JPH057480Y2 - - Google Patents

Info

Publication number
JPH057480Y2
JPH057480Y2 JP1985163495U JP16349585U JPH057480Y2 JP H057480 Y2 JPH057480 Y2 JP H057480Y2 JP 1985163495 U JP1985163495 U JP 1985163495U JP 16349585 U JP16349585 U JP 16349585U JP H057480 Y2 JPH057480 Y2 JP H057480Y2
Authority
JP
Japan
Prior art keywords
head
liner
cylinder
head liner
wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1985163495U
Other languages
Japanese (ja)
Other versions
JPS6271352U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1985163495U priority Critical patent/JPH057480Y2/ja
Publication of JPS6271352U publication Critical patent/JPS6271352U/ja
Application granted granted Critical
Publication of JPH057480Y2 publication Critical patent/JPH057480Y2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Description

【考案の詳細な説明】 [産業上の利用分野] 本考案は逆カツプ形のセラミツクス製のヘツド
ライナを備えた断熱エンジンの構造に関するもの
である。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention relates to the structure of an adiabatic engine equipped with an inverted cup-shaped head liner made of ceramics.

[従来の技術] シリンダヘツドの下面とピストン冠部に断熱性
に優れたセラミツクスを利用した断熱エンジン
は、例えば特開昭60−90955号公報などに開示さ
れている。上述の従来技術では、第4図に示すよ
うに、金属製のシリンダヘツド2の下半部の円筒
部11に嵌挿した逆カツプ形のセラミツクス製の
ヘツドライナ1と、セラミツクス製のピストン冠
部(図示省略)とにより燃焼室が断熱化される。
[Prior Art] An adiabatic engine using ceramics with excellent heat insulating properties for the lower surface of the cylinder head and the piston crown is disclosed in, for example, Japanese Patent Application Laid-Open No. 60-90955. In the above-mentioned prior art, as shown in FIG. 4, an inverted cup-shaped head liner 1 made of ceramic is fitted into the cylindrical portion 11 of the lower half of the cylinder head 2 made of metal, and a piston crown made of ceramic ( (not shown) makes the combustion chamber insulated.

金属製のシリンダボデイ3はピストン4を嵌合
するセラミツクス製のシリンダライナ19を嵌合
支持され、シリンダライナ19の上端壁14にシ
リンダヘツド2が図示してないヘツドボルトによ
り結合される。ヘツドライナ1の内周面1aはシ
リンダライナ19の内周面19aと連続し、ピス
トン4が両者に嵌合して燃焼室15を囲むように
構成される。
A ceramic cylinder liner 19, into which the piston 4 is fitted, is fitted and supported on the metal cylinder body 3, and the cylinder head 2 is connected to the upper end wall 14 of the cylinder liner 19 by a head bolt (not shown). The inner peripheral surface 1a of the head liner 1 is continuous with the inner peripheral surface 19a of the cylinder liner 19, and the piston 4 fits into both of them to surround the combustion chamber 15.

ヘツドライナ1の上壁1bに吸気ポート9と排
気ポート(図示せず)が設けられ、これらの下端
部に吸気弁8が接する弁座10と、図示してない
排気弁が接する弁座とが一体に形成される。吸気
ポート9はシリンダヘツド2に設けた吸気通路1
2と接続される。吸気弁8はステムをシリンダヘ
ツド2に結合した弁ガイド13に摺動可能に支持
される。
An intake port 9 and an exhaust port (not shown) are provided on the upper wall 1b of the head liner 1, and a valve seat 10 that contacts the intake valve 8 and a valve seat that contacts the exhaust valve (not shown) are integrated at the lower end of these ports. is formed. The intake port 9 is an intake passage 1 provided in the cylinder head 2.
Connected to 2. The intake valve 8 is slidably supported on a valve guide 13 whose stem is connected to the cylinder head 2.

