JPH0575581B2 - - Google Patents

Info

Publication number
JPH0575581B2
JPH0575581B2 JP23826888A JP23826888A JPH0575581B2 JP H0575581 B2 JPH0575581 B2 JP H0575581B2 JP 23826888 A JP23826888 A JP 23826888A JP 23826888 A JP23826888 A JP 23826888A JP H0575581 B2 JPH0575581 B2 JP H0575581B2
Authority
JP
Japan
Prior art keywords
weight
metal foil
epoxy resin
phenolic hydroxyl
laminate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP23826888A
Other languages
Japanese (ja)
Other versions
JPH0286434A (en
Inventor
Masayuki Noda
Kenichi Karya
Takahiro Yamaguchi
Katsuharu Takahashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP23826888A priority Critical patent/JPH0286434A/en
Publication of JPH0286434A publication Critical patent/JPH0286434A/en
Publication of JPH0575581B2 publication Critical patent/JPH0575581B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/032Organic insulating material consisting of one material
    • H05K1/0326Organic insulating material consisting of one material containing O
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/022Processes for manufacturing precursors of printed circuits, i.e. copper-clad substrates

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は、金属箔と強固な接着性を有し、可と
う性を有した金属箔張り積層板の製造法に関する
ものである。 従来の技術 従来、印刷配線用金属箔張り板は、硬質のフエ
ノール、エポキシ銅張り積層板やポリエステル、
ポリイミドフイルムをベースとするフレキシブル
銅張り積層板が主なものであつた。しかしなが
ら、硬質銅張り積層板は、折り曲げて、立体的に
配線する用途には適用できず、電子機器の小型軽
量化のために用いるには限界があつた。フレキシ
ブル銅張り積層板は、ポリエステルポリイミド、
ポリアミドイミドフイルム等が使用されている
が、これらベースが補強基材を含有していないた
め、全般的に柔らかすぎ、その上に1C等の各種
部品を搭載できないという欠点があつた。 これらの欠点を解決するためには、積層板を構
成する樹脂組成物を可とう化することにより、硬
質積層板を折り曲げ出来るようにする必要があ
る。一般に、樹脂組成物を可とう化するために
は、 (1)架橋密度の低下、(2)可とう性樹脂の添加が考
えられる。しかしながら、架橋密度の低下のため
に、1官能グリシジルエーテル類の反応性希釈剤
を使用すると、硬化した樹脂の分子内に未硬化物
が残り、薬品や溶剤などに侵され易く、耐熱性が
低下すると共に、積層板を折り曲げられるほど十
分に可とう化出来なかつた。一方、一般の可とう
性樹脂例えば、ダイマー酸変性エポキシ樹脂の添
加により、可とう化を行うと、一般のビスフエノ
ール型2官能エポキシ樹脂との反応性が異なるた
め、薬品や溶剤などにより可とう性樹脂が溶出し
耐薬品性が悪く、耐熱性、接着強度も悪くなるた
め、大量に添加することが出来なかつた。 発明が解決しようとする課題 この様に、耐薬品性、耐熱性、金属箔との接着
強度の優れた可とう性のエポキシ樹脂積層板を得
ることが極めて難しかつた。 本発明は、上記の欠点を除去するもので、折り
曲げ可能でしかも部品の搭載が出来、耐薬品性、
耐熱性、金属との接着強度も優れた金属箔張り積
層板を提供することを目的とする。 課題を解決するための手段 上記目的を達成するために、本発明は、エポキ
シ樹脂組成物を基材に含浸して得たプリプレグ
を、表面に積載した金属箔と共に積層成形するも
のであるが、次の(イ)〜(ニ)の物質を配合した組成物
を基材に含浸してプリプレグを得る (イ) ビスフエノール型2官能性エポキシ樹脂 (ロ) 3官能以上の多官能エポキシ樹脂 (ハ) ポリサルフアイド骨格をもつジクリシジルエ
ーテル (ニ) 2官能フエノール性水酸基をもつ化合物 そして、組成物中の前記(ロ)の配合を5〜30重量
%、(ハ)の配合を5〜40重量%、グリシジルエーテ
ルとフエノール性水酸基のモル比を0.8〜1.2とし
たものである。 また、難燃性付与のため、前記(ニ)の物質の少な
くとも一部に臭素を含有させ、臭素の含有量を全
体の15重量%以上としたものである。 作 用 本発明では、ビスフエノール型2官能エポキシ
樹脂と2官能フエノール性水酸基をもつ化合物の
併用で、架橋を生じず直接的に重合して積層板を
折り曲げ易くする。そして、3官能以上の多官能
エポキシ樹脂の添加により架橋密度を適度に調整
するのである。3官能以上の多官能エポキシ樹脂
の添加量は、5〜30重量%が良好である。3官能
以上の多官能エポキシ樹脂の添加量が、5重量%
未満であると、架橋密度が小さく成り過ぎ、耐薬
品性、耐熱性が悪くなり、添加量が30重量%を越
えるとポリサルフアイド骨格を持つたジグリシジ
ルエーテルを添加しているにも拘らず、可とう性
を保持させることができない。 一方、本発明に使用するポリサルフアイド骨格
を持つたジグリシジルエーテルは、通常の可とう
性エポキシ樹脂を添加した場合に比較して、金属
箔との接着性が良好で、耐薬品性も良好である。
その添加量は、4〜40重量%が良好であつた。ポ
リサルフアイド骨格を持つたジグリシジルエーテ
ルの添加量が5重量%未満であると、可とう性が
十分でなく折り曲げが出来ず、40重量%を越える
と耐熱性の低下が大きい。 本発明においては、通常エポキシ樹脂の硬化剤
として用いられるもの(例えばアンミン系化合
物)を使用せずに、3官能以上の多官能エポキシ
樹脂による架橋と、可とう性エポキシ樹脂である
ポリサルフアイド骨格を持つたジグリシジルエー
テルの可とう化の相乗効果により、目標を達成す
るものである。通常の硬化剤を全く使用しないた
め、ジグリシジルエーテル基とフエノール性水酸
基のモル数の比を0.8〜1.2に設定する必要があ
る。どちらのモル数が多くなつても、耐熱性、耐
薬品性が悪くなる。 全体の臭素含率が15重量%未満では、耐熱効果
が得られず、15重量%以上で顕著な効果が発揮さ
れる。特に、20重量%以上になるとUL−94規格
でV−0級の自己消化性が得られる。耐熱性を増
すために、酸化アンチモン等の耐燃助剤、その他
充填剤、着色剤等の小量を添加してもよい。 実施例 本発明で用いるシート状基材としては、ガラス
繊維布、ガラス繊維不織布、アラミド繊維布、ア
ラミド繊維不織布、ポリエステル繊維布ポリエス
テル繊維不織布など及びこれらの混抄不織布、混
織布等であり特に限定しない。金属箔としては、
