JPH056975A - Semiconductor memory device and manufacture thereof - Google Patents

Semiconductor memory device and manufacture thereof

Info

Publication number
JPH056975A
JPH056975A JP3245549A JP24554991A JPH056975A JP H056975 A JPH056975 A JP H056975A JP 3245549 A JP3245549 A JP 3245549A JP 24554991 A JP24554991 A JP 24554991A JP H056975 A JPH056975 A JP H056975A
Authority
JP
Japan
Prior art keywords
film
insulating film
forming
etching
storage node
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3245549A
Other languages
Japanese (ja)
Other versions
JP3125353B2 (en
Inventor
Chiaki Kudo
千秋 工藤
Akihito Uno
彰人 宇野
Mikio Nishio
幹夫 西尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP03245549A priority Critical patent/JP3125353B2/en
Publication of JPH056975A publication Critical patent/JPH056975A/en
Application granted granted Critical
Publication of JP3125353B2 publication Critical patent/JP3125353B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Semiconductor Memories (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To provide a semiconductor memory device which is provided with no sharp angle at the end of a memory node and inhibits the generation of insulation breakdown and its manufacturing method. CONSTITUTION:A semiconductor memory device is a semiconductor memory device provided with a plurality of memory cells which include an accumulation capacity formed on a semiconductor board 1. The accumulation capacity comprises a memory node 10 whose edge angle is round, a capacity insulation film 11 formed on the memory node 10 and a plate electrode 12 formed on the capacity insulation film 11.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はスタック型のダイナミッ
ク・ランダムアクセス・メモリ(DRAM)等の半導体
記憶装置およびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor memory device such as a stack type dynamic random access memory (DRAM) and a manufacturing method thereof.

【0002】[0002]

【従来の技術】現在DRAMは高集積化の一途を辿り、
容量形成部を3次元的に形成する方法が提案されてい
る.このうち容量形成部を基板の上部に積み上げ記憶ノ
ードとするスタック型のDRAMは容量を増加するた
め、参考文献T.Ema et al."3-Dimensional Stacked Cap
acitor Cell for 16M and 64M DRAMs"IEEE Internation
al Electron Device MeetingTechical Digest,p592-59
5,Dec.1988等に各種の構造が提案されている。
2. Description of the Related Art Currently, DRAMs are becoming highly integrated,
A method has been proposed in which the capacitance forming portion is formed three-dimensionally. Among them, the stack type DRAM in which the capacity forming portion is stacked on the upper part of the substrate to serve as a storage node increases the capacity, and thus the reference T. Ema et al. "3-Dimensional Stacked Cap
acitor Cell for 16M and 64M DRAMs "IEEE Internation
al Electron Device MeetingTechical Digest, p592-59
5, various structures have been proposed in Dec.1988 and the like.

【0003】図5に従来の記憶ノ−ドを有する半導体装
置およびその製造方法の工程断面図を示す。図5(a)
に示すように半導体基板1上に素子間分離絶縁膜2およ
びスイッチングトランジスタのゲートであるワ−ド線3
を形成しスイッチングトランジスタの活性領域4を形成
した後、同図(b)に示すように層間絶縁膜5−A、5
−BとしてSiN膜、第1の酸化膜6−A、第1の導電
性膜7−Aとしてポリシリコン膜、第2の酸化膜6−B
を順次堆積し、その後にスイッチングトランジスタの活
性領域に達するコンタクト窓8を異方性エッチングによ
り開口する。その上に同図(c)に示すように第2の導
電性膜7−Bとしてポリシリコンを堆積し、レジストパ
タ−ン9を形成する。このレジストパタ−ン9をマスク
として、同図(d)に示すようにRIE(Reactive Ion
Etching)法を用いて第2の導電性膜7−B、第2の酸
化膜6−B、第1の導電性膜7−A、第1の酸化膜6−
Aを順次エッチングした後、HF系のエッチング液で第
1の酸化膜6−A並びに第2の酸化膜6−Bをエッチン
グし、記憶ノ−ド10を形成する。次に同図(e)に示
すように、記憶ノ−ド10の表面にSiO2 とSiNの
多層膜よりなる誘電体膜11を形成し、この誘電体を介
して第3の導電性膜12を堆積しセル・プレ−トを形成
し、続いてビット線13を形成する。
FIG. 5 is a sectional view showing the steps of a conventional semiconductor device having a memory node and its manufacturing method. Figure 5 (a)
As shown in FIG. 3, a device isolation insulating film 2 and a word line 3 which is a gate of a switching transistor are formed on a semiconductor substrate 1.
And the active region 4 of the switching transistor is formed, as shown in FIG.
-B is a SiN film, a first oxide film 6-A, a first conductive film 7-A is a polysilicon film, and a second oxide film 6-B.
Are sequentially deposited, and thereafter the contact window 8 reaching the active region of the switching transistor is opened by anisotropic etching. Polysilicon is deposited thereon as a second conductive film 7-B to form a resist pattern 9, as shown in FIG. Using the resist pattern 9 as a mask, as shown in FIG.
Etching method is used to form the second conductive film 7-B, the second oxide film 6-B, the first conductive film 7-A, and the first oxide film 6-.
After sequentially etching A, the first oxide film 6-A and the second oxide film 6-B are etched with an HF-based etching solution to form the memory node 10. Next, as shown in FIG. 2E, a dielectric film 11 made of a multilayer film of SiO2 and SiN is formed on the surface of the memory node 10, and a third conductive film 12 is formed through this dielectric. Deposit to form a cell plate, followed by formation of bit line 13.