シリンダヘツド2の円筒部11とヘツドライナ
1との間に断熱空気層を形成するために、円筒部
11の内径はヘツドライナ1の外径よりも大き
く、かつ円筒部11の深さはヘツドライナ1の高
さよりも大きくされる。円筒部11とヘツドライ
ナ1の周壁との間に上下1対の環状のガスケツト
22,23を装着して断熱空気層20が形成され
る。また、ヘツドライナ1の上壁1bと円筒部1
1の天壁11aとの間に、ガスケツト35と吸気
ポート9と吸気通路12との接続部を封止するシ
ールリング21を装着して断熱空気層20aが形
成される。同様に、図示してないが吸気ポート9
と吸気通路12との接続部および燃料噴射ノズル
の取穴にもこれを取り囲むシールリングが介装さ
れる。
In order to form a heat insulating air layer between the cylindrical part 11 of the cylinder head 2 and the head liner 1, the inner diameter of the cylindrical part 11 is larger than the outer diameter of the head liner 1, and the depth of the cylindrical part 11 is set to the height of the head liner 1. It is made bigger than it is. A pair of upper and lower annular gaskets 22 and 23 are installed between the cylindrical portion 11 and the peripheral wall of the head liner 1 to form a heat insulating air layer 20. In addition, the upper wall 1b of the head liner 1 and the cylindrical portion 1
A seal ring 21 for sealing the connection between the gasket 35, the intake port 9, and the intake passage 12 is installed between the top wall 11a of the air insulator 1 and the air insulating air layer 20a. Similarly, although not shown, the intake port 9
A seal ring surrounding the connection portion between the intake passage 12 and the fuel injection nozzle and the intake hole of the fuel injection nozzle is also interposed.

ヘツドライナ1の下端部はシリンダボデイ3の
上端壁14の環状溝に係合したガスケツト7を介
して、シリンダライナ19の上端面に重ね合さ
れ、この状態はシリンダボデイ3とシリンダヘツ
ド2とのヘツドボルト結合により保持される。
The lower end of the head liner 1 is superimposed on the upper end surface of the cylinder liner 19 via the gasket 7 that engages with the annular groove in the upper end wall 14 of the cylinder body 3, and in this state, the head bolts between the cylinder body 3 and the cylinder head 2 Retained by bond.

上述の従来技術によれば、シリンダヘツド2の
下面ばかりでなく、シリンダの一部とピストン冠
部がセラミツクス材により囲まれ、燃焼行程の内
でも燃焼温度の高い時期(クランク角にして上死
点の前後60〜70°)に燃焼室が断熱化されるで、
良好な燃焼状態が得られるとともに、排気温度を
高めることができる。しかし、逆カツプ形とされ
るヘツドライナ1の下端部をシリンダボデイ3の
上端壁14に、また上壁1bをガスケツト35を
介してシリンダヘツド2の円筒部11の天壁11
aに挟持される結果、燃焼行程における爆発荷重
によりヘツドライナ1のコーナ部aに応力集中が
生じ、この部分から割れが生じる恐れがある。
According to the above-mentioned conventional technology, not only the lower surface of the cylinder head 2 but also a part of the cylinder and the piston crown are surrounded by ceramic material, and the combustion temperature is high during the combustion stroke (top dead center in terms of crank angle). The combustion chamber is insulated between 60 and 70 degrees before and after the
Not only can a good combustion state be obtained, but also the exhaust temperature can be increased. However, the lower end of the inverted cup-shaped head liner 1 is connected to the upper end wall 14 of the cylinder body 3, and the upper wall 1b is connected to the top wall 11 of the cylindrical portion 11 of the cylinder head 2 via a gasket 35.
As a result of being pinched by the head liner 1, stress concentration occurs at the corner portion a of the head liner 1 due to the explosive load during the combustion process, and there is a risk that cracks may occur from this portion.

