JPH0574956A - Electrode structure for semiconductor device - Google Patents

Electrode structure for semiconductor device

Info

Publication number
JPH0574956A
JPH0574956A JP23362991A JP23362991A JPH0574956A JP H0574956 A JPH0574956 A JP H0574956A JP 23362991 A JP23362991 A JP 23362991A JP 23362991 A JP23362991 A JP 23362991A JP H0574956 A JPH0574956 A JP H0574956A
Authority
JP
Japan
Prior art keywords
layer
wiring
electrode structure
wiring layer
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23362991A
Other languages
Japanese (ja)
Inventor
Eiji Hamada
英二 濱田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP23362991A priority Critical patent/JPH0574956A/en
Publication of JPH0574956A publication Critical patent/JPH0574956A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To provide an electrode structure having high reliability by reducing a resistance value of an interlayer connecting hole in a semiconductor device having multilayer interconnections. CONSTITUTION:An interlayer connecting hole to be formed in a semiconductor device in which two more layers of interconnections 12, 18 made of Al or Al alloy are mounted is provided, the exposed interconnection 12 is covered with three layers 15, 16 and 17 made of Ti/TiN/Ti. Thus, a resistance value of substantially half that of prior art is provided for a high speed, and a circuit defect is prevented to provide an electrode structure having high reliability.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、多層配線構造を備え、
高信頼性及び高スピードを要求する半導体素子の電極構
造に関する。
BACKGROUND OF THE INVENTION The present invention comprises a multi-layer wiring structure,
The present invention relates to an electrode structure of a semiconductor device that requires high reliability and high speed.

【0002】[0002]

【従来の技術】近年集積度が増大した半導体素子の出力
端子も増えたために配線も単層では間に合わなくなり、
いわゆる多層配線が利用されているのが現状であり、配
線の材質は、Alのみでなく、Al−SiやAl−Si
−Cu(今後Al合金層と記載する)も利用されている
のが一般的である。
2. Description of the Related Art In recent years, the number of output terminals of semiconductor elements, which have been increased in the degree of integration, has increased, so that the wiring cannot be made in a single layer.
At present, so-called multi-layer wiring is used, and the material of the wiring is not only Al but also Al-Si or Al-Si.
-Cu (hereinafter referred to as Al alloy layer) is also generally used.

【0003】このような多層配線素子の第2層以降の配
線層下には、TiN/Tiを設置することにより、第2
層配線層及びこれに連続して形成するビィアホール(V
ia−Holl)を含めたストレスマイグレイションを
防止するものであり、電極として使用するものでなく、
TiN/Tiは、電極としてでなく配線層として機能す
るものである。
By installing TiN / Ti below the second and subsequent wiring layers of such a multilayer wiring element, a second wiring layer is formed.
Layer wiring layer and a via hole (V
ia-Hall) is included to prevent stress migration and not to be used as an electrode.
TiN / Ti functions not as an electrode but as a wiring layer.

【0004】この結果、配線層のストレスマイグレイシ
ョンに対しては、強くなりもすが、Via抵抗が高くな
るのは否目ない。
As a result, the resistance to the stress migration of the wiring layer is increased, but the Via resistance is increased.

【0005】半導体素子に形成する、ビィアホール(V
ia Hall)即ち層間接続孔に連続して、いわゆる
突抜け現象を防ぐために、Tiと窒化Tiから成る積層
金属層や珪化モリブデンなどを形成して、配線層を構成
するAlやAl合金層と接触して電気的導通を図ってい
る。
Via holes (V
ia Hall) That is, in order to prevent a so-called punch-through phenomenon, a laminated metal layer made of Ti and Ti nitride, molybdenum silicide, or the like is formed in contact with the Al or Al alloy layer that forms the wiring layer. To achieve electrical continuity.

【0006】このような配線構造を形成する工程は、次
のようである。即ち、専用のスパッタリング装置の所定
の場所に搬送した半導体ウエ−ハは、スパッタリング工
程により200オングストローム程度のTiを被着後、
約20SCCMの窒素をスパッタリング装置に導入し
て、厚さ約700オングストロームのTiNをTi層に
被覆する。その後、半導体ウエーハを回収して多層配線
工程に移行する。
The process of forming such a wiring structure is as follows. That is, the semiconductor wafer transferred to a predetermined place in a dedicated sputtering apparatus is coated with Ti of about 200 Å by a sputtering process,
About 20 SCCM of nitrogen is introduced into the sputtering system to coat the Ti layer with about 700 Å thick TiN. Then, the semiconductor wafer is recovered and the multi-layer wiring process is performed.