【0004】[0004]

【発明が解決しようとする課題】このような従来の半導
体装置およびその製造方法では、記憶ノ−ドを形成する
際にRIE法を用いているため図6(a)に示すように
記憶ノ−ド10の端部に急峻な角ができた。この記憶ノ
−ドの端部の急峻な角では図6(b)のように電界が集
中し誘電体膜11の絶縁破壊が発生し易くなるという問
題があった。さらにこの急峻な角では誘電体膜を形成す
る際に850℃程度で酸化を行うと、参考文献Extended
Abstructs of the 16th (1984 International)Confere
nce on Solid State Devices and Materials,Kobe,198
4,pp.475-478に示すようなホーン現象のためより急峻な
角が発生することになる。更に多重フィン型のスタック
DRAM以外の構造においても急峻な角は存在し、製造
が困難であった。
In such a conventional semiconductor device and the manufacturing method thereof, since the RIE method is used when forming the memory node, the memory node as shown in FIG. A sharp corner was formed at the end of the door 10. At the steep corner of the end of the memory node, the electric field is concentrated and the dielectric breakdown of the dielectric film 11 is likely to occur as shown in FIG. 6B. Furthermore, if oxidation is performed at about 850 ° C. when forming a dielectric film at this steep angle, the reference document Extended
Abstructs of the 16th (1984 International) Confere
nce on Solid State Devices and Materials, Kobe, 198
A steeper angle is generated due to the horn phenomenon as shown in 4, pp.475-478. Further, even in structures other than the multi-fin type stacked DRAM, there are steep corners, which makes manufacturing difficult.

【0005】図6(b)には急峻な角として角度θが90
°の図を示した。誘電体膜への電界は急峻な角の角度に
より異なる。この角度と角へ集中する電界強度の関係を
図7に示す。図7では平坦な部分の電界強度を1として
計算している。図7に示すように電界は角度が小さくな
るに従い集中し、誘電体膜の絶縁膜破壊が発生し易くな
ることがわかる。さらに図8に同じ構造のDRAMを微
細化したときの断面図を示す。図8から明らかなよう
に、微細化を進めるに伴いストレージノード10の角度
は小さくなり(θ1>θ2>θ3)、図7の関係から誘電
体膜の絶縁破壊が発生し易くなる。また微細化を進める
とセルの容量が小さくなるため、これを補うためより表
面積の大きいストレージノードを形成する必要がある
が、多重フィン型をはじめとして急峻な角は増える。従
ってこの意味からも誘電体膜の絶縁破壊は発生しやすく
なる。
In FIG. 6 (b), the angle θ is 90 as a steep angle.
The figure of ° is shown. The electric field to the dielectric film varies depending on the angle of the steep angle. FIG. 7 shows the relationship between this angle and the electric field strength concentrated on the angle. In FIG. 7, the electric field strength in the flat portion is set to 1. As shown in FIG. 7, it can be seen that the electric field concentrates as the angle becomes smaller, and the insulation film breakdown of the dielectric film easily occurs. Further, FIG. 8 shows a sectional view when a DRAM having the same structure is miniaturized. As is clear from FIG. 8, as the miniaturization progresses, the angle of the storage node 10 becomes smaller (θ 1 > θ 2 > θ 3 ), and the dielectric breakdown of the dielectric film easily occurs from the relationship of FIG. 7. Further, as miniaturization progresses, the capacity of the cell decreases, so it is necessary to form a storage node with a larger surface area to compensate for this, but the steep angle increases, including the multi-fin type. Therefore, also in this sense, dielectric breakdown of the dielectric film is likely to occur.

【0006】本発明は上記課題を解決するもので、記憶
ノ−ドの端部に急峻な角を有せず、誘電体膜の絶縁破壊
が発生し難い半導体記憶装置およびその製造方法を提供
することを目的とする。
The present invention solves the above problems and provides a semiconductor memory device which does not have a steep corner at the end of the memory node and in which dielectric breakdown of the dielectric film does not easily occur, and a method for manufacturing the same. The purpose is to

【0007】[0007]

【課題を解決するための手段】本発明の半導体記憶装置
は、半導体基板上に形成された蓄積容量を含む複数のメ
モリセルを備えた半導体記憶装置であって、縁の角が丸
味を持つ形状である記憶ノードと、この記憶ノード上に
形成された容量絶縁膜と、この容量絶縁膜上に形成され
たプレート電極から前記蓄積容量が構成されたことを特
徴とする。
A semiconductor memory device of the present invention is a semiconductor memory device provided with a plurality of memory cells including a storage capacitor formed on a semiconductor substrate, and has a rounded corner. The storage capacitor is composed of a storage node, a capacitance insulating film formed on the storage node, and a plate electrode formed on the capacitance insulating film.

【0008】また前記記憶ノードの曲率半径が容量絶縁
膜の膜厚の4倍以上であることを特徴とする。さらに前
記記憶ノードは縁の角が角ばった形状である第1の部材
と、この第1の部材の縁を覆う第2の部材から構成さ
れ、この第2の部材により前記記憶ノードの縁の角が丸
味を持つ形状となることを特徴とする。
The radius of curvature of the storage node is at least four times the film thickness of the capacitive insulating film. Further, the storage node is composed of a first member having an angular edge and a second member covering the edge of the first member. The second member allows the edge corner of the storage node to be formed. Is characterized by having a rounded shape.

【0009】本発明の半導体記憶装置の製造方法は、半
導体基板上に形成された蓄積容量を含む複数のメモリセ
ルを備えた半導体記憶装置の製造方法であって、半導体
基板上に縁の角が丸味を持つ形状である記憶ノードを形
成する工程と、この記憶ノード上に容量絶縁膜を形成す
る工程と、この容量絶縁膜上にプレート電極を形成する
工程とを備え、前記蓄積容量が前記記憶ノード、容量絶
縁膜、プレート電極から構成されることを特徴とする。
A method of manufacturing a semiconductor memory device according to the present invention is a method of manufacturing a semiconductor memory device including a plurality of memory cells including a storage capacitor formed on a semiconductor substrate, wherein an edge corner is formed on the semiconductor substrate. The method includes the steps of forming a storage node having a rounded shape, forming a capacitor insulating film on this memory node, and forming a plate electrode on this capacitor insulating film, wherein the storage capacitor stores the memory It is characterized by being composed of a node, a capacitor insulating film, and a plate electrode.

【0010】また前記記憶ノードの形成方法として、半
導体基板上に絶縁膜を挟む導電性膜を含む多層構造を形
成する工程と、この多層構造を選択エッチングによって
パターン形成する工程と、前記絶縁膜をエッチングを用
いて除去する工程と、前記導電性膜の縁の急峻な角をエ
ッチングにより除去する工程とを備える。
As a method of forming the storage node, a step of forming a multilayer structure including a conductive film sandwiching an insulating film on a semiconductor substrate, a step of patterning the multilayer structure by selective etching, and the insulating film The method includes a step of removing by etching, and a step of removing a sharp corner of the edge of the conductive film by etching.

