a charge generation layer/charge transport layer is formed by changing the lamination order. This laminated photoreceptor has the advantage that the induction effect caused by the trapping of generated charges, which is generally observed in single-layer photoreceptors, is reduced and the gradation is improved. The present invention provides a functionally separated laminated photoreceptor which has excellent electrophotographic properties such as sensitivity as well as gradation by using a specific phthalocyanine-based charge generating material as a charge generating layer. That is, 100 parts by weight of phthalocyanine and 0.01 parts by weight of a phthalocyanine derivative in which the benzene nucleus of the phthalocyanine molecule is substituted with at least one electron-withdrawing group selected from a nitro group, a cyano group, a halogen atom, a sulfone group, and a carboxyl group.
A layer containing a charge generation material (charge generation layer) and a charge transport layer obtained by mixing ~20 parts by weight with an inorganic acid capable of forming a salt with phthalocyanine and precipitating it with water or a basic substance. This is an electrophotographic photoreceptor formed on a conductive support. The phthalocyanine according to the present invention is a metal-free phthalocyanine, a metal phthalocyanine, or a mixture thereof. The metals of metal phthalocyanine include copper, silver, beryllium, magnesium, calcium, zinc, cadmium, barium,
Mercury, aluminum, gallium, indium, lanthanum, neodymium, samarium, europium,
Gadolinium, dysprosium, holmium, erbium, thulium, ytterbium, lutetium, titanium, tin, hafnium, lead, thorium, vanadium, antimony, chromium, molybdenum, uranium, manganese, iron, cobalt, nickel, rhodium, palladium, osmium, and Platinum et al. Furthermore, the central core of the phthalocyanine may not be a metal atom, but a metal halide having a valence of 3 or more. Metal-free phthalocyanines and metal phthalocyanines such as copper, cobalt, lead, and zinc are preferred. Furthermore, it may be a low halogenated phthalocyanine. Note that phthalocyanine is a compound well known as a pigment, but in the present invention, phthalocyanine obtained by any manufacturing method may be used. Of course, pigmented phthalocyanine may also be used. The phthalocyanine derivative according to the present invention is one in which the benzene nucleus of the phthalocyanine molecule is substituted with at least one electron-withdrawing group selected from a nitro group, a cyano group, a halogen atom, a sulfone group, and a carboxyl group. This phthalocyanine derivative can be obtained by using phthalonitrile, phthalic acid, phthalic anhydride, or phthalimide substituted with the above substituents as the raw material for phthalocyanine during phthalocyanine synthesis; It can be obtained by using both. The method for producing the phthalocyanine derivative is not particularly limited.
Further, the number of substituents in one molecule of the phthalocyanine derivative is 1 to 16, preferably 1 to 8,
More preferably, it is 1 to 4 pieces. The number of substituents is
Although it varies depending on the manufacturing method, different numbers are often mixed. As the phthalocyanine derivative, for example, one having a nitro group and a cyano group, a phthalocyanine derivative having a nitro group, and a phthalocyanine derivative having a cyano group may be used in combination. Furthermore, some phthalocyanine derivatives other than the phthalocyanine derivatives of the present invention can also be used in combination. The phthalocyanine derivatives include metal-free phthalocyanines or metal phthalocyanines such as copper, nickel, cobalt, iron, sodium, lithium, calcium, magnesium, and aluminum. The composition ratio of phthalocyanine and phthalocyanine derivative is phthalocyanine
Phthalocyanine derivative: 0.01 per 100 parts by weight
~20 parts by weight. Preferably, the amount of the phthalocyanine derivative is 0.1 to 5 parts by weight. If it is less than 0.01 parts by weight, sufficient sensitivity cannot be obtained, and if it exceeds 20 parts by weight, the dark decay rate increases and it cannot be put to practical use. Next, typical examples of methods for producing phthalocyanine and phthalocyanine derivatives will be given. First, phthalodinitrile and/or phthalodinitrile substituted with nitro or cyano groups are heated in the presence or absence of a metal salt in an organic solvent such as alcohol with a strong base catalyst such as ammonia alcoholate. There is a nitrile method, a method in which phthalic anhydride and/or phthalic anhydride substituted with a nitro group or a cyano group, urea, or a metal salt is heated in the presence or absence of a solvent using molybdic acid, ammonium, etc. as a catalyst. Alternatively, a method using aminoiminoisoindolenine or the like may be used. Examples of inorganic acids that can form salts with the phthalocyanine used in the present invention include sulfuric acid, orthophosphoric acid, pyrophosphoric acid, chlorosulfonic acid, bases, hydroiodic acid, hydrofluoric acid, and hydrobromic acid.