【0007】図1にこのような工程を経た半導体素子の
電極構造を断面図により示した。即ち、例えばシリコン
から成る半導体基板1には、所定の不純物を導入・拡散
して能動素子または受動素子を設け、この素子用ピン数
の増大に備えて、いわゆる多層配線構造とする。このた
めに、第1層配線2と半導体基板1間には、層間絶縁物
層3を形成して第1配線層を形成後、第1層配線2を覆
う第2絶縁物層4を被着する。
FIG. 1 is a sectional view showing an electrode structure of a semiconductor device which has undergone such steps. That is, a semiconductor substrate 1 made of, for example, silicon is provided with an active element or a passive element by introducing and diffusing a predetermined impurity, and a so-called multi-layer wiring structure is prepared in preparation for an increase in the number of pins for this element. For this reason, an interlayer insulating layer 3 is formed between the first layer wiring 2 and the semiconductor substrate 1 to form a first wiring layer, and then a second insulating layer 4 covering the first layer wiring 2 is deposited. To do.

【0008】更に第1層配線2を露出するために、第2
絶縁物層4に対してフォトリソグラフィ技術を利用して
開口部を設けて第1層配線2の露出部分5を形成する。
その後、Ti層7/TiN層6の積層構造を設置後、第
2配線層8を被覆して電極構造を完成する方式が採られ
ている。
In order to further expose the first layer wiring 2, a second
An opening is provided in the insulator layer 4 by using a photolithography technique to form an exposed portion 5 of the first layer wiring 2.
After that, a method is adopted in which after the laminated structure of the Ti layer 7 / TiN layer 6 is installed, the second wiring layer 8 is covered to complete the electrode structure.

【0009】[0009]

【発明が解決しようとする課題】このようにTiとTi
Nの積層構造の層間接続孔を利用して多層配線を形成す
ると、層間接続孔の抵抗と配線層の抵抗がAlのみの場
合より2〜5倍程度高くなることが判明した。このため
回路のスピード低下及び設計値と製造したデバイス値の
差による回路不良などが生じる。
As described above, Ti and Ti
It was found that the resistance of the interlayer connection hole and the resistance of the wiring layer are about 2 to 5 times higher than that of only Al when the multilayer wiring is formed using the interlayer connection hole of the N laminated structure. As a result, the circuit speed is lowered and a circuit failure occurs due to the difference between the design value and the manufactured device value.

【0010】本発明は、このような事情により成された
もので、特に、低抵抗の層間接続孔を備えることにより
高信頼性の半導体素子の電極構造を提供することを目的
とする。
The present invention has been made under such circumstances, and an object of the present invention is to provide a highly reliable electrode structure of a semiconductor element by providing a low resistance interlayer connection hole.

【0011】[0011]

【課題を解決するための手段】半導体基板を被覆する第
1の層間絶縁物層と,前記層間絶縁物層に重ねて設置す
る第1配線層と,前記第1配線層を覆って配置する第2
の層間絶縁物層と,前記第2の層間絶縁物層を除去して
露出する第1配線層部分と,前記第1配線層部分及び第
2の層間絶縁物層を被覆するTi/TiN/Ti層と,
前記Ti/TiN/Ti層を覆って形成する第2配線層
に本発明に係わる半導体素子の電極構造の特徴がある。
A first interlayer insulating layer that covers a semiconductor substrate, a first wiring layer that is placed so as to overlap the interlayer insulating layer, and a first wiring layer that is disposed so as to cover the first wiring layer. Two
Interlayer insulating layer, a first wiring layer portion exposed by removing the second interlayer insulating layer, and Ti / TiN / Ti covering the first wiring layer portion and the second interlayer insulating layer. Layers,
The second wiring layer formed to cover the Ti / TiN / Ti layer is characterized by the electrode structure of the semiconductor device according to the present invention.

