JPH0577846B2 - - Google Patents

Info

Publication number
JPH0577846B2
JPH0577846B2 JP6712285A JP6712285A JPH0577846B2 JP H0577846 B2 JPH0577846 B2 JP H0577846B2 JP 6712285 A JP6712285 A JP 6712285A JP 6712285 A JP6712285 A JP 6712285A JP H0577846 B2 JPH0577846 B2 JP H0577846B2
Authority
JP
Japan
Prior art keywords
intake
valve
passage
passages
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP6712285A
Other languages
Japanese (ja)
Other versions
JPS61226514A (en
Inventor
Koji Oonishi
Tetsuo Hiraoka
Kazuhiko Ueda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP6712285A priority Critical patent/JPS61226514A/en
Publication of JPS61226514A publication Critical patent/JPS61226514A/en
Publication of JPH0577846B2 publication Critical patent/JPH0577846B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Characterised By The Charging Evacuation (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、多気筒エンジン、特に吸気の動的効
果を利用して吸気充填効率を高めるようにしたエ
ンジンの吸気装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an intake system for a multi-cylinder engine, particularly an engine that utilizes the dynamic effect of intake air to increase intake air filling efficiency.

(従来技術) 近年、自動車用等のエンジンにおいては、空気
の慣性効果や共鳴効果等の動的効果を利用して吸
気充填効率ないし出力の向上を図ることが試みら
れているが、これらの動的効果のうち、共鳴効果
を多気筒エンジンにおいて利用する場合は、各気
筒が吸気順序が隣り合わないもの同志に2つの気
筒群に分けられると共に、両気筒群の気筒に夫々
独立吸気通路を介して接続される2つの吸気集合
部が設けられる。これらの吸気集合部は、特定振
動数の吸気振動に対して共鳴する共鳴箱もしくは
共鳴管として作用し、その共鳴作用によつて生じ
る大きな正圧波により対応する気筒への吸気の押
し込み作用が得られる。
(Prior art) In recent years, in automobile engines, attempts have been made to improve intake air filling efficiency or output by utilizing dynamic effects such as air inertia effect and resonance effect. When using the resonance effect in a multi-cylinder engine, each cylinder is divided into two cylinder groups with non-adjacent intake orders, and the cylinders in both cylinder groups are connected to each other through independent intake passages. Two intake collecting sections are provided which are connected together. These intake collecting parts act as resonance boxes or resonance tubes that resonate with intake vibrations of a specific frequency, and the large positive pressure waves generated by the resonance effect push intake air into the corresponding cylinders. .

然して、上記のような構成によれば、吸気振動
の振動数が容積と管長とによつて定まる吸気集合
部の固有振動数に一致する特定のエンジン回転域
においてしか共鳴効果が得られないことになる。
そこで、例えば実開昭59−148425号公報に示され
ているように、2つの吸気集合部を上流側で合流
させる一方、両吸気集合部の中間部に両集合部を
連通させる連通部を設け、且つ該連通部を開閉す
る開閉弁を備えて、該弁の開閉により両空気集合
部の固有振動数が高低2段階に切換えられるよう
にすることが行われる。つまり、両吸気集合部が
上流端でのみ合流する場合は管長が長くなつて固
有振動数が低くなるので、エンジンの低回転域で
共鳴効果が得られ、また、上記開閉弁を開いて両
吸気集合部を中間部で連通させると、管長が短く
なつて固有振動数が高くなるので、エンジンの高
回転域で共鳴効果が得られることになるのであ
る。従つて、上記開閉弁をエンジンの回転領域に
応じて開閉制御すれば、複数のエンジン回転域で
吸気充填効率ないし出力が向上することになる。
However, with the above configuration, the resonance effect can only be obtained in a specific engine rotation range where the frequency of intake vibration matches the natural frequency of the intake gathering part determined by the volume and pipe length. Become.
Therefore, as shown in Japanese Utility Model Application Publication No. 59-148425, for example, two intake collecting parts are merged on the upstream side, while a communication part is provided in the middle of both intake collecting parts to communicate the two collecting parts. , and an on-off valve that opens and closes the communication portion, so that the natural frequency of both air gathering portions can be switched between two high and low levels by opening and closing the valve. In other words, when both intake air gathering parts meet only at the upstream end, the pipe length becomes longer and the natural frequency becomes lower, so a resonance effect can be obtained in the low rotational speed range of the engine. If the collecting parts are connected in the middle, the pipe length will be shortened and the natural frequency will be high, resulting in a resonance effect in the high engine speed range. Therefore, if the opening/closing valve is controlled to open and close according to the rotational range of the engine, the intake air filling efficiency or the output can be improved in a plurality of engine rotational ranges.

