JPH0575060A - Manufacture of semiconductor storage device - Google Patents

Manufacture of semiconductor storage device

Info

Publication number
JPH0575060A
JPH0575060A JP3234588A JP23458891A JPH0575060A JP H0575060 A JPH0575060 A JP H0575060A JP 3234588 A JP3234588 A JP 3234588A JP 23458891 A JP23458891 A JP 23458891A JP H0575060 A JPH0575060 A JP H0575060A
Authority
JP
Japan
Prior art keywords
insulating film
etching
bit line
film
charge storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3234588A
Other languages
Japanese (ja)
Other versions
JP2712926B2 (en
Inventor
Hisashi Ogawa
久 小川
Shozo Okada
昌三 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP3234588A priority Critical patent/JP2712926B2/en
Priority to US07/944,883 priority patent/US5242852A/en
Publication of JPH0575060A publication Critical patent/JPH0575060A/en
Application granted granted Critical
Publication of JP2712926B2 publication Critical patent/JP2712926B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To secure the electrical insulation between a bit line and an electric charge storage electrode even though the bit line is significantly exposed during the opening of a contact of the electric charge storage electrode due to a deviation in a lithography process. CONSTITUTION:An SiO2 film 2 is first formed on a p-type semiconductor substrate 1 by a LOCOS method. Thereafter, a switching transistor and a bit line 6 are formed. Then, for connecting an electric charge storage electrode 9 to a diffusion layer 7, anisotropic etching is performed using a resist pattern 7 as mask until part of the bit line is exposed from the first insulation film 3. Then, the resist pattern 7 is removed, the second insulation film 8 made of a high temperature oxide silicon film is deposited to 150nm, a side wall is formed by etching back the second insulation film 8 by the 30% over-etching relative to deposition film thickness, and then the bit line 6 can be electrically insulated from the electric charge storage electrode 9 with the sidewall of the second insulation film 8.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は 半導体記憶装置に関
し、特にDRAM(ダイナミック・ランダム・アクセス
・メモリ)においてスイッチングトランジスタ及びビッ
ト線の上部に記憶容量を形成する構成のスタック型メモ
リセルの製造方法に関するものである。
The present invention relates to The present invention relates to a semiconductor memory device, and more particularly to a method of manufacturing a stack type memory cell having a structure in which a storage capacitor is formed above a switching transistor and a bit line in a DRAM (Dynamic Random Access Memory).

【0002】[0002]

【従来の技術】高密度DRAM用メモリセルとして、1
トランジスタと1個の記憶容量から構成される「1トラ
ンジスタ、1キャパシタ」型メモリセルは、構成要素が
少なく、セル面積の微小化が容易であるため、広く使用
されている。特に素子のより一層の微細化の要求に答え
るため、スイッチングトランジスタの上部に記憶容量を
形成するスタック型メモリセルが有力な候補の一つとな
っている。
2. Description of the Related Art As a memory cell for high density DRAM, 1
A "one-transistor, one-capacitor" type memory cell composed of a transistor and one storage capacitor is widely used because it has few constituent elements and the cell area can be easily miniaturized. In particular, in order to meet the demand for further miniaturization of elements, a stack type memory cell forming a storage capacitor above a switching transistor has become one of the promising candidates.

【0003】図2は半導体記憶装置の上面図、図4及び
図5は図2に示した半導体記憶装置の従来の製造方法の
工程断面図を示し、図2のA−A面に於ける断面図を示
したものである。以下、第1の従来例として特願平2−
207442に出願された従来技術について図2及び図
4を用いて説明する。
FIG. 2 is a top view of the semiconductor memory device, and FIGS. 4 and 5 are process sectional views of the conventional method for manufacturing the semiconductor memory device shown in FIG. 2, showing a cross section taken along the line AA of FIG. The figure is shown. Hereinafter, as a first conventional example, Japanese Patent Application No. 2-
The conventional technique filed in 207442 will be described with reference to FIGS. 2 and 4.

【0004】図2、図4において、スイッチングトラン
ジスタの活性領域21がSiO2膜2によって電気的に
分離され、その上部にワード線20、ビット線6、電荷
蓄積電極9、容量絶縁膜10、プレート電極11が順に
形成されている。活性領域21はビット線コンタクト2
2によってビット線6と、また電荷蓄積電極コンタクト
23によって電荷蓄積電極9と各々接続されている。活
性領域21、ビット線6、電荷蓄積電極9は、各々のコ
ンタクト部以外では絶縁膜によって相互に電気的に絶縁
されている。
In FIGS. 2 and 4, the active region 21 of the switching transistor is electrically separated by the SiO 2 film 2, and the word line 20, the bit line 6, the charge storage electrode 9, the capacitance insulating film 10 and the plate electrode are formed on the active region 21. 11 are sequentially formed. The active region 21 is the bit line contact 2
The bit line 6 is connected by 2 and the charge storage electrode 9 is connected by the charge storage electrode contact 23. The active region 21, the bit line 6, and the charge storage electrode 9 are electrically insulated from each other by an insulating film except for the contact portions.