銅箔、アルミ箔、ニツケル箔等であり、導電性の
良好な金属箔であれば種類、厚みとも特に限定し
ない。また必要により接着剤付き金属箔を用いる
ことが出来る。接着剤としては、フエノール系、
エポキシ系、ブチラール系、ポリエステル系、ポ
リウレタン系及びその混合物など汎用の金属箔用
接着剤でよい。 本発明で使用するビスフエノール型2官能エポ
キシ樹脂は、ビスフエノールA型、ビスフエノー
ルF型などで特に限定しない。2官能フエノール
性水酸基を有した化合物と併用することにより、
架橋を生じず、直線的に重合するものである。 本発明で使用する3官能以上の多官能エポキシ
樹脂は、フエノールノボラツク型、クレゾールノ
ボラツク型、ビスフエノールAノボラツク型等で
特に限定しない。2官能フエノール性水酸基を有
した化合物は、テトラブロモビスフエノールA、
ビスフエノールAなどの2官能フエノール性水酸
基を有した化合物であれば特に限定しないが、テ
トラブロモビスフエノールA型の2官能フエノー
ル性水酸基を有した化合物の形で臭素を含有させ
る方が耐熱性が良好である。 実施例1〜2、比較例1〜4 ビスフエノール型2官能性エポキシ樹脂Ep−
828(エポキシ当量:195、油化シエル製)、多官能
エポキシ樹脂YDCN−704(クレゾールノボラツ
クエポキシ樹脂、エポキシ当量:210東都化成
製)、ポリサルフアイド骨格をもつジグリシジル
エーテルELEP−10(エポキシ当量:340、東レチ
オコール製)、テトラブロモビスフエノールA
(TBA、臭素含率59%)、ビスフエノールA、硬
化促進剤2−エチル−4−メチルイミダゾール
0.2重量部を第1表に示す配合割合でメチルエチ
ルケトンで混合溶解し、ガラス繊維布に樹脂量42
重量%になるように含浸、乾燥してプリプレグを
作製した。 そのプリプレグの両面に35μ厚の電解銅箔を配
置し、160℃、圧力50Kg/cm2で30分間加熱加圧し
て、0.2mm厚の銅張り積層板を得た。それぞれの
特性を第1表に併せて示す。 実施例 3 実施例2で作製したワニスをポリエステル不織
布に樹脂量88重量%になるように含浸、乾燥して
プリプレグを作製した。そのプリプレグを両面に
35μ厚の電解銅箔を配置し、160℃、圧力50Kg/
cm2で30分間加熱加圧して、0.2mm厚の銅張り積層
板を得た。その特性を第2表に示す。 実施例 4 実施例2で作製したワニスをアラミド繊維織布
(厚み:0.18mm)に樹脂量76重量%になるように
含浸、乾燥してプリプレグを作製した。そのプリ
プレグの両面に35μ厚の電解銅箔を配置し、160
℃、圧力50Kg/cm2で30分間加熱加圧して、0.2mm
厚の銅張り積層板を得た。その特性を第2表に示
す。
INDUSTRIAL APPLICATION FIELD The present invention relates to a method for manufacturing a flexible metal foil-clad laminate that has strong adhesion to metal foil. Conventional technology Conventionally, metal foil laminates for printed wiring have been made of hard phenol, epoxy copper laminates, polyester,
The main product was a flexible copper-clad laminate based on polyimide film. However, hard copper-clad laminates cannot be bent and applied to three-dimensional wiring, and there are limits to their use in reducing the size and weight of electronic devices. Flexible copper clad laminates are made of polyester polyimide,
Polyamide-imide films and the like have been used, but because these bases do not contain reinforcing base materials, they are generally too soft and have the disadvantage that various parts such as 1C cannot be mounted on them. In order to solve these drawbacks, it is necessary to make the rigid laminate board bendable by making the resin composition that constitutes the laminate flexible. Generally, in order to make a resin composition flexible, it is possible to (1) reduce the crosslink density and (2) add a flexible resin. However, due to the reduction in crosslinking density, when using reactive diluents such as monofunctional glycidyl ethers, uncured substances remain within the molecules of the cured resin, making it easily attacked by chemicals and solvents, and reducing heat resistance. At the same time, it was not possible to make the laminate sufficiently flexible so that it could be bent. On the other hand, when general flexible resins such as dimer acid-modified epoxy resins are added to make them flexible, their reactivity differs from that of general bisphenol-type bifunctional epoxy resins, so chemicals, solvents, etc. It was not possible to add it in large quantities because the chemical resin would be eluted, resulting in poor chemical resistance, poor heat resistance, and poor adhesive strength. Problems to be Solved by the Invention As described above, it has been extremely difficult to obtain a flexible epoxy resin laminate with excellent chemical resistance, heat resistance, and adhesive strength with metal foil. The present invention eliminates the above-mentioned drawbacks; it is bendable, allows parts to be mounted, has chemical resistance,