一方、エンジンの吸気系には、排気ガス中の有
害成分であるNOx(窒素酸化物)を低減させるた
めに排気系から一部の排気ガスが還流され、或い
はアイドル時における回転制御のためにスロツト
ルバルブをバイパスするバイパスエアが供給され
るが、これらの排気ガスやエアは各気筒に均等に
供給される必要がある。従つて、上記のように吸
気系に2つの気筒群に対応する2つの吸気集合部
が設けられている場合は、排気還流通路やバイパ
スエア通路等のデバイス通路を排気還流制御弁や
バイパスエア制御弁等の下流側で分岐し、その分
岐部を上記両吸気集合部に夫々接続することにな
るが、この場合、2つの吸気集合部がデバイス通
路の分岐部を介して互いに連通することになる。
そのため、特に高負荷時において両吸気集合部間
の連通部を開閉弁によつて遮断して、所定のエン
ジン回転域で共鳴効果を得ようとした時に、両吸
気集合部内の吸気振動が上記デバイス通路の分岐
部を介して互いに打ち消し合うことになり、その
結果、各吸気集合部における共鳴効果が半減さ
れ、当該エンジン回転域において所望の吸気充填
量が得られないことになる。
On the other hand, some exhaust gas is recirculated into the engine intake system from the exhaust system to reduce NOx (nitrogen oxides), which is a harmful component in exhaust gas, or a throttle valve is used to control rotation during idle. Bypass air is supplied to bypass the tutle valve, but these exhaust gases and air need to be evenly supplied to each cylinder. Therefore, when the intake system is provided with two intake collecting sections corresponding to two cylinder groups as described above, device passages such as exhaust recirculation passages and bypass air passages are connected to exhaust recirculation control valves and bypass air control valves. It branches on the downstream side of the valve, etc., and the branched parts are connected to both of the above-mentioned intake collecting parts, respectively. In this case, the two intake collecting parts communicate with each other via the branched part of the device passage. .
Therefore, when trying to obtain a resonance effect in a predetermined engine speed range by blocking the communication between the two intake air collection parts with an on-off valve, especially under high load, the intake vibrations within the two intake air collection parts are caused by the above-mentioned device. They cancel each other out through the branching portions of the passages, and as a result, the resonance effect at each intake gathering portion is halved, making it impossible to obtain the desired intake air filling amount in the relevant engine rotation range.

この問題に対しては、デバイス通路の分岐部の
管径を細くし且つ十分長くすることにより該分岐
部を介して両吸気集合部内の振動が互いに影響し
合うことを少なくし、或いは制御弁を有するデバ
イス通路を2つの吸気集合部に対応させて2系統
設ければよい。しかし、前者の場合は、排気ガス
或いはバイパスエア等の流量を確保する必要上管
径を余り細くすることはできず、また分岐部の管
長を長くするとデバイス通路上の制御弁が吸気系
から遠ざかつて制御の応答性が悪化することにな
る。また、後者の場合は、デバイス装置が複雑化
してコストが上昇すると共に、両系統の制御弁の
作動量が一致しないため排気ガス等の各気筒への
供給量が不均一になる惧れがある。
To solve this problem, the pipe diameter of the branch part of the device passage can be made thinner and sufficiently long to reduce the mutual influence of vibrations in both intake air collecting parts through the branch part, or the control valve can be Two systems of device passages may be provided corresponding to the two air intake collecting portions. However, in the former case, it is necessary to ensure the flow rate of exhaust gas or bypass air, so the pipe diameter cannot be made too small, and if the pipe length at the branch part is made long, the control valve on the device passage becomes distant from the intake system. As a result, control responsiveness deteriorates. In addition, in the latter case, the device equipment becomes complicated and costs increase, and since the operating amounts of the control valves in both systems do not match, there is a risk that the amount of exhaust gas etc. supplied to each cylinder may become uneven. .

(発明の目的) 本発明は、吸気系における共鳴効果を利用して
吸気充填効率を向上させるようにしたエンジン、
特に該吸気系に吸気順序が隣り合わない2つの気
筒群に対応させて2つの吸気集合部が設けられ、
且つ両吸気集合部間に設けられた連通部にエンジ
ンの回転域に応じて開閉する開閉弁が備えられた
多気筒エンジンにおいて、上記開閉弁を閉じて両
吸気集合部間の連通部を遮断した時に、両集合部
がデバイス通路の分岐路を介して互いに連通する
ことを防止する。これにより、特に高負荷時にお
いて、上記開閉弁が閉じられる所定のエンジン回
転域で両吸気集合部が所定振動数の吸気振動に対
して夫々、確実に共鳴するようにして、吸気充填
効率ないしエンジン出力が効果的に向上されるよ
うにすることを目的とする。
(Object of the Invention) The present invention provides an engine that improves intake air filling efficiency by utilizing a resonance effect in an intake system.
In particular, two intake collecting parts are provided in the intake system corresponding to two cylinder groups whose intake orders are not adjacent to each other,
In addition, in a multi-cylinder engine in which a communication portion provided between both intake air gathering portions is provided with an on-off valve that opens and closes depending on the rotation range of the engine, the on-off valve is closed to shut off the communication portion between both intake air gathering portions. At times, both collecting portions are prevented from communicating with each other via a branch path of the device passage. As a result, especially under high load, both intake collecting sections reliably resonate with intake vibrations of a predetermined frequency in a predetermined engine rotation range in which the on-off valve is closed, thereby improving the intake air filling efficiency or the engine speed. The purpose is to ensure that the output is effectively improved.

(発明の構成) 本発明に係る多気筒エンジンの吸気装置は、上
記目的達成のため次のように構成したことを特徴
とする。
(Structure of the Invention) The intake system for a multi-cylinder engine according to the present invention is characterized in that it is structured as follows in order to achieve the above object.

