JPH0576103B2 - - Google Patents

Info

Publication number
JPH0576103B2
JPH0576103B2 JP3434183A JP3434183A JPH0576103B2 JP H0576103 B2 JPH0576103 B2 JP H0576103B2 JP 3434183 A JP3434183 A JP 3434183A JP 3434183 A JP3434183 A JP 3434183A JP H0576103 B2 JPH0576103 B2 JP H0576103B2
Authority
JP
Japan
Prior art keywords
layer
stamper
film
substrate
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3434183A
Other languages
Japanese (ja)
Other versions
JPS59160844A (en
Inventor
Noburo Yasuda
Yoshikatsu Takeoka
Norio Ozawa
Akio Hori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP3434183A priority Critical patent/JPS59160844A/en
Publication of JPS59160844A publication Critical patent/JPS59160844A/en
Publication of JPH0576103B2 publication Critical patent/JPH0576103B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B23/00Record carriers not specific to the method of recording or reproducing; Accessories, e.g. containers, specially adapted for co-operation with the recording or reproducing apparatus ; Intermediate mediums; Apparatus or processes specially adapted for their manufacture
    • G11B23/0057Intermediate mediums, i.e. mediums provided with an information structure not specific to the method of reproducing or duplication such as matrixes for mechanical pressing of an information structure ; record carriers having a relief information structure provided with or included in layers not specific for a single reproducing method; apparatus or processes specially adapted for their manufacture
    • G11B23/0064Intermediate mediums, i.e. mediums provided with an information structure not specific to the method of reproducing or duplication such as matrixes for mechanical pressing of an information structure ; record carriers having a relief information structure provided with or included in layers not specific for a single reproducing method; apparatus or processes specially adapted for their manufacture mediums or carriers characterised by the selection of the material

Landscapes

  • Manufacturing Optical Record Carriers (AREA)
  • Laminated Bodies (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は光学的情報記録媒体用基板を成形す
るためのスタンパに係り、特に全面に渡り連続又
は不連続の凸部が形成されているスタンパに関す
る。
Detailed Description of the Invention [Technical Field of the Invention] The present invention relates to a stamper for molding a substrate for an optical information recording medium, and particularly to a stamper in which continuous or discontinuous convex portions are formed over the entire surface. .

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

エネルギ例えば光学的情報記録媒体は、安定な
トラツク追跡を可能にし、記録密度を高める必要
から、媒体を構成している基板上に光学的に識別
可能な連続又は不連続スパイラル状の凸部ないし
凹部を形成していわゆる案内溝とすることが要請
されている。このため例えば連続スパイラル状の
凸部ないし凹部の形成された原盤をまず製作し、
この原盤から電鋳などの方法でスタンパを製作
し、このスタンパを用いて有機樹脂を射出成形、
圧縮成形又は注型するか、あるいは紫外線硬化樹
脂を紫外線硬化させるかして凸部ないし凹部形状
を転写された基板を形成する。
For example, optical information recording media have optically distinguishable continuous or discontinuous spiral protrusions or depressions on the substrate constituting the medium because it is necessary to enable stable track tracking and increase recording density. There is a demand for forming so-called guide grooves. For this purpose, for example, first a master disc with continuous spiral protrusions or depressions is produced,
A stamper is manufactured from this master using a method such as electroforming, and this stamper is used to injection mold organic resin.
A substrate on which the convex or concave shapes are transferred is formed by compression molding or casting, or by curing an ultraviolet curable resin with ultraviolet rays.

このような連続スパイラル状の凸部ないし凹部
を備えるスタンパは、普通以下のようにして製作
されている。先ず、ガラスなどからなる平坦な基
板上に第一工程でCr膜を蒸着する。次に第二工
程でCr膜上にフオトレジストをスピンナなどの
方法で塗布する。次に第三工程でフオトレジスト
の塗布されたガラス基板を回転し、1μmφ程度
にしぼつたレーザビームを所定の送り速度で半径
方向へ移動させ乍ら連続スパイラル状の露光を行
なう。次に第四工程で現像、第5工程でペーキン
グを行つてまず原盤を作る。次に電極膜を真空蒸
着などの方法で原盤上に形成し、Ni電鋳を行な
つてから原盤を剥離すればNiスタンパが得られ
るのである。
A stamper having such continuous spiral convex portions or concave portions is usually manufactured as follows. First, in the first step, a Cr film is deposited on a flat substrate made of glass or the like. Next, in the second step, a photoresist is applied onto the Cr film using a spinner or other method. Next, in the third step, the glass substrate coated with the photoresist is rotated, and continuous spiral exposure is performed while a laser beam reduced to about 1 μm in diameter is moved in the radial direction at a predetermined feed speed. Next, the fourth step is development, and the fifth step is pacing, creating a master disc. Next, an electrode film is formed on the master using a method such as vacuum evaporation, Ni electroforming is performed, and the master is peeled off to obtain a Ni stamper.