The purpose of the present invention is to provide a metal foil-clad laminate having excellent heat resistance and adhesive strength with metal. Means for Solving the Problems In order to achieve the above object, the present invention involves laminating and molding a prepreg obtained by impregnating a base material with an epoxy resin composition together with a metal foil laminated on the surface. Obtain a prepreg by impregnating a base material with a composition containing the following substances (a) to (d) (a) Bisphenol type bifunctional epoxy resin (b) Trifunctional or higher polyfunctional epoxy resin (ha) ) A dicrycidyl ether having a polysulfide skeleton (d) A compound having a difunctional phenolic hydroxyl group, and 5 to 30% by weight of the above (b) in the composition, 5 to 40% by weight of the (c), The molar ratio of glycidyl ether and phenolic hydroxyl group is 0.8 to 1.2. Further, in order to impart flame retardancy, at least a portion of the substance (d) above contains bromine, and the bromine content is 15% by weight or more of the total. Function In the present invention, a bisphenol-type difunctional epoxy resin and a compound having a difunctional phenolic hydroxyl group are used in combination to directly polymerize without crosslinking, thereby making the laminate easy to bend. Then, the crosslinking density is appropriately adjusted by adding a polyfunctional epoxy resin having trifunctionality or more. The amount of the trifunctional or higher functional epoxy resin added is preferably 5 to 30% by weight. Addition amount of trifunctional or higher polyfunctional epoxy resin is 5% by weight
If the amount is less than 30% by weight, the crosslinking density will be too small, resulting in poor chemical resistance and heat resistance. Unable to maintain flexibility. On the other hand, the diglycidyl ether with a polysulfide skeleton used in the present invention has better adhesion to metal foil and better chemical resistance than when ordinary flexible epoxy resin is added. .
The amount added was preferably 4 to 40% by weight. If the added amount of diglycidyl ether having a polysulfide skeleton is less than 5% by weight, the flexibility will be insufficient and bending will not be possible, and if it exceeds 40% by weight, the heat resistance will be significantly reduced. In the present invention, without using a curing agent for epoxy resins (for example, an ammine compound), crosslinking is performed using a polyfunctional epoxy resin having three or more functionalities, and a polysulfide skeleton that is a flexible epoxy resin is used. This goal is achieved through the synergistic effect of the flexibilization of diglycidyl ether. Since no ordinary curing agent is used, it is necessary to set the molar ratio of diglycidyl ether group to phenolic hydroxyl group to 0.8 to 1.2. No matter which mole number increases, heat resistance and chemical resistance deteriorate. If the total bromine content is less than 15% by weight, no heat resistance effect will be obtained, and if it is 15% by weight or more, a remarkable effect will be exhibited. In particular, when the content is 20% by weight or more, self-extinguishing properties of V-0 class according to the UL-94 standard can be obtained. In order to increase heat resistance, a small amount of a combustion resistant additive such as antimony oxide, other fillers, colorants, etc. may be added. Examples Sheet-like substrates used in the present invention include glass fiber cloth, glass fiber non-woven fabric, aramid fiber cloth, aramid fiber non-woven fabric, polyester fiber cloth, polyester fiber non-woven fabric, mixed non-woven fabrics, mixed woven fabrics, etc., and are not particularly limited. do not. As metal foil,