即ち、吸気順序が連続しない2つの気筒群に独
立の吸気通路を介して接続された2つの吸気集合
部と、両吸気集合部を連通させる連通路と、該連
通路を所定のエンジン回転域で閉じる開閉弁とを
有する多気筒エンジンの吸気装置において、制御
弁を有するデバイス通路を該制御弁の下流側で分
岐し、その分岐通路を上記両吸気集合部もしくは
その上流側に設けられる共鳴管に夫々接続すると
共に、上記開閉弁の閉時に両分岐通路相互間の連
通を阻止する遮断弁を備える。
That is, two intake collecting parts are connected to two cylinder groups whose intake order is not consecutive through independent intake passages, a communication passage connects both intake collecting parts, and the communication passage is connected in a predetermined engine rotation range. In an intake system for a multi-cylinder engine having a closed on-off valve, a device passage having a control valve is branched on the downstream side of the control valve, and the branch passage is connected to both the intake air gathering parts or a resonance pipe provided on the upstream side thereof. A cutoff valve is provided which connects the two branch passages to each other and blocks communication between the two branch passages when the on-off valve is closed.

上記デバイス通路は、例えば排気還流通路やア
イドル回転制御用のバイパスエア通路等であつ
て、これらの通路には、少なくともエンジンの高
負荷時には閉じられる排気還流制御弁或いはバイ
パスエア制御弁等が備えられている。従つて、高
負荷時においては、上記開閉弁が閉じられる所定
のエンジン回転域でデバイス通路上の制御弁及び
該デバイス通路における分岐通路間に備えられた
遮断弁が共に閉じることになり、2つの吸気集合
部の連通が完全に阻止される。これにより、高負
荷域における当該エンジン回転域において吸気集
合部が吸気振動に確実に共鳴することになる。
The device passage is, for example, an exhaust gas recirculation passage or a bypass air passage for idle rotation control, and these passages are provided with an exhaust gas recirculation control valve or a bypass air control valve that is closed at least when the engine is under high load. ing. Therefore, under high load, the control valve on the device passage and the cutoff valve provided between the branch passages in the device passage close together in the predetermined engine rotation range in which the on-off valve is closed. Communication of the intake air collecting section is completely blocked. As a result, the intake air gathering portion reliably resonates with the intake vibration in the engine rotation range in the high load range.

尚、排気還流或いはバイパスエアの供給等を行
う時は、上記デバイス通路上の制御弁及び分岐通
路間の遮断弁が開き、これにより排気ガス等が両
吸気集合部を介して各気筒に均等に分配供給され
ることになるが、排気還流或いはバイパスエアの
供給等を行う領域は、十分な吸気充填効率が要求
されないエンジンの低負荷域ないし中負荷域なの
で、上記遮断弁を開くことに伴つてデバイス通路
(分岐通路)を介して両吸気集合部が連通しても、
共鳴効果による吸気充填効率を向上作用に影響を
及ぼすことはない。
When performing exhaust gas recirculation or supplying bypass air, the control valve on the device passage and the cutoff valve between the branch passages are opened, so that the exhaust gas, etc. is distributed equally to each cylinder via both intake collecting parts. However, since the area where exhaust gas recirculation or bypass air is supplied is in the low to medium load area of the engine where sufficient intake air filling efficiency is not required, it is necessary to open the above shutoff valve. Even if both intake collecting parts communicate through a device passage (branch passage),
This does not affect the effect of improving the intake air filling efficiency due to the resonance effect.

(発明の効果) 以上のように本発明によれば、吸気順序が隣り
合わない2つの気筒群に対応させて吸気系に2つ
の吸気集合部が設けられ、両吸気集合部間を開閉
弁によつて遮断し或いは連通させることにより、
複数のエンジン回転域で共鳴効果が得られるよう
に構成され、且つ上記両吸気集合部もしくはその
上流側に設けられる共鳴管にデバイス通路の分岐
部が夫々接続される多気筒エンジンの吸気装置に
おいて、上記開閉弁を閉じた時に両吸気集合部が
デバイス通路を介して連通することが阻止され
て、両吸気集合部間が完全に遮断されることにな
る。これにより、特に高負荷域における開閉弁を
閉じる所定のエンジン回転域において、上記デバ
イス通路によつて両吸気集合部が連通することに
よる共鳴効果の低下が防止され、該回転域におい
て所要の充填効率向上効果ないし出力向上効果が
得られることになる。
(Effects of the Invention) As described above, according to the present invention, two intake collecting parts are provided in the intake system corresponding to two cylinder groups whose intake orders are not adjacent to each other, and an on-off valve is provided between the two intake collecting parts. By blocking or communicating,
In an intake system for a multi-cylinder engine, which is configured to obtain a resonance effect in a plurality of engine rotation ranges, and in which branch portions of a device passage are respectively connected to both of the intake collecting portions or resonance pipes provided upstream thereof, When the on-off valve is closed, communication between the two intake air collecting parts is prevented through the device passage, and the communication between the two intake air collecting parts is completely cut off. As a result, in a predetermined engine speed range in which the on-off valve is closed, especially in a high load range, a reduction in the resonance effect due to the communication between both intake air collecting parts through the device passage is prevented, and the required charging efficiency is achieved in that speed range. An improvement effect or an output improvement effect can be obtained.

(実施例) 以下、本発明の実施例について説明する。(Example) Examples of the present invention will be described below.