【0005】図4(a)では、p型半導体基板1上にま
ずLOCOS法によってSiO2膜2を形成する。その
後公知技術を用いてスイッチングトランジスタ及びビッ
ト線6を形成する。ここで7はスイッチングトランジス
タのソース/ドレインであるn+型の拡散層、3は第1
の絶縁膜、6はビット線である。次に電荷蓄積電極9と
拡散層7との接続を行うためにレジストパターン17を
マスクとして異方性エッチングによって第1の絶縁膜3
に開口部13を設けることにより拡散層を露出させる。
この時、素子が微細化するに従ってリソグラフィー工程
に於ける合わせずれにより簡単にビット線が露出してし
まう。そこで、次に図4(b)のように第2の絶縁膜8
で開口部13の側壁を被覆した後、図4(c)のように
電荷蓄積電極9を形成する。
In FIG. 4A, the SiO 2 film 2 is first formed on the p-type semiconductor substrate 1 by the LOCOS method. After that, the switching transistor and the bit line 6 are formed by using a known technique. Here, 7 is an n + type diffusion layer which is the source / drain of the switching transistor, and 3 is the first
, And 6 is a bit line. Next, in order to connect the charge storage electrode 9 and the diffusion layer 7, the first insulating film 3 is anisotropically etched by using the resist pattern 17 as a mask.
The diffusion layer is exposed by providing the opening 13 in the.
At this time, as the device becomes finer, the bit line is easily exposed due to misalignment in the lithography process. Therefore, next, as shown in FIG. 4B, the second insulating film 8 is formed.
After covering the side wall of the opening 13 with, the charge storage electrode 9 is formed as shown in FIG.

【0006】次に第2の従来技術として図5を用いて説
明する。素子の高密度化にともない十分な電荷蓄積容量
を得るために、電荷蓄積電極の底面も電極面として利用
する構造がいくつか提案されているが、その一例として
弗化水素酸溶液を用いたウエットエッチングで第1の絶
縁膜3の一部を除去して第1の絶縁膜3と電荷蓄積電極
9の間に空間を設ける方法がある。
Next, a second conventional technique will be described with reference to FIG. Several structures have been proposed in which the bottom surface of the charge storage electrode is also used as the electrode surface in order to obtain a sufficient charge storage capacity as the device becomes higher in density. One example is a wet method using a hydrofluoric acid solution. There is a method of removing a part of the first insulating film 3 by etching to provide a space between the first insulating film 3 and the charge storage electrode 9.

【0007】図5(a)では第1の絶縁膜3上に第2の
絶縁膜8として窒化珪素膜、さらに第3の絶縁膜31と
して酸化珪素膜を順に堆積後、レジストパターン17を
マスクに、第3の絶縁膜31、第2の絶縁膜8、第1の
絶縁膜3を異方性エッチングにより除去し、開口部13
を開口する。次に、図5(b)ではビット線6と後に形
成する電荷蓄積電極との絶縁を確保するために第4の絶
縁膜33でサイドウオールを形成する。その後、図5
(c)のように第1の導電膜32として多結晶シリコン
を堆積後図5(d)のように電荷蓄積電極のパターニン
グを行なう。そして図5(e)のように第3の絶縁膜3
1である酸化珪素膜を弗化水素酸溶液を用いて除去し、
電荷蓄積電極9の底面と第2の絶縁膜8との間に空間1
4を形成しこの空間14により露出した電荷蓄積電極面
も電極として使用して十分な蓄積容量が得られる。
In FIG. 5A, a silicon nitride film as the second insulating film 8 and a silicon oxide film as the third insulating film 31 are sequentially deposited on the first insulating film 3 and then the resist pattern 17 is used as a mask. , The third insulating film 31, the second insulating film 8, and the first insulating film 3 are removed by anisotropic etching to form the opening 13
To open. Next, in FIG. 5B, a sidewall is formed with the fourth insulating film 33 in order to ensure insulation between the bit line 6 and a charge storage electrode that will be formed later. After that, FIG.
After depositing polycrystalline silicon as the first conductive film 32 as shown in (c), the charge storage electrode is patterned as shown in FIG. 5 (d). Then, as shown in FIG. 5E, the third insulating film 3 is formed.
The silicon oxide film of No. 1 is removed using a hydrofluoric acid solution,
A space 1 is formed between the bottom surface of the charge storage electrode 9 and the second insulating film 8.
4, the charge storage electrode surface exposed by the space 14 is also used as an electrode to obtain a sufficient storage capacity.

【0008】[0008]

【発明が解決しようとする課題】しかしながら上記のよ
うな構成では、以下のような問題点を有していた。ま
ず、第1の従来技術では、ビット線6の露出幅が第2の
絶縁膜8の膜厚より大きければ、第2の絶縁膜8の側壁
保護膜を形成後もビット線露出部15が残ってしまう。
従って、図4(c)のように電荷蓄積電極9形成後にビ
ット線6と電荷蓄積電極9がショートしてしまうという
問題点を有していた。16はショート箇所を示す。
However, the above-mentioned configuration has the following problems. First, in the first conventional technique, if the exposed width of the bit line 6 is larger than the film thickness of the second insulating film 8, the bit line exposed portion 15 remains even after the sidewall protective film of the second insulating film 8 is formed. Will end up.
Therefore, as shown in FIG. 4C, there is a problem that the bit line 6 and the charge storage electrode 9 are short-circuited after the charge storage electrode 9 is formed. 16 indicates a short-circuited portion.

【0009】かかる点に鑑み本発明の第1の目的は、リ
ソグラフィー工程に於ける合わせずれによって開口部を
設けた際にビット線が大きく露出した場合においても、
ビット線と電荷蓄積電極との電気的絶縁を確保すること
が出来る半導体記憶装置の製造方法を提供することを目
的とする。
In view of the above point, the first object of the present invention is to provide a large exposure of the bit line when the opening is provided due to misalignment in the lithography process.
An object of the present invention is to provide a method of manufacturing a semiconductor memory device capable of ensuring electrical insulation between a bit line and a charge storage electrode.