The metal foil may be copper foil, aluminum foil, nickel foil, etc., and the type and thickness are not particularly limited as long as the metal foil has good conductivity. Moreover, metal foil with adhesive can be used if necessary. As adhesives, phenolic,
General-purpose metal foil adhesives such as epoxy, butyral, polyester, polyurethane, and mixtures thereof may be used. The bisphenol type bifunctional epoxy resin used in the present invention is not particularly limited, and may be bisphenol A type, bisphenol F type, or the like. By using in combination with a compound having a difunctional phenolic hydroxyl group,
It polymerizes linearly without crosslinking. The trifunctional or higher functional epoxy resin used in the present invention is not particularly limited, and may be of the phenol novolak type, cresol novolak type, bisphenol A novolak type, or the like. Compounds having a difunctional phenolic hydroxyl group include tetrabromobisphenol A,
There is no particular limitation as long as it is a compound having a difunctional phenolic hydroxyl group such as bisphenol A, but it is better to contain bromine in the form of a compound having a difunctional phenolic hydroxyl group such as tetrabromobisphenol A, which has better heat resistance. In good condition. Examples 1-2, Comparative Examples 1-4 Bisphenol type bifunctional epoxy resin Ep-
828 (epoxy equivalent: 195, made by Yuka Ciel), polyfunctional epoxy resin YDCN-704 (cresol novolatile epoxy resin, epoxy equivalent: 210 made by Toto Kasei), diglycidyl ether ELEP-10 with polysulfide skeleton (epoxy equivalent: 340, Toray Thiokol), Tetrabromobisphenol A
(TBA, bromine content 59%), bisphenol A, curing accelerator 2-ethyl-4-methylimidazole
Mix and dissolve 0.2 parts by weight with methyl ethyl ketone at the mixing ratio shown in Table 1, and apply resin amount of 42 parts to glass fiber cloth.
A prepreg was prepared by impregnating and drying the sample to a weight percentage. Electrolytic copper foils with a thickness of 35 μm were placed on both sides of the prepreg, and heated and pressed at 160° C. and a pressure of 50 kg/cm 2 for 30 minutes to obtain a 0.2 mm thick copper-clad laminate. The characteristics of each are also shown in Table 1. Example 3 A polyester nonwoven fabric was impregnated with the varnish prepared in Example 2 to a resin content of 88% by weight, and dried to produce a prepreg. Apply the prepreg to both sides.
A 35μ thick electrolytic copper foil was placed at 160℃ and a pressure of 50Kg/
A copper-clad laminate with a thickness of 0.2 mm was obtained by heating and pressing at cm 2 for 30 minutes. Its properties are shown in Table 2. Example 4 An aramid fiber woven fabric (thickness: 0.18 mm) was impregnated with the varnish produced in Example 2 to a resin content of 76% by weight, and dried to produce a prepreg. Electrolytic copper foil with a thickness of 35μ is placed on both sides of the prepreg, and
℃, pressure 50Kg/ cm2 for 30 minutes, 0.2mm
A thick copper-clad laminate was obtained. Its properties are shown in Table 2.