第1図に示すように、エンジン1は6つの気筒
1〜26を有し、これらの気筒21〜26が吸気順
序の隣り合わないもの同志を同じグループとして
2つの気筒群31,32にグループ分けされてい
る。即ち、吸気順序が例えば第1気筒21→第4
気筒24→第2気筒22→第5気筒25→第3気筒
3→第6気筒26の順であつて、換言すれば2つ
の気筒群31,32の気筒がオーバーラツプするこ
となく交互に吸気行程を行なうようになつてい
る。
As shown in FIG. 1, the engine 1 has six cylinders 2 1 to 2 6 , and these cylinders 2 1 to 2 6 are divided into two cylinder groups 3 1 in which cylinders that are not adjacent in the intake order are grouped into the same group. , 3 are grouped into 2 . That is, the intake order is, for example, first cylinder 2 1 → fourth cylinder
The order is cylinder 24 → second cylinder 22 → fifth cylinder 25 → third cylinder 23 → sixth cylinder 26 , in other words, the cylinders of the two cylinder groups 31 and 32 overlap. The intake strokes are performed alternately without any problems.

一方、上記各気筒21〜26に吸気を供給する吸
気装置4は、各気筒21〜26の吸気ポート51
6に下流端を夫々接続された独立の吸気通路61
〜66と、これらの独立吸気通路のうちの第1気
筒群31に対応する吸気通路61〜63の上流端が
接続された第1サージタンク71及び第2気筒群
2に対応する吸気通路64〜66の上流端が接続
された第2サージタンク72と、両サージタンク
1,72の上流側に設けられ且つ上流端が合流さ
れた第1、第2共鳴通路81,82と、エアクリー
ナ(図示せず)から導かれて第1、第2共鳴通路
1,82の合流部(分岐部)に接続された合流通
路9とで構成され、上記第1、第2共鳴通路81
2に連動して開閉動作する第1、第2スロツト
ルバルブ101,102が備えられている。ここ
で、第1サージタンク71と第1共鳴通路81、及
び第2サージタンク72と第2共鳴路82とによ
り、互いに独立した第1、第2共鳴空間が構成さ
れており、これらの共鳴空間がサージタンクの容
積Vと共鳴通路の長さLによつて定まる一定の固
有振動数fを有している。
On the other hand, the intake device 4 that supplies intake air to each of the cylinders 2 1 to 2 6 has intake ports 5 1 to 5 of each of the cylinders 2 1 to 2 6 .
Independent intake passages 6 1 whose downstream ends are respectively connected to 5 6
6 , and the upstream ends of the intake passages 61 to 63 corresponding to the first cylinder group 31 among these independent intake passages are connected to the first surge tank 71 and the second cylinder group 32. A second surge tank 7 2 to which the upstream ends of the corresponding intake passages 6 4 to 6 6 are connected, and first and second surge tanks provided upstream of both surge tanks 7 1 and 7 2 and whose upstream ends are joined together. It is composed of resonance passages 8 1 and 8 2 and a merging passage 9 led from an air cleaner (not shown) and connected to a merging part (branching part) of the first and second resonance passages 8 1 and 8 2 , The first and second resonance passages 8 1 ,
First and second throttle valves 10 1 and 10 2 are provided which open and close in conjunction with the throttle valve 8 2 . Here, the first surge tank 7 1 and the first resonance passage 8 1 and the second surge tank 7 2 and the second resonance passage 8 2 constitute mutually independent first and second resonance spaces, These resonance spaces have a constant natural frequency f determined by the volume V of the surge tank and the length L of the resonance passage.

また、上記第1、第2サージタンク71,72
間には両サージタンク71,72を連通させる比較
的短い連通路11が設けられていると共に、該連
通路11にこれを開閉する開閉弁12が備えられ
ている。そして、該開閉弁12を開いて連通路1
1を開通させれば、該連通路11の左右の半部1
1,112が上記第1、第2共鳴通路81,82
代つて、第1、第2サージタンク71、72と共に
第1、第2共鳴空間を形成するようになつてい
る。この場合に、共鳴管として作用する連通路1
1の各半部111,112の長さL′は上記第1、第
2共鳴通路81,82の長さLより短いので、この
場合における共鳴空間の固有振動数f′は上記の場
合より高くなる。
Further, a relatively short communication path 11 is provided between the first and second surge tanks 7 1 and 7 2 to communicate the surge tanks 7 1 and 7 2 , and a relatively short communication path 11 is provided between the first and second surge tanks 7 1 and 7 2 . An on-off valve 12 that opens and closes is provided. Then, open the on-off valve 12 to open the communication path 1.
1, the left and right halves 1 of the communication path 11
1 1 and 11 2 form first and second resonance spaces together with the first and second surge tanks 7 1 and 7 2 instead of the first and second resonance passages 8 1 and 8 2 . There is. In this case, the communication path 1 that acts as a resonance tube
Since the length L' of each half part 11 1 , 11 2 of 1 is shorter than the length L of the first and second resonance passages 8 1 , 8 2 , the natural frequency f' of the resonance space in this case is as follows. It will be higher than in the case of