These inorganic acids are those used in conventionally known methods such as phthalocyanine acid pasting method and acid slurry method. Further, as a method, a conventionally known method is applied. For example, a method in which phthalocyanine is dissolved in the above-mentioned inorganic acid and then the solution is injected into water, etc. (acid pasting method), a method in which a slurry of an inorganic acid salt of phthalocyanine is made, and the solution is injected into water, etc. (acid slurry method). Alternatively, there is a method of decomposing an inorganic acid salt of phthalocyanine with a basic substance such as ammonia gas to precipitate phthalocyanine. The charge generating material obtained as described above is coated with a binder resin to form a charge generating layer on a conductive support or on a charge transport layer, or a charge generating layer is formed by coating with a solvent. Alternatively, the charge generation layer can be formed by a vapor deposition method, a sputtering method, or the like. In addition, in the latter two methods, except for the method in which a protective layer is further provided, the lamination order of conductive support/charge generation layer/charge transport layer is preferable. When forming the charge generation layer together with a binder resin,
The mixture is uniformly dispersed together with a binder resin, a solvent, etc. using a kneading/dispersing machine such as a ball mill or attritor, and then coated on a conductive support to form a charge generation layer. Binder resins include melamine resin, epoxy resin, silicone resin, polyurethane resin, polyester resin, alkyd resin, acrylic resin, xylene resin, vinyl chloride-vinyl acetate copolymer resin,
A binder resin having an insulating property with a volume resistivity of 10 Ωcm or more, such as polycarbonate resin or a cellulose derivative, or a binder resin such as polyvinyl carbazole. A composition containing this charge-generating material, binder resin, etc. is coated on a conductive support such as an aluminum plate, conductivity-treated paper, or plastic film, which is commonly used in electrophotographic photoreceptors, to form a photosensitive layer.
As for the coating method, if necessary, a solvent is added to the composition to adjust the viscosity, and a film is formed using an air doctor coater, blade coater, rod coater, reverse roll coater, spray coater, hot coater, squeeze coater, gravure coater, etc. I do. After coating, perform appropriate drying if necessary. In addition, the charge generation layer according to the present invention has a resin/charge generation material weight ratio of 1 or more, and has a larger amount of resin than in the case of a photoreceptor using zinc oxide, and the film has physical strength and is flexible. Highly flexible. It also has excellent practical characteristics such as high adhesive strength with the conductive support, good moisture resistance, little change over time, no toxicity problems, and easy production and low cost. The thickness of the charge generation layer is about 0.01 to 10 μm,
For methods other than vapor deposition and sputtering, 0.5 to 10 μm
The thickness is approximately 0.01 to 2 μm using vapor deposition methods. The charge transport layer laminated on the charge generation layer is a layer that transports the charges generated in the charge generation layer to the surface of the photoreceptor, and is preferably transparent to light from the photosensitive area of the charge generation layer. The material is formed alone or in the form of a dispersed or dissolved material in a resin on the charge generation layer or on the conductive support. As the sole charge transporting material, polyvinylcarbazole and its derivatives, or a selenium vapor-deposited film can also be used. On the other hand, when dispersing or dissolving in a resin, polycarbonate, polyester, etc. can be used as the resin, and in this case, the weight ratio of the charge transport material to the resin is preferably 0.1 to 0.8, preferably 0.3 to 0.6. Further, the thickness of the charge transport layer is not particularly limited, but it is usually appropriate to set it to 5 to 50 μm. Examples of the charge transport material in the present invention include carbazole, N-ethylcarbazole, N-vinylcarbazole, N-isopropylcarbazole, N-phenylcarbazole, tetracene, chrysene, pyrene, perylene, 2-phenylnaphthalene, azapyrene, 2.3 −Benzochrysene, 3.4−
Benzopyrene, fluorene, 1.2-benzofluorene, 2.3-benzofluorene, 4-(2-fluorenylazo)resorcinol, 4-(2-fluorenylazo)m-cresol, 2-P-anisoleaminofluorene, P-diethylamino-azobenzene, 1- (2-Thiazolylazo)-2-naphthol, 4-anisoleaminoazobenzene, cation, N,N-dimethyl-P-phenylazoaniline, P-(dimethylamino)stilbene, 1.4
-bis(2-methylstyryl)benzene, 9-
(4-diethylaminostyryl)anthracene,
2.5-bis(4-diethylaminophenol)-
1.3.5-Oxadiazole, 1-phenyl-3-
(P-diethylaminostyryl)-5-(P-diethylaminophenyl)pyrazoline, 1-phenyl-3-methyl-5-pyrazolone and 2-(m-
Examples include (naphthyl)-3-phenyloxazole, P-diethylaminobenzaldehyde (diphenylhydrazone), and the like. In addition, as the resin (binder), polyvinyl chloride, vinyl chloride-vinyl acetate copolymer, polycarbonate, polystyrene, styrene-butadiene copolymer, polyester, polyvinylcarbazole, polyurethane, epoxy resin, phenoxy resin, polyamide, Examples include acrylic resins and silicone resins. In the present invention, the charge generation layer and/or the charge transport layer may optionally contain ε-type phthalocyanine,