しかしこのような製法には以下に述べる欠点が
ある。即ち基板全面について均一な形状の凸部な
いし凹部を形成することが極めて困難なことであ
る。スタンパ上に形成すべき凸部形状は、良好な
トラツク追跡を可能にするため、高さが通常用い
られる半導体レーザの波長約800nmの1/8で100n
m程度、幅が1μm程度であることがのぞまれる。
一方基板の形状は記録容量を高めるため、300mm
φ程度迄のものが必要とされる。これに対してス
ピンナによる塗布は、通常1〜2μm以上の膜厚
のものに対して用いられる技術であつて、300mm
φの全域に厚さ100μmの均一な塗膜を形成する
ようなことは極めて困難で部分的に剥離が避けら
れない。しかも大気中のホコリが基板にわずかに
付着しても重大な塗布ムラを招く原因となる。ま
た全域に渡つて一様に現像することは極めて困難
であり、現像ムラの発生することが避けられな
い。このような原盤からNi電鋳したスタンパは
原盤の欠点が全て転写されたものしか得ることが
出来ない。更に後の工程でスタンパからフオトレ
ジストを剥離する必要があるが、焼付きなどの現
象によりスタンパ面にフオトレジストが残査とな
つて付着することも避けられない。また第一に原
盤、第二にこの原盤からスタンパを製作するとい
う点で二工程必要な点でも改良の餘地をとどめて
いる。
However, such a manufacturing method has the following drawbacks. That is, it is extremely difficult to form uniformly shaped protrusions or depressions over the entire surface of the substrate. The height of the convex shape to be formed on the stamper is 100 nm, which is 1/8 of the wavelength of the commonly used semiconductor laser, approximately 800 nm, in order to enable good track tracking.
It is desired that the width be about 1 μm.
On the other hand, the shape of the board is 300 mm to increase the recording capacity.
Something up to about φ is required. On the other hand, coating with a spinner is a technique that is normally used for coatings with a thickness of 1 to 2 μm or more;
It is extremely difficult to form a uniform coating film with a thickness of 100 μm over the entire area of φ, and partial peeling is unavoidable. Moreover, even a small amount of dust in the atmosphere that adheres to the substrate can cause serious coating unevenness. Furthermore, it is extremely difficult to uniformly develop the entire area, and the occurrence of uneven development is unavoidable. A stamper made by electroforming Ni from such a master disc can only be obtained by transferring all the defects of the master disc. Furthermore, it is necessary to peel the photoresist from the stamper in a later step, but it is inevitable that the photoresist will adhere to the stamper surface as a residue due to phenomena such as burn-in. Furthermore, there is still room for improvement in that two steps are required: firstly, the master disk, and secondly, the stamper is manufactured from this master disk.