更に、上記第1、第2サージタンク71,72
はデバイス通路として排気還流制御弁13が備え
られた排気還流通路14とアイドリング時用のバ
イパス制御弁15を備えたバイパスエア通路16
とが接続されている。これらの通路14,16
は、上記制御弁13,15の下流側で両通路1
4,16に共通の第1、第2分岐通路171,1
2に分岐され、両分岐通路171,172が第1、
第2サージタンク71,72に夫々接続されてい
る。つまり、排気還流通路14とバイパスエア通
路16とは、いずれも第1、第2分岐通路171
172を介して第1、第2サージタンク71,72
に連通されている。そして、この第1、第2分岐
通路171,172の合流部には両分岐通路171
172間を連通させ或いは遮断する遮断弁18が
備えられていると共に、この遮断弁18と上記連
通路11上の開閉弁12とが共通のアクチユエー
タ19によつて同時に閉じ且つ同時に開くように
構成されている。尚、このアクチユエータ19に
は図示しない制御装置からエンジンの運転領域に
応じた開閉制御信号が送出されるようになつてい
る。
Further, the first and second surge tanks 7 1 and 7 2 have an exhaust recirculation passage 14 equipped with an exhaust recirculation control valve 13 as a device passage, and a bypass air passage 16 equipped with a bypass control valve 15 for use during idling.
are connected. These passages 14, 16
are both passages 1 on the downstream side of the control valves 13 and 15.
4, 16 common first and second branch passages 17 1 , 1
7 2 , and both branch passages 17 1 and 17 2 are the first,
They are connected to second surge tanks 7 1 and 7 2 , respectively. In other words, the exhaust gas recirculation passage 14 and the bypass air passage 16 are both connected to the first and second branch passages 17 1 ,
17 2 via the first and second surge tanks 7 1 , 7 2
is communicated with. At the confluence of the first and second branch passages 17 1 and 17 2 , both branch passages 17 1 and 17 2 are connected.
17. A shutoff valve 18 is provided for communicating or shutting off between the two, and the shutoff valve 18 and the on-off valve 12 on the communication path 11 are configured to be closed and opened at the same time by a common actuator 19. has been done. It should be noted that an opening/closing control signal corresponding to the operating range of the engine is sent to the actuator 19 from a control device (not shown).

次に、上記実施例の作用を説明する。 Next, the operation of the above embodiment will be explained.

エンジン1の運転時には、図示しないエアクリ
ーナから吸入された吸気が吸気装置4の上流側の
合流通路4から第1、第2共鳴路81,82に分配
導入されると共に、夫々第1、第2スロツトルバ
ルブ101,102を経て第1、第2サージタンク
1,72に流入する。そして、この吸気は、第1
サージタンク71から独立吸気通路61〜63を通
つて第1気筒群31を構成する第1〜第3気筒21
〜23に、また第2サージタンク72から独立吸気
通路64〜66を通つて第2気筒群32を構成する
第4〜第6気筒24〜26に分配供給される。その
場合に、第1気筒群31を構成する3つの気筒21
〜23は気筒順序が隣り合わず、また第2気筒群
2を構成する3つの気筒24〜26も吸気順序が
隣り合わないから、両気筒群31,32の夫々にお
いては、当該吸気ポート51〜53又は54〜55
開閉に伴つて生じる圧力波が独立吸気通路61
3又は64〜66を通つて当該サージタンク71
は72に伝播された時に互いに打ち消し合うこと
がなく、これにより第1、第2サージタンク71
2内にエンジン回転数に応じたし同数の吸気振
動が発生する。そして、両サージタンク71,72
間の連通路11が開閉弁12によつて遮断されて
いて、両サージタンク71,72と第1、第2共鳴
通路81,82とによつて互いに独立した低固有振
動数fの2つの共鳴空間が形成されている時は、
エンジン1の低回転域で該共鳴空間と上記吸気振
動とが共鳴し、この共鳴によつて生じる大きな正
圧波により吸気充填効率が高められる。また、上
記開閉弁12が開いていて、第1、第2サージタ
ンク71,72と連通路11の左右の半部111
112とにより2つの高固有振動数f′の共鳴空間
が形成されている時は、エンジン1の高回転域で
該共鳴空間と吸気振動とが共鳴し、吸気充填効率
が高められることになる。つまり、高負荷時にお
いて開閉弁12に閉じれば、第3図に示すように
低回転域でピークaを有する出力トルク特性Aが
得られ、該開閉弁12を開けば高回転域でピーク
bを有する出力トルク特性Bが得られる。ここ
で、これらの特性A,Bにおいては、上記ピーク
a,bの高回転側に独立吸気通路61〜66内での
吸気慣性効果による出力トルクのピークa′,b′が
発生する。
During operation of the engine 1, intake air taken in from an air cleaner (not shown) is distributed and introduced from the confluence passage 4 on the upstream side of the intake device 4 into the first and second resonance passages 8 1 and 8 2 , respectively. It flows into the first and second surge tanks 7 1 and 7 2 via two throttle valves 10 1 and 10 2 . And this intake is the first
The first to third cylinders 21 forming the first cylinder group 31 are connected from the surge tank 71 to the independent intake passages 61 to 63 .
to 2 3 , and is distributed and supplied from the second surge tank 7 2 to the fourth to sixth cylinders 2 4 to 2 6 forming the second cylinder group 3 2 through independent intake passages 6 4 to 6 6 . In that case, three cylinders 2 1 forming the first cylinder group 3 1
-23 are not adjacent in the cylinder order, and the three cylinders 24 to 26 constituting the second cylinder group 32 are also not adjacent in the intake order, so in each of the cylinder groups 31 and 32, , the pressure waves generated when the intake ports 5 1 to 5 3 or 5 4 to 5 5 are opened and closed cause the pressure waves to flow through the independent intake passages 6 1 to 5 5 .
When propagated to the corresponding surge tank 7 1 or 7 2 through 6 3 or 6 4 to 6 6 , they do not cancel each other out, and as a result, the first and second surge tanks 7 1 ,
The same number of intake vibrations occur within 7.2 seconds depending on the engine speed. And both surge tanks 7 1 , 7 2
The communication passage 11 between them is shut off by an on-off valve 12, and the low natural frequency f which is independent of each other is provided by both the surge tanks 7 1 and 7 2 and the first and second resonance passages 8 1 and 8 2 . When two resonance spaces are formed,
In the low rotation range of the engine 1, the resonance space resonates with the intake vibration, and the large positive pressure wave generated by this resonance increases the intake air filling efficiency. Further, the on-off valve 12 is open, and the first and second surge tanks 7 1 , 7 2 and the left and right halves 11 1 of the communication passage 11 ,
When two resonant spaces with a high natural frequency f' are formed by 11 and 2, the resonant spaces and the intake air vibration resonate in the high rotation range of the engine 1, and the intake air filling efficiency is increased. . In other words, when the on-off valve 12 is closed under high load, an output torque characteristic A having a peak a in the low rotation range is obtained as shown in FIG. An output torque characteristic B having the following characteristics is obtained. Here, in these characteristics A and B, output torque peaks a' and b' occur on the high rotation side of the peaks a and b due to the intake inertia effect within the independent intake passages 6 1 to 6 6 .