【0011】また前記記憶ノードの形成方法として、半
導体基板上に絶縁膜を挟む第1の導電性膜を含む多層構
造を形成する工程と、この多層構造を選択エッチングに
よってパターン形成する工程と、前記絶縁膜をエッチン
グを用いて除去する工程と、前記第1の導電性膜の縁を
覆う第2の導電性膜を形成する工程とを備える。
As a method of forming the storage node, a step of forming a multilayer structure including a first conductive film sandwiching an insulating film on a semiconductor substrate, a step of patterning the multilayer structure by selective etching, The method includes a step of removing the insulating film by etching, and a step of forming a second conductive film that covers an edge of the first conductive film.

【0012】また前記記憶ノードの形成方法として、半
導体基板上に絶縁膜を挟む導電性膜を含む多層構造を形
成する工程と、この多層構造を選択エッチングによって
パターン形成する工程と、前記絶縁膜をエッチングを用
いて除去する工程と、前記導電性膜の表面に酸化膜を形
成する工程と、この酸化膜をエッチングを用いて除去す
る工程とを備える。
As a method of forming the storage node, a step of forming a multi-layer structure including a conductive film sandwiching an insulating film on a semiconductor substrate, a step of patterning the multi-layer structure by selective etching, and a step of forming the insulating film The method includes a step of removing the oxide film by etching, a step of forming an oxide film on the surface of the conductive film, and a step of removing the oxide film by etching.

【0013】[0013]

【作用】本発明は上記した構成により、全ての角が丸め
られた記憶ノードを有することとにより、誘電体膜に電
界が集中しなくなることにより、誘電体膜が絶縁破壊を
起こすことを防ぐことができる。
According to the present invention, by having the storage node with all the corners rounded according to the above-mentioned structure, it is possible to prevent the dielectric film from causing dielectric breakdown due to the electric field not being concentrated on the dielectric film. You can

【0014】[0014]

【実施例】(実施例1)図1は第1の実施例の半導体装
置の製造方法の工程断面図である。図1(a)から図1
(d)までは従来例の図5(a)〜図5(d)と基本的
に同じであるが、さらに詳しく説明する。
(Embodiment 1) FIG. 1 is a process sectional view of a method for manufacturing a semiconductor device according to a first embodiment. FIG. 1 (a) to FIG.
The steps up to (d) are basically the same as those of the conventional example shown in FIGS. 5 (a) to 5 (d), but will be described in more detail.

【0015】図1(a)では、半導体基板1としてp型
シリコン基板上に素子間分離絶縁膜2として約400nmの
酸化膜をLOCOS法で形成し、スイッチングトランジスタ
のゲートであるワ−ド線3としてPを拡散したポリシリ
コン配線を形成し、スイッチングトランジスタの活性領
域4としてPおよびAsをイオン注入しn層を形成した
後、同図(b)に示すように層間絶縁膜5−Aとして40
0nmのBPSG(BorondopedPhospho-Silicate Glass)を
常圧CVD法により堆積し熱処理により平坦化した後に
層間絶縁膜5−Bとして約20nmのSiN膜をCVD法によ
り堆積した後、第1の酸化膜6−AとしてP(燐)を含
む酸化膜、第1の導電性膜7−AとしてPを含むポリシ
リコン膜、第2の酸化膜6−BとしてPを含む酸化膜を
順次CVD法により堆積し、その後に通常のフォトリソ
グラフィ法によりレジストパタ−ンを形成し、スイッチ
ングトランジスタの活性領域4に達するコンタクト窓8
を異方性エッチング、例えばRIE法により開口する。
本実施例では第1の酸化膜6−Aと第2の酸化膜6−B
はCHF3とO2の混合ガス、第1の導電性材料7−Aは
HBrとHClの混合ガスによりエッチングした。
In FIG. 1A, an oxide film of about 400 nm is formed as a device isolation insulating film 2 by a LOCOS method on a p-type silicon substrate as a semiconductor substrate 1 and a word line 3 which is a gate of a switching transistor. After that, a polysilicon wiring in which P is diffused is formed, P and As are ion-implanted as an active region 4 of the switching transistor to form an n layer, and then an interlayer insulating film 5-A is formed as shown in FIG.
After depositing 0 nm BPSG (Boron doped Phospho-Silicate Glass) by atmospheric pressure CVD method and flattening by heat treatment, depositing about 20 nm SiN film as an interlayer insulating film 5-B by CVD method, and then forming a first oxide film 6- An oxide film containing P (phosphorus) as A, a polysilicon film containing P as the first conductive film 7-A, and an oxide film containing P as the second oxide film 6-B are sequentially deposited by the CVD method, After that, a resist pattern is formed by an ordinary photolithography method, and a contact window 8 reaching the active region 4 of the switching transistor 8 is formed.
Are opened by anisotropic etching such as RIE.
In this embodiment, the first oxide film 6-A and the second oxide film 6-B are used.
Was etched with a mixed gas of CHF 3 and O 2 , and the first conductive material 7-A was etched with a mixed gas of HBr and HCl.