これらの改良として我々はフオトレジストを一
切使わない方法を発案し、先に出願した(特願昭
57−168623号)。そのスタンパ構成図を第1図及
び第2図に示す。第1図は半成品断面図、第2図
はスタンパの微少部分の断面図であり、基体1上
に基体と密着性のよい金属薄膜又は酸化物薄膜か
らなる第1層2、エネルギー吸収性とガス遊離性
とに良好にする薄膜からなる第2層3、機械的強
度を大きく密着性のよい金属薄膜からなる第3
層、離型性のよい薄膜からなる第4層5を順次積
層し、回転支持台5上に載せ、基板を回転させ乍
らレンズ7を絞り込んだレーザビーム8を照射す
ると、第2層〜第4層の薄膜が張らみ、第2図の
如く、連続スパイラル凸部9が形成される。この
スタンパにより従来方法の欠点はすべて除去でき
たが、数多く製作するうち以下の欠点があること
が判明した。即ち、基体と第1層との密着性は
良いが、第1層と第2層との密着性が悪いためか
有機樹脂基体を成形し剥離するとき、第2層より
部分的剥離が生じ、有機基板を多数枚成形できな
いスタンパが生じやすいこと、エネルギー吸収
性とガス遊離性とを併わせ持つ第2層の主成分を
600℃以下の融点をもつ低融点金属としたためレ
ーザビーム照射で膜を張らませているとき、電源
等の変動でレーザビーム強度が変動すると膜が張
らみを通り越して破れてしまうことが生ずるこ
と、機械的強度として必要とした第3層膜は、
レーザビームの吸収膜にもなつてしまい、レーザ
パワーの効率を大きく減少させてしまうこと、
離形性のために必要とした第4層はやはりレーザ
ビームの吸収膜になつてしまい、レーザパワーの
効率を大きく減少させてしまうこと等があげられ
る。
As an improvement to these, we devised a method that does not use any photoresist and filed an application for it (patent application
57-168623). The configuration diagram of the stamper is shown in FIGS. 1 and 2. Fig. 1 is a sectional view of a semi-finished product, and Fig. 2 is a sectional view of a minute part of the stamper. The second layer 3 is made of a thin film that has good release properties, and the third layer is made of a thin metal film that has high mechanical strength and good adhesion.
A fourth layer 5 made of a thin film with good mold releasability is sequentially laminated, placed on a rotating support 5, and irradiated with a focused laser beam 8 through a lens 7 while rotating the substrate. Four layers of thin film are stretched, and a continuous spiral protrusion 9 is formed as shown in FIG. This stamper eliminated all the drawbacks of the conventional method, but after manufacturing a large number of stampers, the following drawbacks were discovered. That is, the adhesion between the substrate and the first layer is good, but when the organic resin substrate is molded and peeled off, partial peeling occurs from the second layer, probably because the adhesion between the first layer and the second layer is poor. The main component of the second layer that has both energy absorption and gas release properties is
Since it is a low melting point metal with a melting point of 600℃ or less, when the film is stretched by laser beam irradiation, if the laser beam intensity changes due to fluctuations in the power supply, etc., the film may break beyond the tension. The third layer film required for mechanical strength is
It also becomes a laser beam absorption film, greatly reducing the efficiency of laser power.
The fourth layer required for mold releasability ends up becoming a laser beam absorption film, which greatly reduces the efficiency of laser power.

〔発明の目的〕[Purpose of the invention]

この発明は上述した欠点を克服した基板形成用
スタンパを提案するものである。
The present invention proposes a stamper for forming a substrate that overcomes the above-mentioned drawbacks.

〔発明の概要〕[Summary of the invention]

即ち、この発明のスタンパは基体上に基体との
密着性が良い金属薄膜からなる第1層、膜が張ら
むという特性をもつた第3層と第1層とを相互に
密着性を保たせる役目をもつた第2層、アルキル
成分を含みレーザビーム照射により膜が張らむ特
性をもつた第3層、レーザビームエネルギーをあ
まり吸収せず延伸性があり、かつ有機樹脂と優れ
た剥離性をもつた第4層とからなり、それら膜が
順次基板上に剥離されており、且つ第3層の第4
層の面には、連続又は不連続のスパイラル状の凸
部が形成されているものである。
That is, the stamper of the present invention maintains mutual adhesion between the first layer, which is a thin metal film that has good adhesion to the substrate, and the third layer, which has a characteristic of being stretched, on the substrate. The second layer has a role to play; the third layer contains an alkyl component and has the property of being stretched by laser beam irradiation; it does not absorb much laser beam energy, has stretchability, and has excellent peelability from organic resins. The fourth layer of the third layer is peeled off sequentially onto the substrate, and the fourth layer of the third layer is
Continuous or discontinuous spiral convex portions are formed on the surface of the layer.