【0012】[0012]

【作用】最近の半導体素子特性としては、集積度の向上
に加えて高速化も大きな目標となっているが、多層配線
構造の素子でも同様である。本発明は、多層配線を利用
する半導体素子に形成する層間接続孔の抵抗に着目した
もので、Ti/TiN/Tiを設置すると、Ti/Ti
Nの約1/2になるとの事実を基にして完成したもので
ある。従って、回路の高速化シュミレイションと製造し
たデバイスの速度差による不良を防ぐことができるし、
配線層直下に配置するTiが拡散して配線層を構成する
Al自身のエレクトロマイグレイションを防止すること
ができる。
In recent semiconductor device characteristics, not only the improvement of the degree of integration but also the speeding up has been a major goal, but the same applies to the device having a multilayer wiring structure. The present invention focuses on the resistance of the interlayer connection hole formed in the semiconductor element using the multi-layer wiring. When Ti / TiN / Ti is installed, Ti / Ti
It was completed based on the fact that it will be about 1/2 of N. Therefore, it is possible to prevent defects due to the speedup simulation of the circuit and the speed difference between the manufactured devices,
It is possible to prevent the electromigration of Al itself that constitutes the wiring layer by diffusion of Ti disposed immediately below the wiring layer.

【0013】[0013]

【実施例】本発明に係わる一実施例を図2乃至図4を参
照して詳述するが、図2は、本発明を適用した半導体素
子の電極構造を断面図により示したものである。即ち、
例えばシリコンから成り第1導電型を示す半導体基板1
に、第2導電型の不純物を導入・拡散して接合を形成す
ることにより能動素子または受動素子などを設けて電子
回路を構成する。この回路の端子数に対応するいわゆる
多層配線構造とするために、半導体基板10表面に被着
する層間絶縁物層11に重ねて第1配線層12を形成す
る。その材質としてAl−Si−Cuを使用して後述す
る電極における突抜け現象を防止する。勿論場合によっ
ては、Al−SiまたはAlを適用することも可能であ
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment according to the present invention will be described in detail with reference to FIGS. 2 to 4. FIG. 2 is a sectional view showing an electrode structure of a semiconductor device to which the present invention is applied. That is,
For example, a semiconductor substrate 1 made of silicon and showing the first conductivity type
In addition, an active element or a passive element is provided by introducing and diffusing impurities of the second conductivity type to form an electronic circuit. In order to form a so-called multilayer wiring structure corresponding to the number of terminals of this circuit, the first wiring layer 12 is formed so as to overlap the interlayer insulating layer 11 adhered to the surface of the semiconductor substrate 10. Al-Si-Cu is used as the material to prevent the punch-through phenomenon in the electrode described later. Of course, Al-Si or Al can be applied depending on the case.

【0014】第1配線層12を形成後、層間絶縁物層と
して機能する第2絶縁物層13を全面に被覆してから、
公知のフォトリソグラフィ技術により開口部即ち層間接
続孔を設置することにより第1配線層12の露出部分1
4を形成する。
After forming the first wiring layer 12, the entire surface is covered with the second insulating layer 13 functioning as an interlayer insulating layer,
The exposed portion 1 of the first wiring layer 12 is formed by providing an opening, that is, an interlayer connection hole by a known photolithography technique.
4 is formed.

【0015】次に、図3に明らかにしたスパッタリング
装置によるスパッタリング工程で、Ti層15厚さ約2
00オングストローム/TiN層16厚さ700オング
ストローム程度/Ti層17厚さ200オングストロー
ム位を形成後、第2配線層18を被覆する。
Next, in the sputtering process using the sputtering apparatus shown in FIG. 3, the Ti layer 15 has a thickness of about 2
After forming about 00 Å / TiN layer 16 thickness of about 700 Å / Ti layer 17 thickness of about 200 Å, the second wiring layer 18 is covered.

【0016】図3に明らかなように、スパッタリング工
程用のスパッタリング装置は、減圧装置に当然連通して
所定の真空度が得られるのは勿論、プラズマの形成に必
要な磁界装置(図示せず)や、スパッタリングに必要な
不活性ガス例えばArが導入できる。第1配線層12の
露出部分14を形成した半導体基板10は、スパッタリ
ング装置内のスパッタリング領域19にロード室20か
ら搬送装置21により運ばれた上で、所定の条件下でタ
ーゲット22をスパッタリングしてTi層15/TiN
層16/Ti層17を被覆する。
As is apparent from FIG. 3, the sputtering apparatus for the sputtering process is naturally connected to a decompression apparatus to obtain a predetermined degree of vacuum, and of course a magnetic field apparatus (not shown) necessary for plasma formation. Alternatively, an inert gas necessary for sputtering, such as Ar, can be introduced. The semiconductor substrate 10 on which the exposed portion 14 of the first wiring layer 12 is formed is carried from the load chamber 20 to the sputtering region 19 in the sputtering device by the carrier device 21, and then the target 22 is sputtered under predetermined conditions. Ti layer 15 / TiN
Layer 16 / Ti layer 17 is coated.