【0016】その上に同図(c)では、第2の導電性膜
7−BとしてPを含むポリシリコンを堆積し、レジスト
パタ−ン9を形成する。このレジストパタ−ン9をマス
クとして、同図(d)に示すようにRIE法を用いて第
1回目の異方性エッチング、例えばHBrガスを主成分
としたRIE法を用いて第2の導電性膜7−Bと第1の
導電性膜7−Aを、CHF3+O2系のガスを用いたRI
E法により第2の酸化膜6−Bと第1の酸化膜6−Aを
順次エッチングした後、HF系のエッチング液で第1の
酸化膜6−A並びに第2の酸化膜6−Bをエッチング
し、記憶ノ−ド10を形成する。本実施例では第1の導
電性膜7−A、第2の導電性膜7−BとしてそれぞれP
を含むポリシリコンを約200nm堆積した。ここでP
等の不純物を含むポリシリコンを用いた理由は不純物を
含むポリシリコンは減圧CVD法等により容易にコンタク
ト窓8を充填するように堆積でき、しかもF(フッ素)
もしくはBr(臭素)もしくはCl(塩素)のいずれか
を少なくとも含むガスにより容易にエッチングでき、従
来の技術と整合性が優れるためである。
In FIG. 3C, polysilicon containing P is deposited as the second conductive film 7-B to form a resist pattern 9. Using this resist pattern 9 as a mask, the first anisotropic etching is performed by using the RIE method as shown in FIG. 3D, for example, the second conductivity is obtained by using the RIE method using HBr gas as a main component. The film 7-B and the first conductive film 7-A were formed by RI using a CHF 3 + O 2 -based gas.
After the second oxide film 6-B and the first oxide film 6-A are sequentially etched by the E method, the first oxide film 6-A and the second oxide film 6-B are removed with an HF-based etching solution. The memory node 10 is formed by etching. In the present embodiment, P is used as the first conductive film 7-A and the second conductive film 7-B, respectively.
Was deposited to a thickness of about 200 nm. Where P
The reason why polysilicon containing impurities such as is used is that polysilicon containing impurities can be deposited so as to easily fill the contact window 8 by a low pressure CVD method or the like, and F (fluorine) can be deposited.
Alternatively, it can be easily etched by a gas containing at least either Br (bromine) or Cl (chlorine), and has excellent compatibility with the conventional technique.

【0017】次に同図(e)では、レジストパタ−ン9
を除去した後に、本発明の特徴とする記憶ノ−ド10を
等方性エッチングする。本実施例ではECR(Electron Cyc
lotron Resonance)法を用いSF6ガス流量:50sccm、圧
力:7Pa、マイクロ(μ)波:220mAにより約10nmエッチ
ングし記憶ノ−ド10の全ての急峻な角を除去した。本
実施例では多重フィン型の記憶ノードを用いたがn層の
フィン型や円筒型の記憶ノードを用いた場合などどのよ
うな構造の記憶ノードにおいても等方性エッチングとす
ることにより全ての急峻な角が除去できる。
Next, in FIG. 1E, the resist pattern 9
After the removal, the storage node 10, which is a feature of the present invention, is isotropically etched. In this embodiment, ECR (Electron Cyc
The lotron resonance method was used to etch about 10 nm with SF 6 gas flow rate: 50 sccm, pressure: 7 Pa, and microwave (μ) wave: 220 mA to remove all sharp corners of the memory node 10. In this embodiment, a multi-fin type storage node is used, but isotropic etching is used for any type of storage node such as a n-type fin type or cylindrical type storage node. You can remove sharp corners.

【0018】次に従来例と同じように図1(f)では、
記憶ノ−ド10の表面に誘電体膜11としてSiO2
約2nmと減圧CVD法によりSiNを約5nmを形成し、こ
の誘電体膜11を介して第3の導電性膜12として減圧
CVD法にP等の不純物を含むポリシリコン膜を200nm
を形成しセル・プレートとし、続いてビット線13を形
成する。
Next, as in the conventional example, in FIG.
SiO 2 of about 2 nm is formed as a dielectric film 11 on the surface of the memory node 10 and SiN of about 5 nm is formed by the low pressure CVD method, and the third conductive film 12 is formed by the low pressure CVD method through the dielectric film 11. 200nm of polysilicon film containing impurities such as P
To form a cell plate, and then form the bit line 13.

【0019】このように全ての角が丸められた記憶ノー
ドの一番急峻な部分は、ストレージノードの形状が直方
体になった場合は3面が集まる角になる。しかし、一般
にフォトグラフィ技術の解像度限界等によりシリコン基
板上方から見たストレージノードの角の曲率半径は25
00Å以上ある。さらに通常用いられる容量絶縁膜は熱
酸化膜に換算した場合の100Å以下であるため、容量
絶縁膜に対して十分丸まっているといえる。従ってスト
レージノードの角の電界集中は図9のように2次元で考
えられる。この場合は角の部分においても電荷は均一に
分布すると考えると、角の部分の電界集中は容量絶縁膜
の外周と内周の比に反比例する。
In this way, the steepest part of the storage node with all the corners rounded becomes a corner where three surfaces gather when the shape of the storage node is a rectangular parallelepiped. However, the curvature radius of the corner of the storage node viewed from above the silicon substrate is generally 25 due to the resolution limit of the photography technology.
There is more than 00Å. Furthermore, since the capacity insulating film normally used is 100 liters or less when converted to a thermal oxide film, it can be said that it is sufficiently rounded with respect to the capacity insulating film. Therefore, the electric field concentration at the corners of the storage node can be considered in two dimensions as shown in FIG. In this case, considering that the charge is evenly distributed in the corner portion, the electric field concentration in the corner portion is inversely proportional to the ratio of the outer circumference to the inner circumference of the capacitive insulating film.

【0020】図10に平坦部分の電界強度Eflatと角の
部分の電界強度Ecornerの比に対する容量絶縁膜膜厚T
oxと角の部分の曲率半径rの比の関係を示す。一般に平
坦な部分の1.25倍程度に電界集中を抑えることによ
り、容量絶縁膜の破壊を減少することができる。図10
の関係からこの場合、容量絶縁膜の膜厚の4倍の相対曲
率半径をもたせることが必要であることがわかる。さら
に平坦な部分の1.2倍以下にする場合には容量絶縁膜
の膜厚の5倍の相対曲率半径を、1.1倍以下にする場
合には容量絶縁膜の膜厚の10倍の相対曲率半径を持た
せることが必要となる。
FIG. 10 shows the capacitance insulating film thickness T with respect to the ratio of the electric field strength Eflat in the flat portion and the electric field strength Ecorner in the corner portion.
The relationship between the ratio of the curvature radius r of ox and the corner portion is shown. Generally, by suppressing the electric field concentration to about 1.25 times that of the flat portion, the breakdown of the capacitive insulating film can be reduced. Figure 10
From this relationship, it can be seen that in this case, it is necessary to have a relative radius of curvature that is four times the film thickness of the capacitive insulating film. If the relative flatness is 1.2 times or less, the relative radius of curvature is 5 times the film thickness of the capacitive insulating film, and if it is 1.1 times or less, it is 10 times the film thickness of the capacitive insulating film. It is necessary to have a relative radius of curvature.