【表】【table】

【表】 上記特性の試験方法は次のとおりである。 銅箔引きはがし強さ:JIS−C−6481に準拠。 はんだ耐熱性:280℃のはんだ浴上に浮かべ、ふ
くれが発生するまでの時間を測定した。 耐薬品性:トリクレンに常温で10分間浸せき後外
観を観察した。 評価基準:○ 異常なし、△ 若干肌荒れ、
× 肌荒れ 折り曲げ性:第1図に示すように、積層板1を、
クラツクを生じずに折り曲げ可能な最小半径の
円柱棒2に巻き付け(a)、その後折り曲げ力を解
除して折り曲げ状態を保持できる半径Rを示す
(b)。 耐燃性:UL−94の規格に従い測定した。 発明の効果 本発明は、上記のように、ビスフエノール型2
官能エポキシ樹脂、3官能以上の多官能エポキシ
樹脂、ポリサルフアイド骨格を持つたジクリシジ
ルエーテル2官能フエノール性水酸基を有した化
合物を配合した樹脂組成物を、シート状基材に含
浸乾燥して得たプリプレグを金属箔と重ね合わせ
加熱加圧して積層板を製造するものである。これ
によつて、折り曲げできるほど可とう性に富みか
つ、優れた接着強度、耐熱性、耐薬品性に優れて
おり、立体印刷配線用基板として極めて価値が高
いものである。
[Table] The test method for the above characteristics is as follows. Copper foil peeling strength: Compliant with JIS-C-6481. Soldering heat resistance: Floated on a solder bath at 280°C and measured the time until blistering occurred. Chemical resistance: The appearance was observed after immersing it in trichlene for 10 minutes at room temperature. Evaluation criteria: ○ No abnormality, △ Slightly rough skin,
× Rough surface bendability: As shown in Fig. 1, the laminate 1 is
It is wrapped around a cylindrical rod 2 with the minimum radius that can be bent without causing a crack (a), and then the bending force is released and the radius R that can maintain the bent state is shown.
(b). Flame resistance: Measured according to the UL-94 standard. Effects of the Invention As described above, the present invention provides bisphenol type 2
A prepreg obtained by impregnating and drying a sheet-like base material with a resin composition containing a functional epoxy resin, a trifunctional or higher polyfunctional epoxy resin, and a compound having a dicrycidyl ether difunctional phenolic hydroxyl group having a polysulfide skeleton. A laminate is produced by stacking the metal foil on top of the metal foil and applying heat and pressure. As a result, it is highly flexible enough to be bent and has excellent adhesive strength, heat resistance, and chemical resistance, making it extremely valuable as a substrate for three-dimensional printed wiring.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は積層板の折り曲げ性の試験の方法を示
す説明図である。
FIG. 1 is an explanatory diagram showing a method of testing the bendability of a laminate.