上述の第1層の金属薄膜は、Ti、Cr、W、
Mo、Co、Ni、Ta、V、Zn、Hf等を用い、スパ
ツタ或いは真空蒸着など通常の薄膜形成法で基体
に被着する。また基体は表面が平滑に仕上つたガ
ラス基板が最も適している。続いて、真空を破ら
ずに、Au、Ag、Cu、Pd等を通常の薄膜形成法
で形成する、この膜が第2層となる。次に、スパ
ツタリングにより第3層を形成する。この膜はメ
タン系炭化水素ガスと不活性ガスとの混合ガス中
のスパツタリングで形成するが、ターゲツトとし
てとりつける金属板は融点は高いが、Au、Ag、
Cu、Sn等と容易に共晶合金となる金属、例えば
Ag又はGe等が最適である。Ag板をターゲツト
として基板を対向させ、両者間に電圧をかけ、メ
タン系炭化水素ガスとしてCH3ガス、不活性ガス
としてArガスを流し、プラズマを発生させると、
−H基、−CH3基、−H2基、−CH2基が解離し、タ
ーゲツト面をたたく。するとAg原子がたたきだ
され、Ag−H、Ag−CH3、Ag−H2、Ag−CH2
等のアルキルAg金属が反応形成される。一方Ar
ガスによつてもAg原子がたたき出されるので、
基板上にはアルキルAgとAgとが混合されたまゝ
膜が成長していく。出来た膜をX線回折で調べる
と、非晶質であることが判明し、より精度を上げ
て微小面散乱法等で調べると、約6nm径をもつ
た結晶質Ag微粒子の集合であり、その空隙をア
ルキル分子が埋めており、Ag微粒子とアルキル
分子とはアルキルAgで結ばれていることが判明
した。この膜を180°位に加熱するとアルキル分子
の蒸発が起り、30%程度の重量が減少する。第4
層はAu、Ag、Cu、Pd等の膜であり、通常の膜
形成法で形成される。ここでこれらの膜厚が問題
となる。
The first layer metal thin film mentioned above is made of Ti, Cr, W,
Using Mo, Co, Ni, Ta, V, Zn, Hf, etc., it is deposited on the substrate by a normal thin film forming method such as sputtering or vacuum deposition. Furthermore, the most suitable substrate is a glass substrate with a smooth surface. Next, without breaking the vacuum, Au, Ag, Cu, Pd, etc. are formed using a normal thin film forming method, and this film becomes the second layer. Next, a third layer is formed by sputtering. This film is formed by sputtering in a mixed gas of methane-based hydrocarbon gas and inert gas, but the metal plate attached as a target has a high melting point, but
Metals that easily form eutectic alloys with Cu, Sn, etc., e.g.
Ag or Ge etc. are most suitable. Plasma is generated by placing the substrates facing each other with the Ag plate as a target, applying a voltage between them, and flowing CH 3 gas as a methane-based hydrocarbon gas and Ar gas as an inert gas.
The -H, -CH3 , -H2 , and -CH2 groups dissociate and hit the target surface. Then, Ag atoms are knocked out and form Ag-H, Ag-CH 3 , Ag-H 2 , Ag-CH 2
Alkyl Ag metals such as are reacted and formed. On the other hand, Ar
Since Ag atoms are also knocked out by gas,
A film containing a mixture of alkyl Ag and Ag grows on the substrate. When the resulting film was examined by X-ray diffraction, it was found to be amorphous, and when examined with more precision using a microplane scattering method, it was found to be a collection of crystalline Ag fine particles with a diameter of approximately 6 nm. It was found that the voids were filled with alkyl molecules, and that the Ag particles and alkyl molecules were bonded by alkyl Ag. When this film is heated to about 180°, the alkyl molecules evaporate, resulting in a weight loss of about 30%. Fourth
The layer is a film of Au, Ag, Cu, Pd, etc., and is formed by a normal film formation method. Here, the thickness of these films becomes a problem.

第1層は厚くしても効果がなく、薄すぎては効
果を発揮できず、せいぜい5〜500nmの厚さが
あれば十分である。第2層は、反応を十分進ませ
るために50〜500nm位の膜厚を必要とする。第
3層はアルキル分子の蒸発が起るとき、その蒸発
分子を膜から外に出来ない様に膜内に閉じ込めて
おき、その力で膜を脹らませるためには膜厚が薄
いと、ガスを閉じこめておくことができず、脹ら
んでもすぐ破裂してしまうし、膜厚を厚くしすぎ
てもエネルギーの吸収が大きく、有効に脹らます
ことが出来ない。100〜500nmの膜厚が最も有効
に膜を脹らますことが出来ることをテストで確認
した第4層の膜厚が最も厳しい。即ち、レーザビ
ーム照射を第4層を通して第3層に行うためレー
ザを吸収しない膜厚が必要でありかつ第3層の脹
らみを助け、破裂しない様に延伸性のある物質で
ある程度以上の厚さで覆う必要があり、しかも有
機樹脂の剥離が十分に行える程の膜厚が必要であ
る。材質としては前述したAu、Ag、Cu、Pd等
が優れており、それらの膜厚は20〜35nmと極め
て薄い範囲が最適である。連続又は不連続スパイ
ラル状の凸部は、4層の薄膜が形成されている基
板を回転し、1μmφ程度に絞り込んだレーザビ
ームを所定の速度で半径方向へ送りながら連続的
もしくは不連続的に照射することにより形成でき
る。凸部は、照射されたレーザビームにより局部
加熱され、ガス膨張による第3層の張らみと、こ
の圧力による第4層の張らみにより形成される。
Even if the first layer is thick, it will not be effective, and if it is too thin, it will not be effective, and a thickness of 5 to 500 nm at most is sufficient. The second layer needs to have a thickness of about 50 to 500 nm to allow the reaction to proceed sufficiently. The third layer confines the evaporated molecules within the film so that they cannot escape from the film when evaporation of alkyl molecules occurs, and if the film is thin enough to swell the film with its force, the gas It cannot be kept confined, and even if it swells, it will burst immediately, and even if the film is made too thick, it will absorb too much energy and will not be able to swell effectively. Tests have shown that a film thickness of 100 to 500 nm can most effectively inflate the film, and the thickness of the fourth layer is the most severe. That is, since the laser beam irradiation is applied to the third layer through the fourth layer, it is necessary to have a film thickness that does not absorb the laser beam, and to help the third layer swell and prevent it from bursting, it is necessary to use a stretchable material with a certain thickness or more. It is necessary to cover the film with a sufficient thickness, and the film thickness must be sufficient to allow the organic resin to be peeled off. As for the material, the above-mentioned Au, Ag, Cu, Pd, etc. are excellent, and their film thicknesses are optimally in the extremely thin range of 20 to 35 nm. Continuous or discontinuous spiral convex parts are created by rotating the substrate on which four layers of thin films are formed, and continuously or discontinuously irradiating the laser beam focused to about 1 μm diameter while sending it in the radial direction at a predetermined speed. It can be formed by The convex portion is locally heated by the irradiated laser beam, and is formed by the stretching of the third layer due to gas expansion and the stretching of the fourth layer due to this pressure.