すなわち、単純化して考えると、第5図に示す
ように、ヘツドライナ1は周壁部1cにおいて、
下端部をシリンダボデイ3に、上壁1bをシリン
ダヘツド2にそれぞれ支持されるので、燃焼行程
で第6図aに示すような変形が生じる。この場合
の内周面1aの下端部bからコーナ部aを経て上
壁1bの下面中心cに至る荷重分布は、第6図b
に実線35Aで表される。このことから、コーナ
部aには過大な引張荷重が生じるため、コーナ部
aのところから亀裂が発生する恐れがある。
That is, in a simplified manner, as shown in FIG. 5, the head liner 1 has a
Since the lower end is supported by the cylinder body 3 and the upper wall 1b is supported by the cylinder head 2, deformation as shown in FIG. 6a occurs during the combustion stroke. In this case, the load distribution from the lower end b of the inner peripheral surface 1a to the center c of the lower surface of the upper wall 1b via the corner part a is shown in Fig. 6b.
is represented by a solid line 35A. As a result, an excessive tensile load is generated at the corner portion a, and there is a fear that cracks may occur from the corner portion a.

なお、組立て時、シリンダヘツド2をシリンダ
ボデイ3に結合する6本のヘツドボルトにはそれ
ぞれ約5tの締付荷重が加えられ、コーナ部aには
破線35Bで示すように圧縮荷重が作用している
が、実線35Aで示される燃焼行程での引張荷重
のピークは150Kg/cm2にも達する。
During assembly, a tightening load of approximately 5 tons is applied to each of the six head bolts that connect the cylinder head 2 to the cylinder body 3, and a compressive load is applied to the corner a as shown by the broken line 35B. However, the peak of the tensile load during the combustion stroke, indicated by the solid line 35A, reaches as much as 150 kg/cm 2 .

[考案が解決しようとする問題点] そこで、本考案の目的は上述の問題に鑑み、ヘ
ツドライナのコーナ部にセラミツクスの弱点であ
る引張荷重が作用しないようなヘツドライナの配
置を考慮した、断熱エンジンの構造を提供するこ
とにある。
[Problems to be solved by the invention] Therefore, in view of the above-mentioned problems, the purpose of the present invention is to develop an adiabatic engine that takes into account the arrangement of the head liner so that the tensile load, which is the weak point of ceramics, does not act on the corners of the head liner. It's about providing structure.

[問題点を解決するための手段] 上記目的を達成するために、本考案の構成はシ
リンダヘツドの下壁に設けた円筒部の天壁と該円
筒部に嵌挿した逆カツプ形のセラミツクス製のヘ
ツドライナの上壁との間に、ヘツドライナの内径
よりも小径の環状のガスケツトをヘツドライナと
同心に挟み、シリンダヘツドをシリンダボデイに
締結するヘツドボルトの締付力により、ヘツドラ
イナの下端面をシリンダボデイおよびシリンダラ
イナの上端面に重ね合せたものである。
[Means for Solving the Problems] In order to achieve the above object, the structure of the present invention includes a top wall of a cylindrical part provided on the lower wall of the cylinder head, and an inverted cup-shaped ceramic body fitted into the cylindrical part. An annular gasket with a diameter smaller than the inner diameter of the head liner is sandwiched concentrically with the upper wall of the head liner, and the lower end surface of the head liner is connected to the cylinder body and the cylinder body by the tightening force of the head bolt that fastens the cylinder head to the cylinder body. It is superimposed on the upper end surface of the cylinder liner.