【0017】最初のTi層15を堆積後、スパッタリン
グ領域19に不活性ガス例えば窒素を20SCCM導入
してから所定の工程を行った上でTiN層16を堆積
し、引続き同様に窒素を20SCCM導入してから同様
な操作を経て、Ti層17を堆積する。
After the first Ti layer 15 is deposited, an inert gas such as nitrogen is introduced into the sputtering region 19 in an amount of 20 SCCM, a predetermined process is performed, and then a TiN layer 16 is deposited. Then, nitrogen is similarly introduced in an amount of 20 SCCM. Then, the Ti layer 17 is deposited through the same operation.

【0018】このようなスパッタリング工程では、ター
ゲット22を交換して3層の堆積膜を形成する方式の他
に、スパッタリング領域19に隣接して配置する他のス
パッタリング領域(図示せず)に設置する異材料のター
ゲット(図示せず)を利用して連続的に行う方式も用い
られる。
In such a sputtering process, the target 22 is replaced to form a three-layer deposited film, and the target 22 is installed in another sputtering region (not shown) disposed adjacent to the sputtering region 19. A method of continuously using a target (not shown) made of a different material is also used.

【0019】図3に示すスパッタリング装置は、上下防
着板23及びヒータ24を設置し、また、必要最小限の
部品を明らかにしたものであることを付記する。
It should be added that the sputtering apparatus shown in FIG. 3 is provided with the upper and lower deposition preventive plates 23 and the heater 24 and clarifies the minimum necessary parts.

【0020】図2に示すように、第2配線層18を被覆
後は、公知のフオトリソグラフィ技術によりパターニン
グ工程を施して必要な場所に配置する。
As shown in FIG. 2, after the second wiring layer 18 is covered, a patterning process is performed by a known photolithography technique and the patterning process is performed to arrange the second wiring layer 18 at a necessary place.

【0021】[0021]

【発明の効果】実施例に明らかにした半導体素子の層間
接続孔の抵抗は、対数スケールの縦軸に抵抗(Ω)を、
十進法スケールの横軸に層間接続孔の寸法(μm)を採
った図4に示したが、Al−Si−Cuは、第2配線層
18を示すものである。
The resistance of the interlayer connection hole of the semiconductor element disclosed in the embodiment is the resistance (Ω) on the vertical axis of the logarithmic scale,
Although it is shown in FIG. 4 in which the dimension (μm) of the interlayer connection hole is taken on the horizontal axis of the decimal scale, Al—Si—Cu indicates the second wiring layer 18.

【0022】この図から明らかなように、従来使用して
きたTiN/Ti方式に比較して本発明に係わる層間接
続孔の抵抗値は、ほぼ1/2と極めて良好な値であり、
その有効性が明らかである。
As is clear from this figure, the resistance value of the inter-layer connection hole according to the present invention is a very good value of about 1/2 as compared with the conventionally used TiN / Ti method.
Its effectiveness is clear.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来の半導体装置の電極構造を示す断面図であ
る。
FIG. 1 is a cross-sectional view showing an electrode structure of a conventional semiconductor device.

【図2】本発明に係わる半導体装置の電極構造を示す断
面図である。
FIG. 2 is a sectional view showing an electrode structure of a semiconductor device according to the present invention.

【図3】本発明に係わる半導体装置の電極構造を造るの
に適用するスパッタリング装置の要部を示す断面図であ
る。
FIG. 3 is a cross-sectional view showing a main part of a sputtering apparatus applied to construct an electrode structure of a semiconductor device according to the present invention.

【図4】本発明の半導体装置の電極構造の抵抗を従来品
と比べる特性図である。
FIG. 4 is a characteristic diagram comparing the resistance of the electrode structure of the semiconductor device of the present invention with that of a conventional product.