このようなスタンパにより、有機樹脂基板を形
成するには、スタンパを構成している基体が破壊
しなければ用法を制限しない。例えばあらかじめ
成形された平坦な記録媒体様基板材と、このスタ
ンパを対向させ両者の中間に紫外線硬化樹脂を流
し込み、平坦な基板材側から紫外線を照射し、硬
化させ、連続スパイラル状の凸部を転写した記録
媒体用基板を得させる。又、例えばこのスタンパ
上に有機樹脂のモノマーないしシラツプを流し込
み加熱し重合させる注型法をとつても良い。
In order to form an organic resin substrate using such a stamper, there are no restrictions on its usage as long as the base forming the stamper is not destroyed. For example, a pre-formed flat recording medium-like substrate material and this stamper are placed opposite each other, and an ultraviolet curing resin is poured between the two, and ultraviolet rays are irradiated from the flat substrate side to harden it, forming continuous spiral convex parts. A transferred recording medium substrate is obtained. Alternatively, for example, a casting method may be used in which an organic resin monomer or syrup is poured onto the stamper and polymerized by heating.

〔発明の実施例〕 以下実施例について述べる。[Embodiments of the invention] Examples will be described below.

実施例 1 第3図はこの例のスタンパーの半成品断面図で
ある。まず300mmφのガラスを基体11とし、厚
さ30nmのTi膜12を第1層として続いて厚さ
100nmのAu膜13を第2層としてスパツタリン
グで連続形成する。次にAgターゲツトをCH4
スとArガスの混合ガス中でスパツタリングし、
厚さ300nmのAg−CH3、Ag−CH3を成分として
もつ第3層14を形成する。続いてAu膜を厚さ
30nmで形成し第4層15とする。これら4層は
連続スパツタリングで形成するのが最も良い。こ
れら4層が形成された基体を回転支持台16に載
せ、レンズ17で1μmφに絞り込んだArガスレ
ーザビーム18を半径方向へ所定の速度で移動さ
せ乍ら照射する。第4図にこのようにして形成さ
れたスタンパの微少部分の断面図を示す。スタン
パの膜面には連続スパイラル状の凸部19が形成
されている。凸部形状は高さが、0.1μm底部にお
ける巾は1.1μmである。この凸部は300mmφのガ
ラス板の全面に及び一様に形成されており、剥離
した部分は認められない。
Example 1 FIG. 3 is a sectional view of a semifinished stamper of this example. First, a 300 mmφ glass is used as the substrate 11, and a 30 nm thick Ti film 12 is used as the first layer.
A 100 nm thick Au film 13 is continuously formed as a second layer by sputtering. Next, the Ag target was sputtered in a mixed gas of CH 4 gas and Ar gas,
A third layer 14 having a thickness of 300 nm and containing Ag-CH 3 and Ag-CH 3 as components is formed. Next, the thickness of the Au film is
The fourth layer 15 is formed with a thickness of 30 nm. These four layers are best formed by continuous sputtering. The substrate on which these four layers have been formed is placed on a rotating support 16, and irradiated with an Ar gas laser beam 18 focused to 1 μm diameter by a lens 17 while moving in the radial direction at a predetermined speed. FIG. 4 shows a sectional view of a minute portion of the stamper formed in this manner. A continuous spiral convex portion 19 is formed on the film surface of the stamper. The height of the convex portion is 0.1 μm, and the width at the bottom is 1.1 μm. This convex portion is uniformly formed over the entire surface of the 300 mmφ glass plate, and no peeled portions are observed.