[作用] ヘツドライナの上壁とシリンダヘツドの天壁と
の間のガスケツトの位置をシリンダ中心側へ偏倚
させると、ヘツドライナのコーナ部には引張荷重
が作用しない。すなわち、環状のガスケツトの直
径を小さくし、ヘツドライナの内周面よりも内側
の部分でヘツドライナの上壁とシリンダヘツドの
天壁との間に挟むことにより、燃焼行程において
ヘツドライナに作用する爆発荷重はガスケツトを
支点としてシリンダヘツドに支持されることとな
り、この場合は、コーナ部に亀裂を生じさせるよ
うな引張荷重は作用せず、圧縮荷重が作用する。
[Operation] When the position of the gasket between the upper wall of the head liner and the top wall of the cylinder head is shifted toward the cylinder center, no tensile load is applied to the corner portions of the head liner. In other words, by reducing the diameter of the annular gasket and sandwiching it between the upper wall of the head liner and the ceiling wall of the cylinder head at a portion inside the inner circumferential surface of the head liner, the explosive load acting on the head liner during the combustion process can be reduced. It is supported by the cylinder head using the gasket as a fulcrum, and in this case, no tensile load that would cause cracks is applied to the corner portion, but a compressive load is applied.

セラミツクスの特性として圧縮強度は引張強度
の10倍程度にも達するから、燃焼行程でヘツドラ
イナのコーナ部には圧縮荷重だけが作用する時
は、コーナ部が引き裂かれるような力は作用せ
ず、ヘツドライナの亀裂やその他の強度上の問題
を解消することができる。
As a characteristic of ceramics, the compressive strength is about 10 times higher than the tensile strength, so when only compressive load is applied to the corners of the head liner during the combustion process, no force that would tear the corners is applied, and the head liner can eliminate cracks and other strength problems.

[考案の実施例] 第1,2図に示すように、ガスケツト24はヘ
ツドライナ1の周周面1aよりも内側に配設され
る。ヘツドライナ1の上壁1bにそれぞれ弁座1
0を有する吸気ポート9と排気ポート31がそれ
ぞれ形成され、吸気ポート9の上端部に大径の円
筒部33が形成され、円筒部33の端部周面とシ
リンダヘツド2の天壁11aとの間にシールリン
グ21が介装される。同様に、排気ポート31の
上端部とシリンダヘツド2の天壁11aとの間に
シールリング34が介装される。
[Embodiment of the invention] As shown in FIGS. 1 and 2, the gasket 24 is disposed inside the circumferential surface 1a of the head liner 1. Each valve seat 1 is mounted on the upper wall 1b of the head liner 1.
An intake port 9 and an exhaust port 31 having a radius of A seal ring 21 is interposed between them. Similarly, a seal ring 34 is interposed between the upper end of the exhaust port 31 and the top wall 11a of the cylinder head 2.

また、第1図に示すように、上壁1bに燃料噴
射ノズルの取付穴40が設けられる。吸気ポート
9および排気ポート31は通路面積をできるだけ
大きく採るために、ヘツドライナ1の内周面1a
に近接して設けられる。したがつて、この部分に
ついては、ガスケツト24は内周面1aよりも外
側にはみ出るが、小径の吸気ポート9および排気
ポート31を2個ずつ設けるなどすれば、ガスケ
ツト24は上壁1bとシリンダヘツド2の天壁1
1aとの間に、ヘツドライナ1の内周面1aより
も内側にヘツドライナ1と同心に介装できる。他
の構成については第4図に示す従来例とほぼ同様
である。
Further, as shown in FIG. 1, a mounting hole 40 for a fuel injection nozzle is provided in the upper wall 1b. The intake port 9 and the exhaust port 31 are arranged on the inner circumferential surface 1a of the head liner 1 in order to maximize the passage area.
located close to. Therefore, in this part, the gasket 24 protrudes outside the inner circumferential surface 1a, but if two small-diameter intake ports 9 and two exhaust ports 31 are provided, the gasket 24 will fit between the upper wall 1b and the cylinder head. 2 ceiling wall 1
1a, it can be interposed concentrically with the head liner 1 inside the inner circumferential surface 1a of the head liner 1. The other configurations are almost the same as the conventional example shown in FIG.