【0021】なお、上記第1の実施例では等方性エッチ
ングとしてECR法でSF6ガスを用いたが、CF4,H
Br,HCl等のFもしくはBrもしくはClのいずれ
かを含むガスを少なくとも用いることにより同様の効果
が得られる。さらにはECR法以外のエッチング方法、
例えばトライオード法、ダウンフロー法もしくはサイド
エッチングのはいる条件でのRIE法等でも同様の効果
が得られる。またその等方性エッチングを弗硝酸を主成
分とする液で行うこともできる。
Although SF 6 gas was used by the ECR method for isotropic etching in the first embodiment, CF 4 , H
The same effect can be obtained by using at least a gas containing F or Br or Cl such as Br or HCl. Furthermore, etching methods other than the ECR method,
For example, the same effect can be obtained by the triode method, the downflow method, or the RIE method under the condition of side etching. Further, the isotropic etching can be performed with a liquid containing fluorinated nitric acid as a main component.

【0022】また図1(b)において第1の導電性膜7
−Aは一組の場合を示したが、さらに酸化膜を介して複
数組積み重ねてもよい。
Further, in FIG. 1B, the first conductive film 7
-A shows the case of one set, but a plurality of sets may be stacked via an oxide film.

【0023】(実施例2)図2は第2の実施例の半導体
装置の製造方法の工程断面図である。図2(a)は図1
(d)に相当し、その工程までは図1と全く同一である
ので省略する。すなわち第2の実施例の特徴は同図
(b)に示すように、レジストパタ−ン8を除去した後
に第2回目の異方性エッチングを行うことである。本実
施例ではRIE法を用いHBrガス流量:60sccm、HClガス流
量:20sccm、圧力:15Pa、RF電力:150Wにより約10nmエ
ッチングした。この際スパッタ効果により記憶ノ−ド1
0の急峻な角が除去されるようにエッチングされる傾向
を利用した。本実施例で上記のガス系を利用した理由は
ポリシリコンとガスの反応を利用することにより角を丸
める効果を強調するためである。次に図2(c)では、
記憶ノ−ド10の表面に誘電体膜11を形成し、この誘
電体膜11を介して第3の導電性膜12を形成し、続い
てビット線13を形成する。
(Embodiment 2) FIG. 2 is a cross-sectional view of steps in a method of manufacturing a semiconductor device according to a second embodiment. 2 (a) is shown in FIG.
Since it corresponds to (d) and its steps are completely the same as those in FIG. That is, the feature of the second embodiment is that the second anisotropic etching is performed after removing the resist pattern 8 as shown in FIG. In this example, the RIE method was used to carry out etching by about 10 nm with HBr gas flow rate: 60 sccm, HCl gas flow rate: 20 sccm, pressure: 15 Pa, and RF power: 150 W. At this time, due to the sputtering effect, the memory node 1
The tendency of etching so that a sharp corner of 0 is removed was used. The reason for using the above-mentioned gas system in this embodiment is to emphasize the effect of rounding the corners by utilizing the reaction between polysilicon and gas. Next, in FIG. 2 (c),
A dielectric film 11 is formed on the surface of the memory node 10, a third conductive film 12 is formed through the dielectric film 11, and then a bit line 13 is formed.

【0024】なお、本実施例では第2回目の異方性エッ
チングとしてRIE法によりHBr,HClの混合ガスを用い
たが、CF4,HBr,HCl等のFもしくはBrもし
くはClのいずれかを含むガスを少なくとも用いること
により同様の効果が得られる。またAr等のスパッタガス
においても同様の効果が得ることができる。さらにはR
IE法以外のエッチング方法例えばRF(高周波)を印
加したECR法等でも可能である。
Although a mixed gas of HBr and HCl was used by the RIE method for the second anisotropic etching in this embodiment, it contains F, Br, or Cl such as CF 4 , HBr, and HCl. The same effect can be obtained by using at least gas. The same effect can be obtained with a sputtering gas such as Ar. Furthermore, R
An etching method other than the IE method, such as an ECR method in which RF (high frequency) is applied, is also possible.

【0025】(実施例3)図3は第3の実施例の半導体
装置の製造方法の工程断面図である。すなわち図3
(a)は図1(d)に相当し、その工程までは図1と全
く同一であるので省略する。すなわち第3の実施例の特
徴とする工程について述べる。
(Embodiment 3) FIG. 3 is a cross-sectional view of steps in a method of manufacturing a semiconductor device according to a third embodiment. That is, FIG.
1A corresponds to FIG. 1D, and the process up to that is exactly the same as that in FIG. That is, the steps that characterize the third embodiment will be described.

【0026】同図(b)では、レジストパタ−ン9を除
去した後に第4の導電性膜14を堆積する。通常、記憶
ノ−ド10に第4の導電性膜14を堆積した際には記憶
ノ−ド10の角は凸部も凹部も丸く堆積される。第4の
導電性膜14のカバレッジが一様(表面と側面で1:
1)であれば、堆積膜厚が曲率半径となり、第4の導電
性膜14の膜厚を容量絶縁膜の4倍以上の膜厚に設定す
ればよい。本実施例では第4の導電性膜14として第2
の導電性膜7−Bと同様に、Pを含むポリシリコンを約
70nm堆積した。この第4の導電性膜14の膜厚は容
量絶縁膜の10倍の膜厚に相当する。ここで第4の導電
性膜14として第2の導電性膜7−Bと同様な膜を用い
た理由は、次の工程でのエッチング速度を第4の導電性
膜14と第2の導電性膜7−Bとで同じにすることによ
りオーバーエッチングによる急峻な角ができることを防
ぐためである。
In FIG. 6B, the fourth conductive film 14 is deposited after removing the resist pattern 9. Normally, when the fourth conductive film 14 is deposited on the memory node 10, the corners of the memory node 10 are rounded, both convex and concave. The coverage of the fourth conductive film 14 is uniform (1: on the surface and the side surface:
In the case of 1), the deposited film thickness becomes the radius of curvature, and the film thickness of the fourth conductive film 14 may be set to be four times or more the film thickness of the capacitance insulating film. In this embodiment, the second conductive film 14 is formed into the second conductive film 14.
Polysilicon containing P was deposited to a thickness of about 70 nm as in the case of the conductive film 7-B. The film thickness of the fourth conductive film 14 corresponds to 10 times the film thickness of the capacitive insulating film. Here, the reason why the film similar to the second conductive film 7-B is used as the fourth conductive film 14 is that the etching rate in the next step is different from that of the fourth conductive film 14 and the second conductive film 7-B. This is to prevent the formation of a steep angle due to overetching by making the same for the film 7-B.