このように真空中で薄膜を形成して得られたス
タンパの利点は、フオトレジスト法による原盤か
ら電鋳したスタンパと異なり、基板全面に均一な
凸部が形成できる上、大気中の塵埃のない状態で
膜形成できること、大面積に渡り一様な膜厚に膜
形成できることが数えられる。
The advantages of a stamper obtained by forming a thin film in a vacuum in this way are that, unlike a stamper that is electroformed from a master using the photoresist method, it can form uniform protrusions over the entire surface of the substrate, and there is no dust in the atmosphere. It is possible to form a film with a uniform thickness over a large area.

この例のスタンパを用い、平坦なアクリル板上
へアクリル系紫外線硬化樹脂による転写を行なつ
たところ記録媒体用基板の全面に極めて一様な連
続スパイラル状の凹部を転写することができ、ス
タンパからはどの薄膜も剥離しない。
When the stamper of this example was used to transfer the acrylic ultraviolet curable resin onto a flat acrylic plate, it was possible to transfer an extremely uniform continuous spiral concavity over the entire surface of the recording medium substrate. does not peel off any thin film.

実施例 2 300mmφのガラスに、第1層として30nmのCr、
Mo、W、Co、Ni、Fe、Ta、V、の一種、第2
層として、300nmのAl、Ag、Pdの一種、第3層
として400nm厚のAg−CH3、Ag−CH2の成分を
もつ膜、又はGe−CH3、Ge−CH2の成分をもつ
膜、第4層として30nm厚のAg、Pd、Alの一種
のもつ膜を形成する。次に回転台にのせ回転しな
がら半径方向にレーザビームを所定の速さで不連
続的に照射して(8×3×2×3=)144種のス
タンパを製作する。いずれのスタンパも巾0.9〜
1.2μm、高さ0.6μm以上の不連続スパイラル状凸
部を備えている。これらのスタンパを用い、セル
キヤステング法により基板の成形を行つたとこ
ろ、良好な形状の不連続スパイラル状凹部を転写
できた。
Example 2 30nm Cr as the first layer on 300mmφ glass,
Mo, W, Co, Ni, Fe, Ta, V, type 2
A layer of 300 nm of Al, Ag, or Pd, and a 400 nm thick film of Ag-CH 3 or Ag-CH 2 as the third layer, or a film of Ge-CH 3 or Ge-CH 2 . , a 30 nm thick film of Ag, Pd, or Al is formed as the fourth layer. Next, 144 kinds of stampers (8×3×2×3=) are manufactured by placing the stamper on a rotating table and discontinuously irradiating it with a laser beam in the radial direction at a predetermined speed while rotating. All stampers have a width of 0.9~
It has a discontinuous spiral convex portion of 1.2 μm and a height of 0.6 μm or more. When a substrate was molded by the cell casting method using these stampers, a well-shaped discontinuous spiral concave portion could be transferred.

これらのスタンパは通常の電鋳法によるスタン
パのマスター原盤としても使用できる。
These stampers can also be used as master discs for stampers made by ordinary electroforming.