β-type phthalocyanine, photoconductor elements other than phthalocyanine, sensitizers, and other additives can be added. The electrophotographic photoreceptor of the present invention can also be used as an electrophotographic material for producing printing plates. The electrophotographic photoreceptor of the present invention has good gradation due to the reduced induction effect,
It has excellent sensitivity, and furthermore, the structure of conductive support/charge generation layer/charge transport layer has the advantage that fatigue phenomena associated with repeated processes such as charging and exposure are particularly improved. The present invention will be explained below with reference to Examples and Comparative Examples. In the examples, "parts" indicate parts by weight. Example 1 40 parts of copper phthalocyanine and 1 part of mononitro copper phthalocyanine are dissolved in 500 parts of 98% concentrated sulfuric acid with thorough stirring. The dissolved solution was poured into 1000 parts of water with sufficient stirring to precipitate the copper phthalocyanine and mononitro copper phthalocyanine compositions, which were then filtered, washed with water, and dried at 120°C under reduced pressure. A composition consisting of 10 parts of this composition, 36 parts of acrylic polyol (manufactured by Takeda Pharmaceutical Co., Ltd.), 5 parts of epoxy resin (manufactured by Ciel Chemical Co., Ltd.), and 50 parts of methyl ethyl ketone:cellosolve acetate (1:1) was mixed using a ball mill. By kneading for 24 hours, the photoconductive paint is prepared, and this paint is deposited on an aluminum support with approx.
It was applied to a thickness of 1μ to form a charge generation layer. Next, polycarbonate resin (manufactured by Teijin Kasei) 10
and 3 parts of polyester resin (manufactured by Gutdeyer) were mixed with tetrahydrofuran and 100 parts of toluene solvent. The weight ratio of solvents is 9:1. Then p
9 parts of -diethylaminobenzaldehyde-(diphenylhydrazone) were added together with 0.02 part of silicone oil. This liquid was applied onto the charge generation layer to a thickness of about 15 μm and dried at 80° C. to form a charge transport layer to obtain a laminated photoreceptor. Example 2 30 parts of metal-free phthalocyanine and 0.5 part of dinitrocopper phthalocyanine are dissolved in 500 parts of 98% concentrated sulfuric acid with thorough stirring. The dissolved solution is poured into 3000 parts of water to precipitate the phthalocyanine composition, which is then filtered, washed with water, and dried at 120°C under reduced pressure. 5 parts of this composition and thermoplastic acrylic resin OXL-97 (manufactured by Mitsui Toatsu)
A photoconductive paint was prepared by kneading a composition consisting of 20 parts by weight and 30 parts of butyl acetate:cellosolve acetate (1:1) in a ball mill for 24 hours, and this paint was spread on an aluminum support to a thickness of about 1μ. A charge generation layer was formed. Next, polycarbonate resin (manufactured by Teijin Kasei) 10
5 parts of polyester resin (manufactured by Gutsdoyer),
Five parts of acrylic resin (manufactured by Mitsubishi Kasei) was dissolved in 150 parts of tetrahydrofuran:toluene (9:1).
Next, 12 parts of 2,5-bis(4-diethylaminophenyl) 1,3,4-oxadiazole was added to this together with 0.02 part of silicone oil. This liquid was coated on the charge generation layer to a thickness of about 15 μm and dried at 80° C. to form a charge transport layer to obtain a laminated photoreceptor. Example 3 In forming the charge transport layer of Example 2, 2,5-
Bis(4-diethylaminophenyl)1,3,4
-1-phenyl-3 instead of oxadiazole
A photoreceptor was prepared in exactly the same manner as in Example 2 except that -(p-diethylaminostyryl)-5-(p-diethylaminophenyl)-2-pyrazoline was added. Comparative Example 1 10 parts of β-type copper phthalocyanine, 32 parts of thermosetting acrylic resin, 8 parts of melamine resin, and butyl acetate:
A photoconductive paint was prepared by kneading a composition consisting of 50 parts of cellosolve acetate (1:1) in a ball mill for 24 hours, and this paint was coated on an aluminum support to a thickness of approximately 1μ to form a charge generating layer. Formed. Next, in the same manner as the charge transport layer of Example 1, it was coated on the charge generation layer to a thickness of about 15 μm and dried at 80° C. to form a charge transport layer to obtain a laminated photoreceptor. Comparative Example 2 A photoreceptor was prepared in exactly the same manner as in Comparative Example 1, except that β-type copper phthalocyanine was replaced with metal-free phthalocyanine in the formulation of Comparative Example. Next, the above photoconductor was corona charged at -6.5KV by 0.2 using a commercially available Carlson electrophotographic copying machine.
The surface potential (V) and the amount of exposure required to reduce each V to 1/2 (E1/2) were measured, and the results shown in the following table were obtained.