本考案によれば、上述のようにガスケツト24
を第5図に仮想線で示すように配置し、ヘツドラ
イナ1をヘツドボルトでシリンダヘツド2とシリ
ンダボデイ3との間に挟持することにより、組立
て時、コーナ部aには第3図bに破線24Bで示
すように、圧縮荷重が加えられる。燃焼行程でヘ
ツドライナ1に作用する爆発力はガスケツト24
でシリンダヘツド2に支持されるが、この時ヘツ
ドライナ1は第3図aに破線で示す状態から実線
で示す状態に変形し、コーナ部aには第3図bに
実線24Aで示すように、圧縮荷重が減殺される
だけで、引張荷重は作用しない。セラミツクスの
特性から圧縮荷重に対する強度は引張荷重のそれ
よりも10倍程度の強度を有し、しかもコーナ部a
に引張荷重が作用する時はこれを引き裂くような
力を及ぼすのに対して、圧縮荷重の場合は、コー
ナ部aを引き裂くような力を及ぼさないので、ヘ
ツドライナ1の強度上の信頼性が大幅に向上され
る。
According to the present invention, as described above, the gasket 24
By arranging the head liner 1 as shown by the imaginary line in FIG. 5 and sandwiching the head liner 1 between the cylinder head 2 and the cylinder body 3 with head bolts, the corner portion a is provided with the dashed line 24B shown in FIG. 3b during assembly. A compressive load is applied as shown in . The explosive force acting on the headliner 1 during the combustion process is the gasket 24.
At this time, the head liner 1 is deformed from the state shown by the broken line in FIG. 3a to the state shown by the solid line, and at the corner part a, as shown by the solid line 24A in FIG. The compressive load is only reduced and the tensile load does not act. Due to the characteristics of ceramics, its strength against compressive loads is approximately 10 times higher than that under tensile loads, and the strength at the corner a
When a tensile load is applied to the head liner 1, a force that would tear it apart is applied, but when a compressive load is applied, no force that would tear the corner part a is applied, which greatly increases the reliability of the strength of the head liner 1. will be improved.

なお、第5図に示すように、ガスケツト24の
代りにヘツドライナ1のほぼ中心にガスケツト2
5を配置した場合は、第7図a,bに示すよう
に、上壁1bに曲げ応力が生じ、コーナ部aは過
大な圧縮荷重が、上壁1bの下面中心cには過大
な引張荷重が作用するので、上壁1bに割れが生
じる恐れがある。
Note that, as shown in FIG.
5, bending stress occurs in the upper wall 1b as shown in Fig. 7a and b, an excessive compressive load is applied to the corner part a, and an excessive tensile load is applied to the center c of the lower surface of the upper wall 1b. This may cause cracks to occur in the upper wall 1b.

したがつて、上述の説明から明らかなように、
ヘツドライナ1の上壁1bとシリンダヘツド2の
天壁11aとの間に介装する環状のガスケツト2
4は周壁部1cと上壁1bの中心との間に同心に
配置することが必須であり、応力解析結果によれ
ば、内周面1aよりも幾分中心側へ偏倚した部分
に配設するのが最適である。
Therefore, as is clear from the above explanation,
An annular gasket 2 interposed between the upper wall 1b of the head liner 1 and the top wall 11a of the cylinder head 2.
4 is essential to be arranged concentrically between the center of the peripheral wall 1c and the upper wall 1b, and according to the stress analysis results, it is arranged in a part that is slightly biased toward the center than the inner peripheral surface 1a. is optimal.

本考案は上述のように、ヘツドライナ1に作用
する燃焼室の爆発荷重を受け止めるシリンダヘツ
ド2とシリンダボデイ3との間において、特に爆
発力の支持点であるガスケツト24を、ヘツドラ
イナ1の内周面1aよりも中心側の部分で、上壁
1bと天壁11aとの間に配置するのが最も好ま
しく、コーナ部aに作用する荷重を、引張荷重か
ら圧縮荷重に変換できるので、コーナ部aにこれ
を引き裂くような力が解消され、コーナ部aから
割れが生じるのを防止することができる。
As described above, in the present invention, between the cylinder head 2 and the cylinder body 3, which receive the explosion load of the combustion chamber acting on the head liner 1, the gasket 24, which is a support point for the explosive force, is attached to the inner circumferential surface of the head liner 1. It is most preferable to place it between the upper wall 1b and the ceiling wall 11a at a part closer to the center than 1a, and since the load acting on corner part a can be converted from a tensile load to a compressive load, The force that would tear this apart is eliminated, and it is possible to prevent cracks from occurring at the corner portion a.