従つて、第2図に示すように、大きな出力が必
要とされるエンジン1の高負荷域において、上記
両特性曲線A,Bが交わる第1のエンジン回転数
N1より低回転側の領域と、第2のエンジン回
転数N2より高回転側の領域で上記開閉弁12
を閉じ、且つ中間回転領域(及び中、低負荷領
域)で開閉弁12を開くように制御すれば、高
負荷時の出力トルク特性は第3図に太線で示すよ
うに上記両特性A,Bの常に高出力側となる特性
を推移することとなり、これによつてエンジンの
広い回転域で大きな出力トルクが得られることに
なる。
Therefore, as shown in FIG. 2, in the high load region of the engine 1 where a large output is required, the first engine rotational speed where both characteristic curves A and B intersect is
The on-off valve 12 is operated in a region lower than N 1 and in a region higher than the second engine speed N 2 .
If the on-off valve 12 is controlled to be closed in the intermediate rotation range (and in the middle and low load range), the output torque characteristics at high load will match both of the above characteristics A and B, as shown by the bold line in FIG. The characteristics of the engine are always on the high output side, and as a result, a large output torque can be obtained over a wide rotation range of the engine.

然して、上記開閉弁12を閉じて第3図に示す
特性Aを得ようとした場合に、該開閉弁12によ
つて第1、第2サージタンク71,72間の連通路
11を遮断したにも拘らず、両サージタンク71
2が排気還流通路等のデバイス通路によつて連
通されていると、両サージタンク71,72内の吸
気振動が上記デバイス通路を介して互いに減衰し
合うことになる。そして、この場合、上記特性A
は第3図に鎖線で示すように凹凸が小さくなつた
特性A′となり、その結果、該特性Aを利用する
ことによつて出力トルクの向上を図ろうとするエ
ンジン回転数N1以下の低回転領域において、斜
線部xで示す両だけ出力トルクが低下することに
なる。
However, when the on-off valve 12 is closed to obtain the characteristic A shown in FIG. 3, the on-off valve 12 blocks the communication path 11 between the first and second surge tanks 7 1 and 7 2 Despite this, both surge tanks 7 1 ,
7 2 are communicated by a device passage such as an exhaust gas recirculation passage, the intake vibrations in both surge tanks 7 1 and 7 2 are mutually attenuated via the device passage. In this case, the above characteristic A
As shown by the chain line in Fig. 3, the characteristic A' becomes a characteristic in which the unevenness is reduced.As a result, by utilizing the characteristic A, the engine speed is low ( N1 or less) and the output torque is improved. In the region, the output torque decreases in both areas indicated by the shaded area x.

しかし、この発明においては、上記第1、第2
サージタンク71,72に排気ガス及びバイパスエ
アを分配供給する排気還流通路14及びバイパス
エア通路16の共通の第1、第2分岐通路171
172間に遮断弁18が設けられ、上記開閉弁1
2の閉時に該遮断弁18も閉じられるようになつ
ているから、開閉弁12の閉時に上記第1、第2
分岐通路171,172を介して第1、第2サージ
タンク71,72が連通することなく、また開閉弁
12の閉時には上記排気還流通路14及びバイパ
スエア通路16の上流側も制御弁13,15によ
つて夫々閉鎖されている。従つて、第1、第2サ
ージタンク71、72は、その相互間及びデバイス
通路14,16の上流側に対して完全に連通を阻
止させることになる。これにより、エンジン回転
数N1以下の低回転領域において、第3図に斜視
部xで示すような出力トルクの低下が防止され、
曲線Aの太線で示す所要の出力トルク特性が得ら
れることになる。
However, in this invention, the first and second
Common first and second branch passages 17 1 of the exhaust gas recirculation passage 14 and the bypass air passage 16 that distribute and supply exhaust gas and bypass air to the surge tanks 7 1 , 7 2 ,
17 A cutoff valve 18 is provided between the on-off valve 1 and the on-off valve 1.
Since the shutoff valve 18 is also closed when the on-off valve 12 is closed, the shutoff valve 18 is closed when the on-off valve 12 is closed.
The first and second surge tanks 7 1 and 7 2 do not communicate through the branch passages 17 1 and 17 2 , and when the on-off valve 12 is closed, the upstream sides of the exhaust gas recirculation passage 14 and the bypass air passage 16 are also controlled. They are closed by valves 13 and 15, respectively. Therefore, the first and second surge tanks 7 1 and 7 2 are completely prevented from communicating with each other and with respect to the upstream sides of the device passages 14 and 16. This prevents the output torque from decreasing as shown by the perspective part x in FIG. 3 in the low engine speed range below N1 .
The required output torque characteristic shown by the thick line of curve A is obtained.