上述の結果より、第1層はガラス基板との接着
性、第2層は第1層と同一真空中で連続成形する
ために第1層との接着性向上並びに第3層と低温
で共晶合金となるために第3層との接着性改良が
なされており、第3層の脹らみを自由に制御でき
るための第4層の導入、又第4層の成分も第3層
の金属成分と共晶合金となりやすい成分が配置さ
れているため脹らみの強度が増強され、萎み、潰
れ等の変形が生じない。従つて、有機樹脂基板の
成形時の熱、圧力時に十分耐えることが出来、基
板の多数枚成形が行え、剥離等は一切生じない。
又、第3層の金属として低融点ではない金属を使
つたため、張らみはアルキル分子が蒸発しようと
する180℃近辺で生じ、温度を上げるとガスは膜
のすきまから逃げていき、膜は金属結晶質に変化
する。その後この膜に穴があくのは膜の融点、Si
膜の場合は1412℃になつたときに生ずるので、金
属質膜に保持できる温度範囲が低融点金属膜より
も極めて広い。このためレーザパワーの変化等
で、張らみに穴があくケースは絶無となつた。
From the above results, the first layer has good adhesion to the glass substrate, and since the second layer is continuously molded in the same vacuum as the first layer, the adhesion with the first layer is improved and the third layer is eutectic at low temperature. In order to form an alloy, the adhesion with the third layer has been improved, and a fourth layer has been introduced to freely control the expansion of the third layer, and the ingredients of the fourth layer are also the same as the metal of the third layer. Because the ingredients and the ingredients that tend to form a eutectic alloy are arranged, the strength of swelling is enhanced and deformations such as shrinkage and crushing do not occur. Therefore, it can sufficiently withstand heat and pressure during molding of organic resin substrates, allowing molding of a large number of substrates without any peeling or the like.
In addition, because we used a metal that does not have a low melting point as the third layer metal, stretching occurs at around 180°C when the alkyl molecules are about to evaporate, and as the temperature is raised, gas escapes through the gaps in the film, causing the film to deteriorate. Changes to metallic crystalline state. After that, holes are formed in this film due to the melting point of the film, Si
In the case of a film, this occurs when the temperature reaches 1412°C, so the temperature range that can be maintained in a metal film is much wider than that of a low-melting metal film. For this reason, there were no cases where holes were formed in the lining due to changes in laser power, etc.

〔発明の効果〕〔Effect of the invention〕

このようにこの発明によれば、従来の欠点を除
去し、単純な構成でありながら、大面積に渡り極
めて一様な連続又は不連続スパイラル状の凸部を
備えた基板成形用スタンパとして提供することが
できる。
As described above, the present invention eliminates the drawbacks of the conventional stamper and provides a stamper for molding a substrate having a simple structure and extremely uniform continuous or discontinuous spiral convex portions over a large area. be able to.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は従来のスタンパの半成品及
び微少部分の断面図、第3図及び第4図は本発明
のスタンパの半成品及び微少部分の断面図であ
る。 11;基体、12;Ti膜、13;Au膜、1
4;第3層、15;第4層、16;回転支持体、
17;レンズ、18;レーザビーム、19;凸
部。
1 and 2 are cross-sectional views of a semi-finished product and a minute portion of a conventional stamper, and FIGS. 3 and 4 are cross-sectional views of a semi-finished product and a minute portion of a stamper of the present invention. 11; Substrate, 12; Ti film, 13; Au film, 1
4; third layer, 15; fourth layer, 16; rotating support,
17; lens; 18; laser beam; 19; convex portion.

Claims (1)