[考案の効果] 本考案は上述のように、シリンダヘツドの下壁
に設けた円筒部の天壁と該円筒部に嵌挿した逆カ
ツプ形のセラミツクス製のヘツドライナの上壁と
の間に、ヘツドライナの内径よりも小径の環状の
ガスケツトをヘツドライナと同心に挟み、シリン
ダヘツドをシリンダボデイに締結するヘツドボル
トの締付力により、ヘツドライナの下端面をシリ
ンダボデイおよびシリンダライナの上端面に重ね
合せたものであるから、構造上最も割れの生じ易
いヘツドライナのコーナ部(周壁部と上壁との交
差部)には、常に圧縮荷重が作用し、爆発力によ
る引張荷重(コーナ部を引き裂くような力)は作
用しないので、構成が簡単でコーナ部の割れを防
止でき、強度上信頼性の高い断熱エンジンを提供
できる。
[Effects of the invention] As described above, the present invention has a structure in which a cylinder is provided between the top wall of the cylindrical part provided on the bottom wall of the cylinder head and the top wall of the inverted cup-shaped ceramic head liner fitted into the cylindrical part. An annular gasket with a diameter smaller than the inner diameter of the head liner is sandwiched concentrically with the head liner, and the lower end surface of the head liner is overlapped with the cylinder body and the upper end surface of the cylinder liner by the tightening force of the head bolt that fastens the cylinder head to the cylinder body. Therefore, a compressive load always acts on the corners of the headliner (the intersection of the peripheral wall and the top wall), which are most prone to cracking due to the structure, and tensile loads due to explosive force (forces that tear the corners) Since this does not work, it is possible to provide an adiabatic engine that is simple in construction, prevents cracking at the corners, and is highly reliable in terms of strength.