【0010】次に第2の従来技術ではウエットエッチン
グの際に図5(d)のように第4の絶縁膜33のサイド
ウオールを介して第1の絶縁膜3もエッチングされて再
びビット線が露出してしまう。この状態で、容量絶縁
膜、プレート電極を形成すると、ビット線−プレート電
極間の容量が増大する等、素子の安定動作に不都合が生
じるという問題点を有していた。
Next, in the second conventional technique, during wet etching, the first insulating film 3 is also etched through the sidewalls of the fourth insulating film 33 as shown in FIG. Exposed. If the capacitance insulating film and the plate electrode are formed in this state, there is a problem in that the capacitance between the bit line and the plate electrode increases, which causes inconvenience in stable operation of the device.

【0011】そこで、本発明の第2の目的は、絶縁膜の
サイドウオールを用いても、電荷蓄積電極の底面も電極
面として用いる半導体記憶装置を、第1の絶縁膜をエッ
チングすることなく安定に製造できる半導体記憶装置の
製造方法を提供することを目的とする。
Therefore, a second object of the present invention is to stabilize a semiconductor memory device in which the bottom surface of the charge storage electrode is also used as an electrode surface even if the side wall of the insulating film is used, without etching the first insulating film. It is an object of the present invention to provide a method for manufacturing a semiconductor memory device that can be manufactured according to the above method.

【0012】[0012]

【課題を解決するための手段】上記問題点を解決するた
めに本発明の第1の発明は、スイッチングトランジスタ
の拡散層と電荷蓄積電極との電気的接続を行なう為に、
前記ビット線が露出するまで第1の絶縁膜の一部をエッ
チングする工程と、露出したビット線をエッチングする
工程と、残存する前記第1の絶縁膜をエッチングして開
口部を設ける工程と、この開口部が被覆されるように第
2の絶縁膜を堆積する工程と、この第2の絶縁膜を少な
くとも堆積された膜厚分だけ異方性エッチング法でエッ
チバックする工程とを備え、ビット線と前記電荷蓄積電
極との電気的絶縁を確保する事を特徴とする半導体記憶
装置の製造方法である。
In order to solve the above-mentioned problems, the first invention of the present invention is to electrically connect a diffusion layer of a switching transistor and a charge storage electrode,
Etching a part of the first insulating film until the bit line is exposed, etching the exposed bit line, and etching the remaining first insulating film to provide an opening, The method includes a step of depositing a second insulating film so as to cover the opening, and a step of etching back the second insulating film by an anisotropic etching method by at least the deposited film thickness. A method of manufacturing a semiconductor memory device is characterized by ensuring electrical insulation between a line and the charge storage electrode.

【0013】また、本発明の第2の発明は、第1の絶縁
膜上に第2の絶縁膜、第3の絶縁膜、さらに電荷蓄積電
極の底部となる第1の導電膜を堆積する工程と、前記ス
イッチングトランジスタの拡散層と電荷蓄積電極との電
気的接続を行なう為に、前記第1の導電膜をエッチング
する工程と、第3の絶縁膜、第2の絶縁膜及び第1の絶
縁膜をエッチングして開口部を設ける工程と、この開口
部が被覆されるように第4の絶縁膜を堆積する工程と、
この第4の絶縁膜で前記第1の絶縁膜断面の一部が露出
し、且つビット線断面が被覆されるように異方性エッチ
ング法でエッチバックする工程と、前記スイッチングト
ランジスタの拡散層と前記第1の導電膜と電気的に接続
されるように第2の導電膜を堆積後、電荷蓄積電極を形
成する工程と、前記第1及び第2の導電膜と第2の絶縁
膜に対して第3の絶縁膜のエッチングレートが十分に大
きなエッチング条件で第3の絶縁膜を選択的に除去する
工程を備え、ビット線と前記電荷蓄積電極との電気的絶
縁を確保し、且つ電荷蓄積電極の底面も電極として利用
する事を特徴とする半導体記憶装置の製造方法である。
A second aspect of the present invention is a step of depositing a second insulating film, a third insulating film, and a first conductive film to be the bottom of the charge storage electrode on the first insulating film. And a step of etching the first conductive film to electrically connect the diffusion layer of the switching transistor and the charge storage electrode, and a third insulating film, a second insulating film, and a first insulating film. A step of etching the film to provide an opening, and a step of depositing a fourth insulating film so as to cover the opening,
Etching back by an anisotropic etching method so that a part of the cross section of the first insulation film is exposed by the fourth insulation film and the cross section of the bit line is covered; and a diffusion layer of the switching transistor. A step of forming a charge storage electrode after depositing a second conductive film so as to be electrically connected to the first conductive film, and A step of selectively removing the third insulating film under an etching condition in which the etching rate of the third insulating film is sufficiently large, ensuring electrical insulation between the bit line and the charge storage electrode, and storing the charge. In the method of manufacturing a semiconductor memory device, the bottom surface of the electrode is also used as the electrode.

【0014】[0014]

【作用】本発明は上記した第1の構成によって第1の絶
縁膜に開口部を設けた際にビット線が大きく露出して
も、露出したビット線をエッチングする工程を追加する
事により垂直な開口部断面が得られるため、後の第2の
絶縁膜のサイドウオール形成後もビット線が露出するこ
となく、ビット線と電荷蓄積電極の絶縁を確保すること
ができる。
According to the present invention, even if the bit line is largely exposed when the opening is formed in the first insulating film according to the above-described first structure, a vertical step is added by adding a step of etching the exposed bit line. Since the cross section of the opening is obtained, it is possible to ensure the insulation between the bit line and the charge storage electrode without exposing the bit line even after forming the sidewall of the second insulating film later.