【特許請求の範囲】 1 エネルギー情報記録媒体膜用基板を成形する
ためのスタンパであつて、このスタンパが基体上
に基体との密着性のよい金属薄膜からなる第1
層、第1層と第3層との接着性を向上させる第2
層、アルキル分子と600℃以上の融点をもつた金
属とからなるアルキル金属を含んだ薄膜からなる
第3層、エネルギ非吸収性と延伸性をもちかつ樹
脂に対する離型性のよい金属薄膜からなる第4層
を順に形成されて成り、且つ第3層と第4層膜面
にはレーザ露光により連続又は不連続スパイラル
状の凸部が形成されていることを特徴とする基板
成形用スタンパ。 2 第1層の金属薄膜が、Ti、Cr、W、Mo、
Co、Ni、Fe、Ta、V、Zn、Hfのうち少なくと
も一種を含む単体又は合金であることを特徴とす
る特許請求の範囲第1項に記載の基板成形用スタ
ンパ。 3 第2層の膜が、Au、Ag、Al、Cu、Pdのう
ち少くとも一種を含む単体又は合金であることを
特徴とする特許請求の範囲第1項に記載の基板成
形用スタンパ。 4 第3層の膜はメタン系炭化水素ガスと不活性
ガスとの混合ガス中において金属板と、第1層と
第2層とが積層された基体との間に放電を起させ
てアルキル金属ガスを発生させ、該第2層の上に
不活性ガスを主体としたことによる金属膜とメタ
ン系炭化水素ガスによるアルキル金属膜とを同時
に成長させて形成させたことを特徴とする特許請
求の範囲第1項に記載の基板成形用スタンパ。 5 第4層の金属薄膜はAu、Ag、Pd、Al、Cu
のうち少くとも一種を含む、単体又は合金である
ことを特徴とする特許請求の範囲第1項記載の基
板成形用スタンパ。 6 スタンパに電解Niメツキにより厚膜を形成
し、該スタンパを剥離して凹凸が逆に転写された
面を形成し、この面を有機樹脂基板面上に転写す
ることを特徴とする特許請求の範囲第1項記載の
基板成形用スタンパ。
[Scope of Claims] 1. A stamper for forming a substrate for an energy information recording medium film, wherein the stamper has a first metal thin film on the base, which is made of a thin metal film having good adhesion to the base.
layer, a second layer that improves the adhesion between the first layer and the third layer.
The third layer consists of a thin film containing an alkyl metal made of alkyl molecules and a metal with a melting point of 600°C or more, and the third layer consists of a thin metal film that has energy non-absorption properties, stretchability, and good mold releasability from resin. 1. A stamper for forming a substrate, characterized in that a fourth layer is sequentially formed, and continuous or discontinuous spiral convex portions are formed on the film surfaces of the third and fourth layers by laser exposure. 2 The first layer metal thin film is Ti, Cr, W, Mo,
The stamper for molding a substrate according to claim 1, wherein the stamper is a single substance or an alloy containing at least one of Co, Ni, Fe, Ta, V, Zn, and Hf. 3. The stamper for forming a substrate according to claim 1, wherein the second layer film is a single substance or an alloy containing at least one of Au, Ag, Al, Cu, and Pd. 4 The third layer film is formed by generating an electric discharge between the metal plate and the substrate on which the first layer and the second layer are laminated in a mixed gas of methane-based hydrocarbon gas and inert gas. A metal film mainly made of an inert gas and an alkyl metal film made of a methane-based hydrocarbon gas are simultaneously grown and formed on the second layer by generating a gas. A stamper for forming a substrate according to scope 1. 5 The fourth layer metal thin film is Au, Ag, Pd, Al, Cu
The stamper for molding a substrate according to claim 1, characterized in that it is a single substance or an alloy containing at least one of the above. 6. A patent claim characterized in that a thick film is formed on a stamper by electrolytic Ni plating, the stamper is peeled off to form a surface on which unevenness is reversely transferred, and this surface is transferred onto an organic resin substrate surface. A stamper for molding a substrate according to scope 1.
JP3434183A 1983-03-04 1983-03-04 Stamper for forming substrate Granted JPS59160844A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3434183A JPS59160844A (en) 1983-03-04 1983-03-04 Stamper for forming substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3434183A JPS59160844A (en) 1983-03-04 1983-03-04 Stamper for forming substrate

Publications (2)

Publication Number Publication Date
JPS59160844A JPS59160844A (en) 1984-09-11
JPH0576103B2 true JPH0576103B2 (en) 1993-10-21

Family

ID=12411432

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3434183A Granted JPS59160844A (en) 1983-03-04 1983-03-04 Stamper for forming substrate

Country Status (1)

Country Link
JP (1) JPS59160844A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4931336A (en) * 1988-01-18 1990-06-05 Fuji Photo Film Co., Ltd. Information recording medium and method of optically recording information employing the same

Also Published As

Publication number Publication date
JPS59160844A (en) 1984-09-11

Similar Documents

Publication Publication Date Title
US4565772A (en) Process of using radiation-sensitive carrier body to form stamper structure and subsequent use as a stamper to make optical disks
US4729938A (en) Optical disc base plate having a primer layer formed of an ultraviolet-cured resin composition
JPS58158225A (en) Manufacture of information recording substrate
US6573025B2 (en) Optical disc
JPS5835742A (en) Manufacture for stamper used for manufacture of information recording medium disc
CA2013336C (en) Ultraviolet light curable composition and use thereof
JPH0576103B2 (en)
TWI284898B (en) Manufacturing method optical recording media and optical recording media
CN1244101C (en) Optical recording medium and production method thereof
JPH0252331B2 (en)
JPH0259044B2 (en)
JPH05339774A (en) Production of stamper
JPH0252329B2 (en)
JP3370564B2 (en) optical disk
JP2764457B2 (en) Information recording stamper
JP3367961B2 (en) optical disk
JP4527126B2 (en) Sputtering target for optical disk protective film formation
JP3344696B2 (en) optical disk
JPH0249228A (en) Recording medium, optical disk and optical card
JPH03127342A (en) Master disk for information recording disk
JP2005203032A (en) Method for manufacturing multilayer structure optical recording medium, and light-transmitting stamper
JPS63503018A (en) How to give a smooth surface to a substrate
JPS62192947A (en) Method for duplicating optical disk
JPS59119549A (en) Information recording member
JP2001357560A (en) Optical information recording medium