特に、環状のガスケツトをヘツドライナと同心
に配したことにより、ヘツドライナのコーナ部に
は、周方向にほぼ均等な圧縮荷重が作用するの
で、この点でもセラミツク製シリンダライナの実
質的強度を高め、損傷を回避できる。
In particular, by arranging the annular gasket concentrically with the head liner, a compressive load that is almost uniform in the circumferential direction is applied to the corners of the head liner, which also increases the substantial strength of the ceramic cylinder liner and prevents damage. can be avoided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本考案に係る断熱エンジンのヘツドラ
イナを示す平面図、第2図は図1の線−によ
るヘツドライナの正面断面図、第3図aは同ヘツ
ドライナの爆発荷重による変形を誇張して示す正
面断面図、第3図bは同応力分布図、第4図は一
般的な断熱エンジンを示す正面断面図、第5図は
同ヘツドライナの荷重支持点を簡単化して示す正
面断面図、第6図aは同ヘツドライナの爆発荷重
による変形を誇張して示す正面断面図、第6図b
は同応力分布図、第7図aはヘツドライナの中心
にガスケツトを配置した場合のヘツドライナの爆
発荷重による変形を誇張して示す正面断面図、第
7図bは同応力分布図である。 a……コーナ部、1……ヘツドライナ、1b…
…上壁、1c……周壁部、2……シリンダヘツ
ド、3……シリンダボデイ、11……円筒部、1
9……シリンダライナ、24……ガスケツト。
Fig. 1 is a plan view showing a head liner of an adiabatic engine according to the present invention, Fig. 2 is a front sectional view of the head liner taken along the line - in Fig. 1, and Fig. 3 a shows an exaggerated view of the deformation of the head liner due to an explosive load. 3b is a stress distribution diagram, FIG. 4 is a front sectional view showing a general adiabatic engine, FIG. 5 is a front sectional view showing a simplified load support point of the head liner, and FIG. Figure a is a front sectional view exaggerating the deformation of the head liner due to the explosive load, and Figure 6 b.
7A is a front sectional view exaggerating the deformation of the head liner due to an explosive load when a gasket is placed in the center of the head liner, and FIG. 7B is a stress distribution diagram of the same. a...corner part, 1...head liner, 1b...
...Top wall, 1c...Peripheral wall part, 2...Cylinder head, 3...Cylinder body, 11...Cylindrical part, 1
9...Cylinder liner, 24...Gasket.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] シリンダヘツドの下壁に設けた円筒部の天壁と
該円筒部に嵌挿した逆カツプ形のセラミツクス製
のヘツドライナの上壁との間に、ヘツドライナの
内径よりも小径の環状のガスケツトをヘツドライ
ナと同心に挟み、シリンダヘツドをシリンダボデ
イに締結するヘツドボルトの締付力により、ヘツ
ドライナの下端面をシリンダボデイおよびシリン
ダライナの上端面に重ね合せたことを特徴とする
断熱エンジンの構造。
An annular gasket with a smaller diameter than the inner diameter of the head liner is installed between the top wall of the cylindrical part provided on the lower wall of the cylinder head and the upper wall of the inverted cup-shaped ceramic head liner fitted into the cylinder head. A structure of an adiabatic engine characterized in that the lower end surface of the head liner is superimposed on the cylinder body and the upper end surface of the cylinder liner by the tightening force of head bolts that are concentrically sandwiched and fasten the cylinder head to the cylinder body.
JP1985163495U 1985-10-24 1985-10-24 Expired - Lifetime JPH057480Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1985163495U JPH057480Y2 (en) 1985-10-24 1985-10-24

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1985163495U JPH057480Y2 (en) 1985-10-24 1985-10-24

Publications (2)

Publication Number Publication Date
JPS6271352U JPS6271352U (en) 1987-05-07
JPH057480Y2 true JPH057480Y2 (en) 1993-02-25

Family

ID=31091744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1985163495U Expired - Lifetime JPH057480Y2 (en) 1985-10-24 1985-10-24

Country Status (1)

Country Link
JP (1) JPH057480Y2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6090955A (en) * 1983-10-24 1985-05-22 Isuzu Motors Ltd Structure of heat insulated engine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6090955A (en) * 1983-10-24 1985-05-22 Isuzu Motors Ltd Structure of heat insulated engine

Also Published As

Publication number Publication date
JPS6271352U (en) 1987-05-07

Similar Documents

Publication Publication Date Title
JPH02502746A (en) A hood that covers the space between cylinder rows arranged in a V-shape of an internal combustion engine.
JPH0717885Y2 (en) Laminated metal gasket with wire ring
JPH057480Y2 (en)
JPH0424117Y2 (en)
JPH053725Y2 (en)
JPH0326291Y2 (en)
JPS62223445A (en) Insulating piston
JP3254827B2 (en) Heat shield piston
JPH0435561Y2 (en)
JPH0350277Y2 (en)
US5738066A (en) Piston structure with heat insulated combustion chamber
JPH0346209Y2 (en)
JP3109156B2 (en) Insulated piston
JPH0531210Y2 (en)
JPH0330005B2 (en)
JPH0755305Y2 (en) Ceramic engine
JPS6350420Y2 (en)
JPH0424118Y2 (en)
JPS6140933Y2 (en)
JPH0217151Y2 (en)
JPH0240258Y2 (en)
JPH0247250Y2 (en)
JPH0223768Y2 (en)
JPH0424124Y2 (en)
JPH0122925Y2 (en)