【0027】次に同図(c)では、第4の導電性膜14
を異方性エッチングにより記憶ノード10以外の部分を
除去し、再度記憶ノ−ド10を形成する。この時、第4
の導電性膜14を堆積した際の記憶ノ−ド10の最上部
の丸い角はそのままの形が維持される。次に同図(d)
に示すように従来例と同じく記憶ノ−ド10の表面に誘
電体膜11を形成し、この誘電体膜11を介して第3の
導電性膜12を形成しセル・プレートとし、ビット線1
3を形成する。
Next, in FIG. 7C, the fourth conductive film 14 is formed.
Then, the portion other than the storage node 10 is removed by anisotropic etching, and the storage node 10 is formed again. At this time, the 4th
The rounded corners at the top of the memory node 10 when the conductive film 14 of FIG. Next, the same figure (d)
As shown in FIG. 1, a dielectric film 11 is formed on the surface of the memory node 10 as in the conventional example, and a third conductive film 12 is formed through the dielectric film 11 to form a cell plate, and the bit line 1
3 is formed.

【0028】なお、本実施例では第2の導電性膜7−B
と第4の導電性膜14として同様の材質を用いたが異な
る材質でもよい。
In this embodiment, the second conductive film 7-B is used.
Although the same material is used for the fourth conductive film 14 and the fourth conductive film 14, different materials may be used.

【0029】(実施例4)図4は第4の実施例の半導体
装置の製造方法の工程断面図である。すなわち図4
(a)は図1(d)に相当し、その工程までは図1と同
一であるので省略する。すなわち第4の実施例の特徴と
する工程について述べる。すなわち同図(b)に示すよ
うに、レジストパタ−ン9を除去した後に記憶ノ−ド1
0を酸化する。この際に900℃以下の温度で酸化する
とホーン現象のためより急峻な角が発生することにな
る。しかし酸化温度を1000℃以上とすることにより
急峻な角が丸められるように酸化され酸化膜15が形成
される。本実施例では1100℃で約50nm酸化した。
(Embodiment 4) FIG. 4 is a sectional view of steps in a method of manufacturing a semiconductor device according to a fourth embodiment. That is, FIG.
1A corresponds to FIG. 1D, and the process up to that is the same as that in FIG. That is, the steps that characterize the fourth embodiment will be described. That is, as shown in FIG. 2B, after the resist pattern 9 is removed, the memory node 1
Oxidize 0. At this time, if oxidation is performed at a temperature of 900 ° C. or less, a steeper angle is generated due to the horn phenomenon. However, when the oxidation temperature is set to 1000 ° C. or higher, the oxide film 15 is formed by being oxidized so that sharp corners are rounded. In this example, the oxide was oxidized to about 50 nm at 1100 ° C.

【0030】次に同図(c)では、酸化膜15をHF系
のエッチング液により除去した。この酸化膜の除去工程
は本実施例のようにウェットエッチング法を用いてもC
HF 3等のガスを用いた等方性のプラズマエッチング法
を用いても同様の効果が得られる。次に同図(d)に示
すように従来例同様記憶ノ−ド10の表面に誘電体膜1
1を形成し、この誘電体膜11を介して第3の導電性膜
12を形成しセル・プレートとし、続いてビット線13
を形成する。
Next, in FIG. 7C, the oxide film 15 is formed of HF-based material.
It was removed by the etching solution. This oxide film removal process
Is C even if the wet etching method is used as in this embodiment.
HF 3Isotropic plasma etching method using gases such as
The same effect can be obtained by using. Next, as shown in FIG.
As in the conventional example, the dielectric film 1 is formed on the surface of the memory node 10.
1 is formed, and the third conductive film is formed through the dielectric film 11.
12 to form a cell plate, followed by bit line 13
To form.

【0031】なお、第1、第2、第3および第4の実施
例では、第1並びに第2の導電性膜として、不純物とし
てPを含むポリシリコンを用いたが、As等のn型不純
物であればよい。また、W等の他の導電性膜でもよい。
さらには第1と第2の導電性膜が異なる材質でもよい。
In the first, second, third and fourth embodiments, polysilicon containing P as an impurity is used as the first and second conductive films, but an n-type impurity such as As is used. If Further, another conductive film such as W may be used.
Further, the first and second conductive films may be made of different materials.

【0032】また各実施例では、2重のフィン構造のス
タック型DRAMを用いたが、n重のフィン型でもよ
く、また図11に示すような円筒型等他のスタック型の
DRAMでも同様の効果が得られる。また、半導体基板
1として、p型シリコン基板を用いたが、GaAs等の
他の半導体基板でもよい。また誘電体膜として、SiO2と
SiNの多層膜を用いたが、Si02,SiN,TaO等の他の誘電体
膜でもよい。さらに各実施例においてp型とn型をそれ
ぞれ逆に構成しても同様の効果が得られる。
In each of the embodiments, a stack type DRAM having a double fin structure is used, but an n-fold fin type DRAM may be used, and another stack type DRAM such as a cylinder type shown in FIG. 11 may be used. The effect is obtained. Further, although the p-type silicon substrate is used as the semiconductor substrate 1, another semiconductor substrate such as GaAs may be used. As a dielectric film, SiO2 and
Although the multilayer film of SiN is used, other dielectric films such as Si02, SiN, and TaO may be used. Further, similar effects can be obtained even if the p-type and the n-type are reversed in each of the embodiments.