ここで、第1、第2サージタンク71、72に排
気ガスを還流する場合、及びバイパスエアを供給
する場合は、排気還流制御弁13及びバイパスエ
ア制御弁15が夫々開かれると共に、上記第1、
第2分岐通路171,172間の遮断弁18も開か
れ、これにより排気ガス又はバイパスエアが両サ
ージタンク71,72に均等に分配されるのであ
る。その場合に、排気ガスの還流を行う領域及び
バイパスエアを供給する領域は、夫々第2図に符
号、で示す中、低負荷領域であつて、いずれ
も開閉弁12が開かれる領域内にあるので、こ
れらの領域、において分岐通路171,172
間の遮断弁18が開かれ、これに伴つて第1、第
2サージタンク71,72が分岐通路171,172
を介して連通しても、両サージタンク71,72
連通路11によつて連通されているので、遮断弁
18を開くことによつて共鳴効果による吸気充填
効率ないし出力トルクの向上効果が影響を受ける
ことはない。
Here, when the exhaust gas is recirculated to the first and second surge tanks 7 1 and 7 2 and when bypass air is supplied, the exhaust gas recirculation control valve 13 and the bypass air control valve 15 are respectively opened, and the above-mentioned First,
The shutoff valve 18 between the second branch passages 17 1 , 17 2 is also opened, so that the exhaust gas or bypass air is evenly distributed to both surge tanks 7 1 , 7 2 . In this case, the region where exhaust gas is recirculated and the region where bypass air is supplied are respectively indicated by the symbols in FIG. Therefore, in these areas, branch passages 17 1 , 17 2
The shutoff valve 18 between them is opened, and accordingly, the first and second surge tanks 7 1 , 7 2 are connected to the branch passages 17 1 , 17 2 .
Even if the surge tanks 7 1 and 7 2 are connected to each other through the communication passage 11, opening the cutoff valve 18 can improve the intake air filling efficiency or the output torque due to the resonance effect. is not affected.

ここで、以上の実施例においては、排気還流通
路14及びバイパスエア通路16の共通の第1、
第2分岐通路171,172を第1、第2サージタ
ンク71,72に夫々接続したが、第4図に示すよ
うに排気還流通路14′及びバイパスエア通路1
6′の第1、第2分岐通路171′,172′を第1、
第2共鳴通路81′,82′に夫々接続するようにし
てもよい。また、第5図に示すように排気還流通
路14″及びバイパスエア通路16″の両者を遮断
弁18″によつて仕切られた第1、第2分岐通路
171″、172″のうちの一方の分岐通路に合流さ
せてもよい。
Here, in the above embodiment, the common first,
The second branch passages 17 1 and 17 2 were connected to the first and second surge tanks 7 1 and 7 2, respectively, but as shown in FIG.
The first and second branch passages 17 1 ′, 17 2 ′ of 6′ are the first,
They may be connected to the second resonance passages 8 1 ′ and 8 2 ′, respectively. Further, as shown in FIG. 5, both the exhaust gas recirculation passage 14'' and the bypass air passage 16 '' are separated from each other by a cutoff valve 18 ' '. It may be merged into one branch passage.

更に、第6,7図は、第1、第2サージタンク
1,72間の連通路11を開閉する開閉弁
12と、両サージタンク71,72に夫々接
続された排気還流通路14及びバイパスエア通
路16の第1、第2分岐通路171,172
間を連通、遮断する遮断弁18とを連動させる
構成の具体例を示すもので、この例においては開
閉弁12と遮断弁18とが一本の軸20に
取付けられ、該軸20を回動させる一つのアク
チユエータ19によつて両弁12,18が
同時に閉じ且つ同時に開かれるようになつてい
る。
Furthermore, FIGS. 6 and 7 show an on-off valve 12 that opens and closes the communication passage 11 between the first and second surge tanks 7 1 and 7 2 , and an exhaust gas recirculation passage connected to both surge tanks 7 1 and 7 2 , respectively. 14 and the first and second branch passages 17 1 , 17 2 of the bypass air passage 16
This shows a specific example of a configuration in which the shutoff valve 18 that communicates with and shuts off the valves is linked together. In this example, the on-off valve 12 and the shutoff valve 18 are attached to a single shaft 20, and the shaft 20 is Both valves 12 and 18 are simultaneously closed and opened simultaneously by a single actuator 19.

尚、デバイス通路としては、上記各実施例に示
す排気還流通路やバイパスエア通路に限るもので
はなく、吸気系に他のデバイス通路が接続される
場合にも同様に適用される。
Note that the device passage is not limited to the exhaust gas recirculation passage or the bypass air passage shown in each of the above embodiments, and is similarly applicable to cases where other device passages are connected to the intake system.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施例を示すもので、第1図は
吸気装置の概略構成図、第2図は該吸気装置の制
御領域を示す図、第3図は同じく制御特性を示す
図である。第4,5図は夫々デバイス通路の分岐
部の他の構成例を示す要部概略図、第6図は開閉
弁と遮断弁の連動機構の具体的構成例を示す吸気
装置の一部破断概略平面図、第7図は第6図−
線で切断した同吸気装置の概略縦断面図であ
る。 1……エンジン、31,32……気筒群、4……
吸気装置、61〜66……独立吸気通路、71,72
……吸気集合部(サージタンク)、81,82……
共鳴管(共鳴通路)、11……連通路、12……
開閉弁、13,15……制御弁、14,16……
デバイス通路、171,172……分岐通路、18
……遮断弁。
The drawings show an embodiment of the present invention, and FIG. 1 is a schematic diagram of an intake system, FIG. 2 is a diagram showing a control area of the intake system, and FIG. 3 is a diagram showing control characteristics. Figures 4 and 5 are schematic diagrams of main parts showing other configuration examples of the branching part of the device passage, respectively, and Figure 6 is a partially cutaway schematic diagram of the intake device showing a specific configuration example of the interlocking mechanism of the on-off valve and the shutoff valve. Plan view, Figure 7 is Figure 6-
FIG. 2 is a schematic vertical cross-sectional view of the intake device taken along a line. 1... Engine, 3 1 , 3 2 ... Cylinder group, 4...
Intake device, 6 1 to 6 6 ...Independent intake passage, 7 1 , 7 2
...Intake collection part (surge tank), 8 1 , 8 2 ...
Resonance tube (resonance passage), 11... Communication passage, 12...
Opening/closing valve, 13, 15... Control valve, 14, 16...
Device passage, 17 1 , 17 2 ... Branch passage, 18
...Shutoff valve.

Claims (1)

【特許請求の範囲】[Claims] 1 吸気順序が連続しない2つの気筒群が独立の
吸気通路によつて各々の吸気集合部に集合されて
いると共に、両吸気集合部を連通させる連通路
と、該連通路をエンジンの所定回転域で閉じる開
閉弁とが設けられた多気筒エンジンの吸気装置で
あつて、制御弁を有するデバイス通路を該制御弁
の下流側で分岐し、両分岐通路を上記両吸気集合
部もしくはその上流側に設けられる共鳴管に夫々
接続すると共に、上記開閉弁閉時の少なくともエ
ンジン高負荷時に両分岐通路相互間の連通を阻止
する遮断弁を備えたことを特徴とする多気筒エン
ジンの吸気装置。
1. Two groups of cylinders whose intake order is not consecutive are collected in each intake collecting part by independent intake passages, and a communicating passage is provided that communicates both intake collecting parts, and the communicating passage is connected to a predetermined rotation range of the engine. The intake system for a multi-cylinder engine is provided with an on-off valve that closes at An intake system for a multi-cylinder engine, comprising a cutoff valve connected to each of the provided resonance pipes and for blocking communication between the two branch passages at least when the engine is under high load when the opening/closing valve is closed.
JP6712285A 1985-03-29 1985-03-29 Intake device of multicylinder engine Granted JPS61226514A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6712285A JPS61226514A (en) 1985-03-29 1985-03-29 Intake device of multicylinder engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6712285A JPS61226514A (en) 1985-03-29 1985-03-29 Intake device of multicylinder engine

Publications (2)

Publication Number Publication Date
JPS61226514A JPS61226514A (en) 1986-10-08
JPH0577846B2 true JPH0577846B2 (en) 1993-10-27

Family

ID=13335778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6712285A Granted JPS61226514A (en) 1985-03-29 1985-03-29 Intake device of multicylinder engine

Country Status (1)

Country Link
JP (1) JPS61226514A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITMI20070231A1 (en) * 2007-02-08 2008-08-09 Mv Agusta Motor S P A MOTOR SUCTION SYSTEM FOR MOTORBIKE

Also Published As

Publication number Publication date
JPS61226514A (en) 1986-10-08

Similar Documents

Publication Publication Date Title
JPH0192518A (en) Engine intake-air device
JPS60164619A (en) Suction device for multicylinder internal-combustion engine
US4989553A (en) Air intake device of engine
JPH01106922A (en) Intake apparatus of v-shaped engine
JPH0577846B2 (en)
JPS6155355A (en) Exhaust gas reflux device for multicylinder engine
JPS61237823A (en) Intake equipment for multi-cylinder engine
JPH0565693B2 (en)
JPH0565691B2 (en)
JPH0315807Y2 (en)
JPH0320496Y2 (en)
JPS61116022A (en) Engine intake-air device
JPH072981Y2 (en) Engine intake system
WO2021065723A1 (en) Exhaust gas recirculation device
JPH0723695B2 (en) Intake device for multi-cylinder internal combustion engine
JP3248429B2 (en) Intake control device for internal combustion engine
JPH0738660Y2 (en) Engine intake system
JP2543906B2 (en) Engine intake system
JPH0629559B2 (en) Multi-cylinder engine intake system
JP2583527B2 (en) Engine intake system
JPH03286133A (en) Air intake device for multiple cylinder engine
JPH0392534A (en) Intake device for multi-cylinder engine
JPH10252577A (en) Egr distributing device of internal combustion engine
JP2552478B2 (en) V-type engine exhaust system
JPH0330617Y2 (en)