【符号の説明】[Explanation of symbols]

1,10:半導体基板、 2、12:第1配線層、 3、11:層間絶縁物層、 13:第2絶縁物層、 6,15、16:Ti層、 7、16:TiN層、 8、18:第2配線層。 1, 10: semiconductor substrate, 2, 12: first wiring layer, 3, 11: interlayer insulating layer, 13: second insulating layer, 6, 15, 16: Ti layer, 7, 16: TiN layer, 8 , 18: second wiring layer.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板を被覆する第1の層間絶縁物
層と,前記絶縁物層を覆って設置する第1配線層と,前
記第1配線層に積層して配置する第2の層間絶縁物層
と,前記第2の層間絶縁物層を除去して露出する第1配
線層と,前記第1配線層部分及び第2の層間絶縁物層を
被覆するTi/TiN/Ti配線層と,前記Ti/Ti
N/Ti配線層を覆って形成する第2配線層を具備する
ことを特徴とする半導体素子の電極構造
1. A first interlayer insulating layer that covers a semiconductor substrate, a first wiring layer that covers the insulating layer, and a second interlayer insulating layer that is stacked on the first wiring layer. Layer, a first wiring layer exposed by removing the second interlayer insulating layer, and a Ti / TiN / Ti wiring layer covering the first wiring layer portion and the second interlayer insulating layer, Ti / Ti
Electrode structure of semiconductor element, comprising a second wiring layer formed so as to cover the N / Ti wiring layer
JP23362991A 1991-09-13 1991-09-13 Electrode structure for semiconductor device Pending JPH0574956A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23362991A JPH0574956A (en) 1991-09-13 1991-09-13 Electrode structure for semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23362991A JPH0574956A (en) 1991-09-13 1991-09-13 Electrode structure for semiconductor device

Publications (1)

Publication Number Publication Date
JPH0574956A true JPH0574956A (en) 1993-03-26

Family

ID=16958041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23362991A Pending JPH0574956A (en) 1991-09-13 1991-09-13 Electrode structure for semiconductor device

Country Status (1)

Country Link
JP (1) JPH0574956A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6242811B1 (en) * 1989-11-30 2001-06-05 Stmicroelectronics, Inc. Interlevel contact including aluminum-refractory metal alloy formed during aluminum deposition at an elevated temperature
CN113223951A (en) * 2020-01-21 2021-08-06 夏泰鑫半导体(青岛)有限公司 Semiconductor processing technology and semiconductor component

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6242811B1 (en) * 1989-11-30 2001-06-05 Stmicroelectronics, Inc. Interlevel contact including aluminum-refractory metal alloy formed during aluminum deposition at an elevated temperature
CN113223951A (en) * 2020-01-21 2021-08-06 夏泰鑫半导体(青岛)有限公司 Semiconductor processing technology and semiconductor component
CN113223951B (en) * 2020-01-21 2022-12-02 夏泰鑫半导体(青岛)有限公司 Semiconductor processing technology and semiconductor component

Similar Documents

Publication Publication Date Title
US4937652A (en) Semiconductor device and method of manufacturing the same
US6143672A (en) Method of reducing metal voidings in 0.25 μm AL interconnect
JP3353727B2 (en) Method for forming wiring structure of semiconductor device
US7186642B2 (en) Low temperature nitride used as Cu barrier layer
JP3104534B2 (en) Semiconductor device and its manufacturing method.
JPH06120218A (en) Metal wiring of semiconductor element
JPH04167449A (en) Semiconductor device
JPH0574956A (en) Electrode structure for semiconductor device
JP3158598B2 (en) Semiconductor device and method of manufacturing the same
JP3194793B2 (en) Method for manufacturing semiconductor device
JP2861583B2 (en) Semiconductor device manufacturing method
JPH065674B2 (en) Method for manufacturing semiconductor device
KR100256271B1 (en) Metal wiring method of semiconductor device
JPH0621236A (en) Semiconductor device and manufacture thereof
JPH05160271A (en) Semiconductor device
KR100452315B1 (en) Method for fabricating semiconductor device to prevent contact resistance from being increased in via hole
JPH0936229A (en) Semiconductor integrated circuit device and its manufacture
JPH08213394A (en) Semiconductor device and its manufacture
JPH0462925A (en) Semiconductor device
JPH06342850A (en) Semiconductor integrated circuit device and manufacture thereof
KR20020057340A (en) Multi-interconnection structure of semiconductor device and method for fabricating the same
JPH06177255A (en) Manufacture of semiconductor integrated circuit device
JPS58110055A (en) Semiconductor device
JPH0235753A (en) Manufacture of semiconductor device
JP2000323478A (en) Wiring structure of semiconductor device