【0015】また、上記した第2の構成によって第3の
絶縁膜の開口部に於ける断面は第2の導電膜で完全に被
覆されるために、電荷蓄積電極形成後のウエットエッチ
ング時にエッチング液は第2の絶縁膜より下には浸入せ
ずに、第1の絶縁膜及び第4の絶縁膜がエッチングされ
ることはない。従って、ビット線と電荷蓄積電極との電
気的絶縁を確保し、且つ電荷蓄積電極の底面も電極とし
て利用してもプレート電極とビット線の間に十分な絶縁
膜を確保することができることとなる。
Further, since the cross section of the opening of the third insulating film is completely covered with the second conductive film by the above-described second structure, the etching solution is used during the wet etching after the charge storage electrode is formed. Does not penetrate below the second insulating film, and the first insulating film and the fourth insulating film are not etched. Therefore, it is possible to ensure electrical insulation between the bit line and the charge storage electrode, and to secure a sufficient insulating film between the plate electrode and the bit line even when the bottom surface of the charge storage electrode is used as an electrode. ..

【0016】[0016]

【実施例】以下本発明の一実施例の半導体記憶装置の製
造方法について、図面を参照しながら説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A method of manufacturing a semiconductor memory device according to an embodiment of the present invention will be described below with reference to the drawings.

【0017】(実施例1)図1は本発明の第1の実施例
における半導体記憶装置の製造方法の工程断面図を示す
ものであり、断面は図2のA−A面に沿ったものであ
る。
(Embodiment 1) FIG. 1 is a sectional view showing the steps of a method for manufacturing a semiconductor memory device according to the first embodiment of the present invention, the section being taken along the plane AA of FIG. is there.

【0018】図1(a)では、p型半導体基板1上にま
ずLOCOS法によってSiO2膜2を形成する。その
後、公知技術を用いてスイッチングトランジスタ及びビ
ット線6を形成する。ここで7はスイッチングトランジ
スタのソース/ドレインであるn+型の拡散層、3は第
1の絶縁膜、6はビット線である。次に電荷蓄積電極9
と拡散層7との接続を行うためにレジストパターン17
をマスクとして異方性エッチングによって第1の絶縁膜
3をビット線の一部が露出するまで異方性エッチングを
行なう。図1(a)は、リソグラフィー工程に於ける合
わせずれによりビット線が200nm露出した場合を示
す。
In FIG. 1A, a SiO2 film 2 is first formed on a p-type semiconductor substrate 1 by the LOCOS method. After that, the switching transistor and the bit line 6 are formed by using a known technique. Here, 7 is an n + type diffusion layer which is a source / drain of a switching transistor, 3 is a first insulating film, and 6 is a bit line. Next, the charge storage electrode 9
Pattern 17 for connecting the diffusion layer 7 and the diffusion layer 7.
Is used as a mask to anisotropically etch the first insulating film 3 until a part of the bit line is exposed. FIG. 1A shows a case where the bit line is exposed by 200 nm due to misalignment in the lithography process.

【0019】次に図1(b)では引続きレジストパター
ン7をマスクに露出したビット線6をエッチング除去
後、残存する第1の絶縁膜3をエッチング除去して垂直
な断面形状を持つ開口部13を開口する。
Next, in FIG. 1B, the bit line 6 exposed by using the resist pattern 7 as a mask is continuously removed by etching, and then the remaining first insulating film 3 is removed by etching to form an opening 13 having a vertical sectional shape. To open.

【0020】次に図1(c)では開口部13を設けた後
レジストパターン17を除去後、高温CVD酸化珪素膜
(以下HTOとする)よりなる第2の絶縁膜8を150
nm堆積後、堆積膜厚に対して30%のオーバーエッチ
ングで第2の絶縁膜8をエッチングバックしてサイドウ
オールを形成する。
Next, in FIG. 1C, after the opening 13 is provided and the resist pattern 17 is removed, a second insulating film 8 made of a high temperature CVD silicon oxide film (hereinafter referred to as HTO) 150 is formed.
After the nm deposition, the second insulating film 8 is etched back by overetching 30% of the deposited film thickness to form sidewalls.

【0021】その後図1(d)では、多結晶シリコンよ
りなる電荷蓄積電極9、窒化酸化シリコンよりなる容量
絶縁膜10、多結晶シリコンよりなるプレート電極11
を形成する。電荷蓄積電極9、容量絶縁膜10、及びプ
レート電極11より記憶容量が形成される。
Thereafter, in FIG. 1D, a charge storage electrode 9 made of polycrystalline silicon, a capacitive insulating film 10 made of silicon oxynitride, and a plate electrode 11 made of polycrystalline silicon.
To form. A storage capacitor is formed by the charge storage electrode 9, the capacitance insulating film 10, and the plate electrode 11.

【0022】以上のように本実施例によれば、開口部1
3を開口する際にビット線6が大きく露出しても、露出
したビット線6をエッチングする工程を追加することに
より垂直な断面形状を持つ開口部13を形成することが
可能で、第2の絶縁膜のサイドウォールでビット線6と
電荷蓄積電極9を電気的に絶縁することが可能である。
As described above, according to this embodiment, the opening 1
Even if the bit line 6 is largely exposed when opening 3, the opening 13 having a vertical cross-sectional shape can be formed by adding a step of etching the exposed bit line 6. The side wall of the insulating film can electrically insulate the bit line 6 and the charge storage electrode 9 from each other.

【0023】第1の絶縁膜3とビット線6のエッチング
条件はそれぞれCH2F2/CF4ガスを用いた反応性
イオンエッチングと、HCl/HBr/SF6/O2を
用いた反応性イオンエッチングで、各々の処理室を備え
たマルチチャンバ方式の装置を用いてウエハを大気にさ
らすことなく3段階のエッチングで開口部13を開口し
た。
The etching conditions for the first insulating film 3 and the bit line 6 are reactive ion etching using CH2F2 / CF4 gas and reactive ion etching using HCl / HBr / SF6 / O2, respectively. Using a multi-chamber system equipped with a chamber, the opening 13 was opened by three-step etching without exposing the wafer to the atmosphere.

【0024】尚、本実施例においてはマルチチャンバ方
式のエッチング装置で3段階のエッチングを行なった
が、同一処理室内で処理条件を変えて3段階のエッチン
グを行なってもよい。
In this embodiment, the multi-chamber type etching apparatus performs three-step etching, but three-step etching may be performed in the same processing chamber by changing the processing conditions.

【0025】(実施例2)図3は本発明の第2の実施例
における半導体記憶装置の製造方法の工程断面図を示す
ものであり、断面は図2のA−A面に沿ったものであ
る。図3(a)では、p型半導体基板1上にまずLOC
OS法によってSiO2膜2を形成する。その後、公知
技術を用いてスイッチングトランジスタ及びビット線6
を形成する。ここで7はスイッチングトランジスタのソ
ース/ドレインであるn+型の拡散層、3は第1の絶縁
膜である。次に第1の絶縁膜3上に第2の絶縁膜8とし
て窒化シリコンを30nm、第3の絶縁膜31としてH
TO30nm、さらに第1の導電膜32としてn+多結
晶シリコンを順次堆積後、レジストパターン7をマスク
として異方性エッチングによって第1の導電膜32をエ
ッチング後、第3の絶縁膜31、第2の絶縁膜8、第1
の絶縁膜3を順次エッチング除去し、開口部13を開口
する。
(Embodiment 2) FIG. 3 is a sectional view showing the steps of a method of manufacturing a semiconductor memory device according to a second embodiment of the present invention, the section being taken along the plane AA of FIG. is there. In FIG. 3A, LOC is first formed on the p-type semiconductor substrate 1.
The SiO 2 film 2 is formed by the OS method. After that, the switching transistor and the bit line 6 are
To form. Here, 7 is an n + type diffusion layer which is a source / drain of the switching transistor, and 3 is a first insulating film. Next, 30 nm of silicon nitride is used as the second insulating film 8 on the first insulating film 3, and H is used as the third insulating film 31.
TO 30 nm, and further, n + polycrystalline silicon is sequentially deposited as the first conductive film 32, the first conductive film 32 is etched by anisotropic etching using the resist pattern 7 as a mask, and then the third insulating film 31 and the second insulating film 31 are formed. Insulating film 8, first
The insulating film 3 is sequentially removed by etching to open the opening 13.

【0026】図3(b)では開口部13を設けた後レジ
ストパターン17を除去後、高温CVD酸化珪素膜(以
下HTOとする)よりなる第4の絶縁膜33を150n
m堆積後、第3の絶縁膜の断面が完全に露出するまで第
4の絶縁膜33をエッチングバックしてサイドウオール
を形成する。
In FIG. 3B, after forming the opening 13 and removing the resist pattern 17, a fourth insulating film 33 made of a high temperature CVD silicon oxide film (hereinafter referred to as HTO) is formed to a thickness of 150 n.
After the m deposition, the fourth insulating film 33 is etched back until the cross section of the third insulating film is completely exposed to form sidewalls.

【0027】図3(c)ではn+拡散層7と第1の導電
層32とに電気的に接続するように第2の導電膜34と
してn+多結晶シリコンを堆積する。
In FIG. 3C, n + polycrystalline silicon is deposited as the second conductive film 34 so as to be electrically connected to the n + diffusion layer 7 and the first conductive layer 32.

【0028】図3(d)では第2の導電膜34及び第1
の導電膜32をエッチングして電荷蓄積電極のパターニ
ングを行なう。
In FIG. 3D, the second conductive film 34 and the first conductive film 34 are formed.
The conductive film 32 is etched to pattern the charge storage electrode.

【0029】図3(e)では弗化水素酸と弗化アンモニ
ウムの混合溶液で第3の絶縁膜31をエッチング除去し
た後、窒化酸化シリコンよりなる容量絶縁膜10、多結
晶シリコンよりなるプレート電極11を形成する。電荷
蓄積電極9、容量絶縁膜10、及びプレート電極11よ
り記憶容量が形成される。
In FIG. 3E, after the third insulating film 31 is removed by etching with a mixed solution of hydrofluoric acid and ammonium fluoride, the capacitive insulating film 10 made of silicon oxynitride and the plate electrode made of polycrystalline silicon are formed. 11 is formed. A storage capacitor is formed by the charge storage electrode 9, the capacitance insulating film 10, and the plate electrode 11.

【0030】上記ウエットエッチング時には、電荷蓄積
電極9と、窒化シリコンよりなる第2の絶縁膜8がほと
んどエッチングされないために、エッチングストパーと
して働き、第3の絶縁膜31のみが選択的に除去でき
る。
During the wet etching, since the charge storage electrode 9 and the second insulating film 8 made of silicon nitride are hardly etched, they act as an etching stopper and only the third insulating film 31 can be selectively removed.

【0031】以上のように本実施例によれば、開口部1
3に於ける第3の絶縁膜断面が第2の導電膜34で完全
に被覆されるため、後のウエットエッチング時に第1の
絶縁膜3を損失することなく電荷蓄積電極の底面も電極
面として利用できる半導体記憶装置の製造が可能とな
る。また、第4の絶縁膜33のエッチングバック時に
は、第1の導電膜32がエッチングストッパーとなり層
間絶縁膜の膜減りを防止できる。
As described above, according to this embodiment, the opening 1
Since the cross section of the third insulating film in 3 is completely covered with the second conductive film 34, the bottom surface of the charge storage electrode also serves as an electrode surface without loss of the first insulating film 3 during the subsequent wet etching. It is possible to manufacture a usable semiconductor memory device. Further, at the time of etching back the fourth insulating film 33, the first conductive film 32 serves as an etching stopper to prevent the reduction of the interlayer insulating film.

【0032】第3の絶縁膜31、第2の絶縁膜8及び第
1の絶縁膜3と第1の導電膜32及びビット線6のエッ
チング条件はそれぞれCH2F2/CF4ガスを用いた
反応性イオンエッチングと、HCl/HBr/SF6/
O2を用いた反応性イオンエッチングで、各々の処理室
を備えたマルチチャンバ方式の装置を用いてウエハを大
気にさらすことなく4段階のエッチングで開口部13を
開口した。
The etching conditions for the third insulating film 31, the second insulating film 8, the first insulating film 3, the first conductive film 32, and the bit line 6 are reactive ion etching using CH2F2 / CF4 gas, respectively. And HCl / HBr / SF6 /
By reactive ion etching using O2, the opening 13 was opened by four-step etching without exposing the wafer to the atmosphere by using a multi-chamber system equipped with each processing chamber.

【0033】なお、本実施例においてはマルチチャンバ
方式のエッチング装置で3段階のエッチングを行なった
が、同一処理室内で処理条件を変えて4段階のエッチン
グを行なってもよい。
In this embodiment, the multi-chamber type etching apparatus performs three-step etching, but four-step etching may be performed in the same processing chamber by changing the processing conditions.

【0034】なお、、本実施例では、開口部13の開口
時にビット線6が露出しない場合を示したが、ビット線
6が露出した場合は第1の実施例の如くビット線エッチ
ングの工程を追加すれば、ビット線6と電荷蓄積電極9
との絶縁を確保して、且つ第1の絶縁膜3を損失するこ
となく電荷蓄積電極の底面も電極面として利用できる半
導体記憶装置の製造が可能となる。
In this embodiment, the bit line 6 is not exposed when the opening 13 is opened, but when the bit line 6 is exposed, the bit line etching process is performed as in the first embodiment. If added, the bit line 6 and the charge storage electrode 9
It is possible to manufacture a semiconductor memory device in which the bottom surface of the charge storage electrode can be used as an electrode surface without any loss of the first insulating film 3 while ensuring insulation with

【0035】また、本実施例に於ては電荷蓄積電極9は
単純なブロック型を示したが、もっと複雑な3次元構造
を実現するために酸化シリコンと多結晶シリコンの多層
構造を形成した後、酸化シリコン膜を除去するような電
荷蓄積電極の場合についても適用が可能である。
In the present embodiment, the charge storage electrode 9 has a simple block type, but after forming a multilayer structure of silicon oxide and polycrystalline silicon to realize a more complicated three-dimensional structure. The present invention can also be applied to the case of a charge storage electrode that removes a silicon oxide film.

【0036】[0036]

【発明の効果】以上のように本発明の第1の発明は第1
の絶縁膜に開口部を設けた際にビット線が大きく露出し
ても、露出したビット線をエッチングする工程を追加す
る事により垂直な開口部断面が得られるため、後の第2
の絶縁膜のサイドウオール形成後もビット線が露出する
ことなく、ビット線と電荷蓄積電極の絶縁を確保するこ
とができ、その実用的効果は大きい。
As described above, the first aspect of the present invention is the first aspect.
Even if the bit line is largely exposed when the opening is formed in the insulating film of, the vertical cross section of the opening can be obtained by adding the step of etching the exposed bit line.
Even after the side wall of the insulating film is formed, the bit line is not exposed and the insulation between the bit line and the charge storage electrode can be ensured, which has a large practical effect.

【0037】また、本発明の第2の発明によれば、開口
部に於ける第3の絶縁膜の断面は第2の導電膜で完全に
被覆されるために、電荷蓄積電極形成後のウエットエッ
チング時にエッチング液は第2の絶縁膜より下には浸入
せずに、第1の絶縁膜及び第4の絶縁膜がエッチングさ
れることはない。従って、ビット線と電荷蓄積電極との
電気的絶縁を確保し、且つ電荷蓄積電極の底面も電極と
して利用してもプレート電極とビット線の間に十分な絶
縁膜を確保することができ、その実用的効果は大きい。
Further, according to the second aspect of the present invention, since the cross section of the third insulating film in the opening is completely covered with the second conductive film, the wet state after the formation of the charge storage electrode is completed. At the time of etching, the etching liquid does not penetrate below the second insulating film, and the first insulating film and the fourth insulating film are not etched. Therefore, it is possible to secure electrical insulation between the bit line and the charge storage electrode, and to secure a sufficient insulating film between the plate electrode and the bit line even when the bottom surface of the charge storage electrode is used as an electrode. The practical effect is great.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例における工程断面図FIG. 1 is a process sectional view in a first embodiment of the present invention.

【図2】同実施例におけるメモリセルの表面図FIG. 2 is a surface view of a memory cell in the example.

【図3】本発明の第2の実施例における工程断面図FIG. 3 is a process sectional view in the second embodiment of the present invention.

【図4】第1の従来技術の工程断面図FIG. 4 is a process sectional view of a first conventional technique.

【図5】第2の従来技術の工程断面図FIG. 5 is a process sectional view of a second conventional technique.