【0033】[0033]

【発明の効果】以上の説明から明らかなように本発明に
よれば、記憶ノ−ドの角を丸めることができ、誘電体膜
の絶縁破壊の発生しない半導体装置およびその製造方法
を提供できる。
As is apparent from the above description, according to the present invention, it is possible to provide a semiconductor device in which the corners of a memory node can be rounded and dielectric breakdown of a dielectric film does not occur, and a manufacturing method thereof.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例の半導体装置の製造方法
の工程断面図
FIG. 1 is a process sectional view of a method for manufacturing a semiconductor device according to a first embodiment of the present invention.

【図2】本発明の第2の実施例の半導体装置の製造方法
の工程断面図
FIG. 2 is a process sectional view of a method for manufacturing a semiconductor device according to a second embodiment of the present invention.

【図3】本発明の第3の実施例の半導体装置の製造方法
の工程断面図
FIG. 3 is a process sectional view of a method for manufacturing a semiconductor device according to a third embodiment of the present invention.

【図4】本発明の第4の実施例の半導体装置の製造方法
の工程断面図
FIG. 4 is a process sectional view of a method for manufacturing a semiconductor device according to a fourth embodiment of the present invention.

【図5】従来の半導体装置の製造方法を示す工程断面図5A to 5C are process sectional views showing a conventional method for manufacturing a semiconductor device.

【図6】従来の半導体装置における誘電体膜にかかる電
界を示す模式図
FIG. 6 is a schematic diagram showing an electric field applied to a dielectric film in a conventional semiconductor device.

【図7】ストレージノードの角度と相対電界強度の特性
FIG. 7 is a characteristic diagram of the angle of the storage node and the relative electric field strength.

【図8】異なる設計ルールを用いたDRAMの断面図FIG. 8 is a sectional view of a DRAM using different design rules.

【図9】ストレージノードの曲率半径と容量絶縁膜厚と
を示した模式図
FIG. 9 is a schematic diagram showing a radius of curvature of a storage node and a thickness of a capacitor insulating film.

【図10】平坦部分の電界強度Eflatと角の部分の電界
強度Ecornerの比に対する容量絶縁膜膜厚Toxと角の部
分の曲率半径rの比の関係図
FIG. 10 is a relational diagram of the ratio of the thickness of the capacitive insulating film Tox and the radius of curvature r of the corner portion to the ratio of the electric field strength Eflat of the flat portion and the electric field strength Ecorner of the corner portion.

【図11】円筒スタック型のDRAMの断面図FIG. 11 is a sectional view of a cylindrical stack type DRAM.

【符号の説明】[Explanation of symbols]

1 半導体基板 4 活性領域 7−A 第1の導電性膜 7−B 第2の導電性膜 10 記憶ノード 11 誘電体膜 12 第3の導電性膜 1 Semiconductor substrate 4 Active area 7-A First conductive film 7-B Second conductive film 10 storage nodes 11 Dielectric film 12 Third conductive film

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】半導体基板上に形成された蓄積容量を含む
複数のメモリセルを備えた半導体記憶装置であって、縁
の角が丸味を持つ形状である記憶ノードと、この記憶ノ
ード上に形成された容量絶縁膜と、この容量絶縁膜上に
形成されたプレート電極から前記蓄積容量が構成された
ことを特徴とする半導体記憶装置。
1. A semiconductor memory device comprising a plurality of memory cells including storage capacitors formed on a semiconductor substrate, the memory node having rounded corners, and the memory node formed on the memory node. A semiconductor memory device characterized in that the storage capacitor is composed of the formed capacitive insulating film and a plate electrode formed on the capacitive insulating film.
【請求項2】請求項1記載の記憶ノードの曲率半径が容
量絶縁膜の膜厚の4倍以上であることを特徴とする半導
体記憶装置。
2. A semiconductor memory device according to claim 1, wherein the radius of curvature of the storage node is at least four times the film thickness of the capacitive insulating film.
【請求項3】請求項1記載の記憶ノードは縁の角が角ば
った形状である第1の部材と、この第1の部材の縁を覆
う第2の部材から構成され、この第2の部材により前記
記憶ノードの縁の角が丸味を持つ形状となることを特徴
とする半導体記憶装置。
3. The storage node according to claim 1, comprising a first member having an edge with an angular corner, and a second member covering the edge of the first member, and the second member. As a result, the semiconductor memory device is characterized in that the corners of the edges of the storage node have a rounded shape.
【請求項4】半導体基板上に形成された蓄積容量を含む
複数のメモリセルを備えた半導体記憶装置の製造方法で
あって、半導体基板上に縁の角が丸味を持つ形状である
記憶ノードを形成する工程と、この記憶ノード上に容量
絶縁膜を形成する工程と、この容量絶縁膜上にプレート
電極を形成する工程とを備え、前記蓄積容量が前記記憶
ノード、容量絶縁膜、プレート電極から構成されること
を特徴とする半導体記憶装置の製造方法。
4. A method of manufacturing a semiconductor memory device comprising a plurality of memory cells including storage capacitors formed on a semiconductor substrate, comprising: a storage node having rounded corners on a semiconductor substrate. A step of forming, a step of forming a capacitance insulating film on the storage node, and a step of forming a plate electrode on the capacitance insulating film, wherein the storage capacitance is formed from the storage node, the capacitance insulating film, and the plate electrode. A method for manufacturing a semiconductor memory device, which is configured.
【請求項5】請求項4記載の記憶ノードの形成方法とし
て、半導体基板上に絶縁膜を挟む導電性膜を含む多層構
造を形成する工程と、この多層構造を選択エッチングに
よってパターン形成する工程と、前記絶縁膜をエッチン
グを用いて除去する工程と、前記導電性膜の縁の急峻な
角をエッチングにより除去する工程とを備えた半導体記
憶装置の製造方法。
5. A method of forming a storage node according to claim 4, wherein a step of forming a multi-layer structure including a conductive film sandwiching an insulating film on a semiconductor substrate, and a step of pattern-forming this multi-layer structure by selective etching. A method of manufacturing a semiconductor memory device, comprising: a step of removing the insulating film by etching; and a step of removing a sharp corner of an edge of the conductive film by etching.
【請求項6】請求項4記載の記憶ノードの形成方法とし
て、半導体基板上に絶縁膜を挟む第1の導電性膜を含む
多層構造を形成する工程と、この多層構造を選択エッチ
ングによってパターン形成する工程と、前記絶縁膜をエ
ッチングを用いて除去する工程と、前記第1の導電性膜
の縁を覆う第2の導電性膜を形成する工程とを備えた半
導体記憶装置の製造方法。
6. A method of forming a storage node according to claim 4, wherein a step of forming a multi-layer structure including a first conductive film sandwiching an insulating film on a semiconductor substrate, and a pattern formation of this multi-layer structure by selective etching. And a step of removing the insulating film by etching, and a step of forming a second conductive film that covers an edge of the first conductive film.
【請求項7】請求項4記載の記憶ノードの形成方法とし
て、半導体基板上に絶縁膜を挟む導電性膜を含む多層構
造を形成する工程と、この多層構造を選択エッチングに
よってパターン形成する工程と、前記絶縁膜をエッチン
グを用いて除去する工程と、前記導電性膜の表面に酸化
膜を形成する工程と、この酸化膜をエッチングを用いて
除去する工程とを備えた半導体記憶装置の製造方法。
7. A method of forming a storage node according to claim 4, wherein a step of forming a multilayer structure including a conductive film sandwiching an insulating film on a semiconductor substrate, and a step of patterning the multilayer structure by selective etching. A method for manufacturing a semiconductor memory device, comprising: a step of removing the insulating film by etching; a step of forming an oxide film on the surface of the conductive film; and a step of removing the oxide film by etching. .
JP03245549A 1990-09-26 1991-09-25 Semiconductor storage device and method of manufacturing the same Expired - Fee Related JP3125353B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03245549A JP3125353B2 (en) 1990-09-26 1991-09-25 Semiconductor storage device and method of manufacturing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP25805090 1990-09-26
JP2-258050 1990-09-26
JP03245549A JP3125353B2 (en) 1990-09-26 1991-09-25 Semiconductor storage device and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH056975A true JPH056975A (en) 1993-01-14
JP3125353B2 JP3125353B2 (en) 2001-01-15