【表】 以上の結果からわかるように、極めて高感度で
あり、又、フタロシアニン顔料の特徴である長波
長域の感度を保持し、本発明の電子写真感光体
は、一般の複写機や半導体レーザー(λ=750〜
850μm)を光源とするプリンター等にも使用出
来る優れた感光体である。
[Table] As can be seen from the above results, the electrophotographic photoreceptor of the present invention has extremely high sensitivity and maintains sensitivity in the long wavelength range, which is a characteristic of phthalocyanine pigments. (λ=750~
This is an excellent photoreceptor that can also be used in printers that use a light source of 850 μm).

Claims (1)

【特許請求の範囲】[Claims] 1 導電性支持体上に、フタロシアニン100重量
部および、フタロシアニン分子のベンゼン核がニ
トロ基、シアノ基、ハロゲン原子、スルホン基お
よびカルボキシル基から選ばれる少なくとも1種
の電子吸引性基によつて置換されたフタロシアニ
ン誘導体0.01〜20重量部を、フタロシアニンと塩
を形成し得る無機酸と混合した後、水もしくは塩
基製物質によつて析出せしめて得られた電荷発生
物質を含む層、および電荷輸送層を形成してなる
ことを特徴とする電子写真感光体。
1 On a conductive support, 100 parts by weight of phthalocyanine and the benzene nucleus of the phthalocyanine molecule are substituted with at least one electron-withdrawing group selected from a nitro group, a cyano group, a halogen atom, a sulfone group, and a carboxyl group. A layer containing a charge-generating substance and a charge-transporting layer are obtained by mixing 0.01 to 20 parts by weight of the phthalocyanine derivative with an inorganic acid capable of forming a salt with the phthalocyanine, and precipitating the mixture with water or a basic substance. An electrophotographic photoreceptor characterized in that it is formed by forming.
JP58157912A 1983-08-31 1983-08-31 Electrophotographic sensitive body Granted JPS6050539A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP58157912A JPS6050539A (en) 1983-08-31 1983-08-31 Electrophotographic sensitive body
CA000461573A CA1252331A (en) 1983-08-31 1984-08-22 Electrophotographic plates
GB08421718A GB2145835B (en) 1983-08-31 1984-08-28 Electrophotographic plates
FR8413345A FR2551561B1 (en) 1983-08-31 1984-08-29 ELECTROPHOTOGRAPHIC PHOTOGRAPHS

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58157912A JPS6050539A (en) 1983-08-31 1983-08-31 Electrophotographic sensitive body

Publications (2)

Publication Number Publication Date
JPS6050539A JPS6050539A (en) 1985-03-20
JPH0358507B2 true JPH0358507B2 (en) 1991-09-05

Family

ID=15660164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58157912A Granted JPS6050539A (en) 1983-08-31 1983-08-31 Electrophotographic sensitive body

Country Status (4)