【符号の説明】[Explanation of symbols]

2 SiO2膜 6 ビット線 7 n+拡散層 2 SiO2 film 6 bit line 7 n + diffusion layer

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】半導体基板上にスイッチングトランジスタ
及びその上部に形成されたビット線、さらにその上に形
成された記憶容量より構成されるDRAMの半導体記憶
装置において、前記スイッチングトランジスタの拡散層
と電荷蓄積電極との電気的接続を行なう為に、前記ビッ
ト線が露出するまで第1の絶縁膜の一部をエッチングす
る工程と、露出したビット線をエッチングする工程と、
残存する前記第1の絶縁膜をエッチングして開口部を設
ける工程と、この開口部が被覆されるように第2の絶縁
膜を堆積する工程と、この第2の絶縁膜を少なくとも堆
積された膜厚分だけ異方性エッチング法でエッチバック
する工程とを備え、前記ビット線と電荷蓄積電極との電
気的絶縁を確保する事を特徴とする半導体記憶装置の製
造方法。
1. A semiconductor memory device of a DRAM comprising a switching transistor, a bit line formed on the switching transistor on a semiconductor substrate, and a storage capacitor formed on the bit line, and a diffusion layer of the switching transistor and charge storage. A step of etching a part of the first insulating film until the bit line is exposed, and a step of etching the exposed bit line to electrically connect with the electrode;
A step of etching the remaining first insulating film to form an opening, a step of depositing a second insulating film so as to cover the opening, and a step of depositing at least the second insulating film. A method of manufacturing a semiconductor memory device, comprising the step of etching back by a thickness of an anisotropic etching method to ensure electrical insulation between the bit line and the charge storage electrode.
【請求項2】請求項1記載の第1の絶縁膜とビット線の
エッチングを絶縁膜エッチング処理室とビット線エッチ
ング処理室とを備えたマルチチャンバー方式のエッチン
グ装置を用いて3段階のマルチステップエッチングで行
なうことを特徴とする請求項1記載の半導体記憶装置の
製造方法。
2. A multi-chamber etching step for etching the first insulating film and the bit line according to claim 1 using a multi-chamber type etching apparatus having an insulating film etching processing chamber and a bit line etching processing chamber. 2. The method of manufacturing a semiconductor memory device according to claim 1, wherein the etching is performed.
【請求項3】半導体基板上にスイッチングトランジスタ
及びその上部に形成された記憶容量より構成されるDR
AMの半導体記憶装置において、第1の絶縁膜上に第2
の絶縁膜、第3の絶縁膜、さらに電荷蓄積電極の底部と
なる第1の導電膜を堆積する工程と、前記スイッチング
トランジスタの拡散層と電荷蓄積電極との電気的接続を
行なう為に、前記第1の導電膜をエッチングする工程
と、第3の絶縁膜、第2の絶縁膜及び第1の絶縁膜をエ
ッチングして開口部を設ける工程と、この開口部が被覆
されるように第4の絶縁膜を堆積する工程と、この第4
の絶縁膜で前記第1の絶縁膜断面の一部が露出し、且つ
ビット線断面が被覆されるように異方性エッチング法で
エッチバックする工程と、前記スイッチングトランジス
タの拡散層と前記第1の導電膜と電気的に接続されるよ
うに第2の導電膜を堆積後、電荷蓄積電極を形成する工
程と、前記第1及び第2の導電膜と第2の絶縁膜に対し
て第3の絶縁膜のエッチングレートが十分に大きなエッ
チング条件で第3の絶縁膜を選択的に除去する工程を備
え、ビット線と前記電荷蓄積電極との電気的絶縁を確保
し、且つ電荷蓄積電極の底面も電極として利用する事を
特徴とする半導体記憶装置の製造方法。
3. A DR comprising a switching transistor on a semiconductor substrate and a storage capacitor formed on the switching transistor.
In the semiconductor memory device of AM, the second insulating film is formed on the first insulating film.
For depositing an insulating film, a third insulating film, and a first conductive film that will be the bottom of the charge storage electrode, and for electrically connecting the diffusion layer of the switching transistor and the charge storage electrode, A step of etching the first conductive film, a step of etching the third insulating film, the second insulating film and the first insulating film to form an opening, and a fourth step of covering the opening. The step of depositing the insulating film of
Etching back by an anisotropic etching method so that a part of the cross section of the first insulation film is exposed by the insulation film and the cross section of the bit line is covered with the diffusion layer of the switching transistor and the first insulation film. Forming a charge storage electrode after depositing a second conductive film so as to be electrically connected to the second conductive film, and a third process for the first and second conductive films and the second insulating film. A step of selectively removing the third insulating film under an etching condition in which the etching rate of the insulating film is sufficiently large, ensuring electrical insulation between the bit line and the charge storage electrode, and the bottom surface of the charge storage electrode. A method for manufacturing a semiconductor memory device, characterized in that it is also used as an electrode.
【請求項4】請求項3記載の第1の導電膜と、第3、第
2及び第1の絶縁膜のエッチングを導電膜のエッチング
処理室と絶縁膜エッチング処理室とを備えたマルチチャ
ンバー方式のエッチング装置を用いて2段階のマルチス
テップエッチングで行なうことを特徴とする請求項3記
載の半導体記憶装置の製造方法。
4. A multi-chamber method comprising: the first conductive film according to claim 3; and a third conductive film etching process chamber for etching the third, second and first insulating films. 4. The method of manufacturing a semiconductor memory device according to claim 3, wherein the etching is performed by two-step multi-step etching.
【請求項5】請求項3記載の第1及び第2の導電膜が多
結晶シリコンで、第2の絶縁膜が窒化珪素膜で、第3の
絶縁膜が酸化珪素膜であることを特徴とする請求項3記
載の半導体記憶装置の製造方法。
5. The first and second conductive films according to claim 3 are polycrystalline silicon, the second insulating film is a silicon nitride film, and the third insulating film is a silicon oxide film. The method of manufacturing a semiconductor memory device according to claim 3.
JP3234588A 1990-08-03 1991-09-13 Method for manufacturing semiconductor memory device Expired - Lifetime JP2712926B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP3234588A JP2712926B2 (en) 1991-09-13 1991-09-13 Method for manufacturing semiconductor memory device
US07/944,883 US5242852A (en) 1990-08-03 1992-09-11 Method for manufacturing a semiconductor memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3234588A JP2712926B2 (en) 1991-09-13 1991-09-13 Method for manufacturing semiconductor memory device

Publications (2)

Publication Number Publication Date
JPH0575060A true JPH0575060A (en) 1993-03-26
JP2712926B2 JP2712926B2 (en) 1998-02-16

Family

ID=16973378

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3234588A Expired - Lifetime JP2712926B2 (en) 1990-08-03 1991-09-13 Method for manufacturing semiconductor memory device

Country Status (1)

Country Link
JP (1) JP2712926B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0697388A (en) * 1992-07-03 1994-04-08 Hyundai Electron Ind Co Ltd Formation method of semiconductor connection device
US5801443A (en) * 1996-08-19 1998-09-01 Mitsubishi Denki Kabushiki Kaisha Semiconductor device with short circuit prevention and method of manufacturing thereof
US5920124A (en) * 1997-01-22 1999-07-06 Mitsubishi Denki Kabushiki Kaisha Semiconductor device having misalignment resistive interconnect layers
US6069379A (en) * 1994-12-08 2000-05-30 Mitsubishi Denki Kabushiki Kaisha Semiconductor device and method of manufacturing the same
US6127734A (en) * 1995-08-25 2000-10-03 Mitsubishi Denki Kabushiki Kaisha Semiconductor device comprising a contact hole of varying width thru multiple insulating layers
US6160284A (en) * 1995-11-09 2000-12-12 Mitsubishi Denki Kabushiki Kaisha Semiconductor device with sidewall insulating layers in the capacitor contact hole

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0697388A (en) * 1992-07-03 1994-04-08 Hyundai Electron Ind Co Ltd Formation method of semiconductor connection device
US6069379A (en) * 1994-12-08 2000-05-30 Mitsubishi Denki Kabushiki Kaisha Semiconductor device and method of manufacturing the same
US6214664B1 (en) 1994-12-08 2001-04-10 Mitsubishi Denki Kabushiki Kaisha Method of manufacturing semiconductor device
US6127734A (en) * 1995-08-25 2000-10-03 Mitsubishi Denki Kabushiki Kaisha Semiconductor device comprising a contact hole of varying width thru multiple insulating layers
US6160284A (en) * 1995-11-09 2000-12-12 Mitsubishi Denki Kabushiki Kaisha Semiconductor device with sidewall insulating layers in the capacitor contact hole
US6309931B1 (en) 1995-11-09 2001-10-30 Mitsubishi Denki Kabushiki Kaisha Method of making a semiconductor device with sidewall insulating layers in the capacitor contact hole
US5801443A (en) * 1996-08-19 1998-09-01 Mitsubishi Denki Kabushiki Kaisha Semiconductor device with short circuit prevention and method of manufacturing thereof
US5920124A (en) * 1997-01-22 1999-07-06 Mitsubishi Denki Kabushiki Kaisha Semiconductor device having misalignment resistive interconnect layers
DE19740534B4 (en) * 1997-01-22 2004-07-29 Mitsubishi Denki K.K. Semiconductor device with at least two connection levels and method for their production

Also Published As

Publication number Publication date
JP2712926B2 (en) 1998-02-16

Similar Documents

Publication Publication Date Title
US6492245B1 (en) Method of forming air gap isolation between a bit line contact structure and a capacitor under bit line structure
US5223729A (en) Semiconductor device and a method of producing the same
JP2004104098A (en) Semiconductor device utilizing nitride film formed by low-temperature atomic layer deposition for etch-stop layer and method of manufacturing the same
US6110792A (en) Method for making DRAM capacitor strap
JPH09129850A (en) High permittivity capacitor of semiconductor element and its preparation
US6165840A (en) Method for fabricating a DRAM cell capacitor including forming first multilayer insulator, forming conductive plug, forming second insulator, and etching second and first insulators to form the storage node
US6238968B1 (en) Methods of forming integrated circuit capacitors having protected layers of HSG silicon therein
US6403431B1 (en) Method of forming in an insulating layer a trench that exceeds the photolithographic resolution limits
US5104821A (en) Method for fabricating stacked capacitors in a DRAM cell
US5604659A (en) Microelectronic device with centered storage capacitor cavity sized less than feature size
US6548348B1 (en) Method of forming a storage node contact hole in a porous insulator layer
JPH10189895A (en) Manufacture of semiconductor device
JP2712926B2 (en) Method for manufacturing semiconductor memory device
US6211008B1 (en) Method for forming high-density high-capacity capacitor
US5976981A (en) Method for manufacturing a reverse crown capacitor for DRAM memory cell
JPH10242417A (en) Semiconductor device and its manufacturing method
US5830792A (en) Method of making a stack capacitor in a DRAM cell
US6238970B1 (en) Method for fabricating a DRAM cell capacitor including etching upper conductive layer with etching byproduct forming an etch barrier on the conductive pattern
US6033966A (en) Method for making an 8-shaped storage node DRAM cell
US5242852A (en) Method for manufacturing a semiconductor memory device
KR100370169B1 (en) Method for manufacturing capacitor of semiconductor
JPH056975A (en) Semiconductor memory device and manufacture thereof
KR0135164B1 (en) Semiconductor memory device and fabrication method thereror
KR100266010B1 (en) Method of fabricating capacitor
KR100228272B1 (en) Process for forming contact of semiconductor device and structure thereof