Claims (1)

【特許請求の範囲】 1 下記の(イ)〜(ニ)の物質を配合してなり、 (ロ)の配合が5〜30重量% (ハ)の配合が5〜40重量% グリシジルエーテル基とフエノール性水酸基の
モル比が0.8〜1.2 である樹脂組成物をシート状基材を含浸乾燥して
得たプリプレグを、表面に載置した金属箔と共に
積層成形する金属箔張り積層板の製造法。 (イ) ビスフエノール型2官能性エポキシ樹脂 (ロ) 3官能以上の多官能エポキシ樹脂 (ハ) ポリサルフアイド骨格をもつジグリシジルエ
ーテル (ニ) 2官能フエノール性水酸基をもつ化合物 2 (ニ)の物質の少なくとも一部が臭素を含有し、
臭素の含有量が全体の15重量%以上である請求項
1記載の金属箔張り積層板の製造法。
[Scope of Claims] 1 The following substances (a) to (d) are blended, and (b) is 5 to 30% by weight (c) is 5 to 40% by weight Glycidyl ether group and A method for producing a metal foil-clad laminate, in which a prepreg obtained by impregnating and drying a sheet-like base material with a resin composition having a molar ratio of phenolic hydroxyl groups of 0.8 to 1.2 is laminated together with metal foil placed on the surface. (a) Bisphenol type bifunctional epoxy resin (b) Trifunctional or higher polyfunctional epoxy resin (c) Diglycidyl ether having a polysulfide skeleton (d) Compound having a difunctional phenolic hydroxyl group 2 (d) at least a portion contains bromine,
2. The method for producing a metal foil laminate according to claim 1, wherein the bromine content is 15% by weight or more of the total bromine content.
JP23826888A 1988-09-22 1988-09-22 Manufacture of metallic foil plated laminate Granted JPH0286434A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23826888A JPH0286434A (en) 1988-09-22 1988-09-22 Manufacture of metallic foil plated laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23826888A JPH0286434A (en) 1988-09-22 1988-09-22 Manufacture of metallic foil plated laminate

Publications (2)

Publication Number Publication Date
JPH0286434A JPH0286434A (en) 1990-03-27
JPH0575581B2 true JPH0575581B2 (en) 1993-10-20

Family

ID=17027656

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23826888A Granted JPH0286434A (en) 1988-09-22 1988-09-22 Manufacture of metallic foil plated laminate

Country Status (1)

Country Link
JP (1) JPH0286434A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7274105B2 (en) * 2018-04-20 2023-05-16 三菱瓦斯化学株式会社 Thermosetting composition, prepreg, laminate, metal foil clad laminate, printed wiring board and multilayer printed wiring board

Also Published As

Publication number Publication date
JPH0286434A (en) 1990-03-27

Similar Documents

Publication Publication Date Title
EP0466299B1 (en) Epoxy resin composition, epoxy resin cured material, and laminated sheet lined with copper
JPS60235844A (en) Prepreg sheet and laminate thereof
JPH0575581B2 (en)
JPH0959346A (en) Epoxy resin composition for laminate
JP2720726B2 (en) Composite laminate
JPH09143247A (en) Resin composition for laminate, prepreg and laminate
JP4479079B2 (en) Prepreg and laminate
JP2595850B2 (en) Resin composition for laminate and laminate
JPS6225132A (en) Production of laminated sheet
JP3383440B2 (en) Copper clad laminate
JP3735911B2 (en) Epoxy resin composition and laminate using the same
JPS61179221A (en) Epoxy glass/copper laminate
JPH09141781A (en) Manufacture of laminated plate for printed circuit
JP3546594B2 (en) Epoxy resin composition, prepreg and laminate
JP2935329B2 (en) Manufacturing method of metal foil clad laminate
JPH06270337A (en) Highly heat-resistant prepreg
JPS5866385A (en) Method of producing printed circuit board
JPS61195115A (en) Adhesive composition for flexible printed circuit board
JPH05286074A (en) Copper-clad laminate
JPS63270747A (en) Production of laminate
JP2006069101A (en) Copper clad laminate and flexible printed wiring board
JPH0780994A (en) Copper-clad laminated plate
JPS625181B2 (en)
JPH06102712B2 (en) Resin composition for laminated board
JPH0768331B2 (en) Epoxy resin composition, copper clad laminate and manufacturing method