Country Link
JP (1) JPS6050539A (en)
CA (1) CA1252331A (en)
FR (1) FR2551561B1 (en)
GB (1) GB2145835B (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3850697T2 (en) * 1987-04-22 1994-12-15 Hitachi Chemical Co Ltd Electrophotographic plate.
US5200286A (en) * 1987-06-04 1993-04-06 Fuji Xerox Co., Ltd. Electrophotographic photoreceptor
JPH01169454A (en) * 1987-12-25 1989-07-04 Koichi Kinoshita Photosensitive body for digital light input
EP0348889B1 (en) * 1988-06-27 1995-12-13 Mitsubishi Chemical Corporation Photoconductive material and process for producing the same
US5112711A (en) * 1990-06-05 1992-05-12 Eastman Kodak Company Electrophotographic recording elements containing a combination of titanyl phthalocyanine-type pigments
US5283146A (en) * 1991-07-22 1994-02-01 Mitsubishi Petrochemical Co., Ltd. Photoconductive phthalocyanine composition
JP3119717B2 (en) * 1992-05-11 2000-12-25 三菱化学株式会社 Electrophotographic photoreceptor
EP0573084B1 (en) * 1992-06-04 1997-04-09 Agfa-Gevaert N.V. Electrophotographic recording material containing phthalocyanines
WO1993024865A1 (en) * 1992-06-04 1993-12-09 Agfa-Gevaert Naamloze Vennootschap Electrophotographic material containing particular phthalocyanines
ES2092427B1 (en) * 1993-05-04 1997-10-16 Univ Pais Vasco PROCEDURE FOR OBTAINING AN ANTI-STATIC POLYMER BASED ON POLY (N-VINYL CARBAZOLE)
US5595846A (en) * 1994-06-22 1997-01-21 Mitsubishi Chemical Corporation Phthalocyanine mixed crystal, production method thereof,and electrophotographic photoreceptor
US6720039B1 (en) 1997-02-19 2004-04-13 Dai Nippon Printing Co., Ltd. Liquid crystalline compounds and process for producing the same
JP4116109B2 (en) * 1997-02-19 2008-07-09 大日本印刷株式会社 Composition for electroluminescence device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58166355A (en) * 1982-03-29 1983-10-01 Toyo Ink Mfg Co Ltd Electrophotographic receptor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1127323B (en) * 1953-08-29 1962-04-12 Basf Ag Solvent-stable mixture of copper phthalocyanine pigment dyes of the ª‡ form
JPS494338B1 (en) * 1964-06-15 1974-01-31
US3956524A (en) * 1974-12-04 1976-05-11 Xerox Corporation Method for the preparation of electrostatographic photoreceptors
CA1095309A (en) * 1975-09-22 1981-02-10 Philip O. Sliva Photosensitive device with organic topcoat containing 2,4,7-trinitro-9-fluorenone dispersed in poly (vinylcarbazole)

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58166355A (en) * 1982-03-29 1983-10-01 Toyo Ink Mfg Co Ltd Electrophotographic receptor

Also Published As

Publication number Publication date
GB2145835B (en) 1986-08-28
JPS6050539A (en) 1985-03-20
FR2551561B1 (en) 1988-09-16
GB8421718D0 (en) 1984-10-03
CA1252331A (en) 1989-04-11
FR2551561A1 (en) 1985-03-08
GB2145835A (en) 1985-04-03

Similar Documents

Publication Publication Date Title
JPH0513498B2 (en)
JPH0358507B2 (en)
JPH0435749B2 (en)
JP2679082B2 (en) Photoconductor
JP2687235B2 (en) Electrophotographic photoreceptor
JPS6329736B2 (en)
JP3644972B2 (en) Electrophotographic photoreceptor
JPH0823699B2 (en) Electrophotographic photoreceptor
JPS58178363A (en) Electrophotographic receptor
JPS6073541A (en) Photoconductive material
JP2788128B2 (en) Electrophotographic photoreceptor
JP2615805B2 (en) Photoconductor
JP2788127B2 (en) Electrophotographic photoreceptor
JP3462931B2 (en) Phthalocyanine composition and electrophotographic photoreceptor using the same
JP3336749B2 (en) Electrophotographic photoreceptor
JPS60220350A (en) Electrophotographic sensitive body
JP2615760B2 (en) Photoconductor
JP3336744B2 (en) Electrophotographic photoreceptor
JPS59105649A (en) Photoconductive material
JP4018791B2 (en) Electrophotographic apparatus and electrophotographic method
JPS61121058A (en) Electrophotographic sensitive body
JPS62201451A (en) Electrophotographic sensitive body
JPH0356634B2 (en)
JPH0420181B2 (en)
JPH0260175B2 (en)