Family

ID=26537279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03245549A Expired - Fee Related JP3125353B2 (en) 1990-09-26 1991-09-25 Semiconductor storage device and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3125353B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100234384B1 (en) * 1996-08-20 1999-12-15 윤종용 Method for forming a spacer of semiconductor device and method for forming a cylindrical capacitor using the same
US6046489A (en) * 1997-05-29 2000-04-04 Nec Corporation Capacitor with high-dielectric-constant dielectric and thick electrode and fabrication method thereof
JP2006352139A (en) * 2005-06-18 2006-12-28 Seoul National Univ Industry Foundation Sonos memory device having curved surface structure and method for manufacturing the same
JP2008172200A (en) * 2006-11-01 2008-07-24 Macronix Internatl Co Ltd Cylindrical channel charge trapping devices with substantially high coupling ratios

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100234384B1 (en) * 1996-08-20 1999-12-15 윤종용 Method for forming a spacer of semiconductor device and method for forming a cylindrical capacitor using the same
US6046489A (en) * 1997-05-29 2000-04-04 Nec Corporation Capacitor with high-dielectric-constant dielectric and thick electrode and fabrication method thereof
KR100304135B1 (en) * 1997-05-29 2001-10-19 가네꼬 히사시 Capacitor with high-dielectric-constant dielectric and thick electrode and fabrication method thereof
JP2006352139A (en) * 2005-06-18 2006-12-28 Seoul National Univ Industry Foundation Sonos memory device having curved surface structure and method for manufacturing the same
JP2008172200A (en) * 2006-11-01 2008-07-24 Macronix Internatl Co Ltd Cylindrical channel charge trapping devices with substantially high coupling ratios

Also Published As

Publication number Publication date
JP3125353B2 (en) 2001-01-15

Similar Documents

Publication Publication Date Title
US5223729A (en) Semiconductor device and a method of producing the same
US5700709A (en) Method for manufacturing a capacitor for a semiconductor device
JP2531473B2 (en) Semiconductor memory device and manufacturing method thereof
JP3501297B2 (en) Method for manufacturing semiconductor memory device
US5907782A (en) Method of forming a multiple fin-pillar capacitor for a high density dram cell
KR100215867B1 (en) Capacitor of semiconductor device and its fabrication method
US5843822A (en) Double-side corrugated cylindrical capacitor structure of high density DRAMs
US6114201A (en) Method of manufacturing a multiple fin-shaped capacitor for high density DRAMs
US5432116A (en) Method for the fabrication of dynamic random access memory capacitor
US20050205915A1 (en) Method of fabricating storage capacitor in semiconductor memory device, and storage capacitor structure
JPH0821695B2 (en) Highly integrated semiconductor memory device and manufacturing method thereof
JP3222944B2 (en) Method for manufacturing capacitor of DRAM cell
JP2988864B2 (en) Method of manufacturing high dielectric constant capacitor for semiconductor device
US5851897A (en) Method of forming a dram cell with a crown-fin-pillar structure capacitor
US20220139924A1 (en) Method for forming semiconductor structure and semiconductor structure
KR100323832B1 (en) Method for manufacturing capacitor having high storage capacitance and method for fabricating semiconductor device using the same
JPH07211798A (en) Manufacture of capacitor in semiconductor device
JP3449754B2 (en) DRAM manufacturing method
JP3125353B2 (en) Semiconductor storage device and method of manufacturing the same
JP2712926B2 (en) Method for manufacturing semiconductor memory device
JPH077088A (en) Capacitor semiconductor device and its manufacture
US6838719B2 (en) Dram cell capacitors having U-shaped electrodes with rough inner and outer surfaces
US6093601A (en) Method of fabricating crown capacitor by using oxynitride mask
US5904537A (en) Method of manufacturing a crown-fin-pillar capacitor for high density drams
KR20010083402A (en) A methode for fabricating a capacitor of a semiconductor device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees