JPH0217151Y2 - - Google Patents

Info

Publication number
JPH0217151Y2
JPH0217151Y2 JP1983202413U JP20241383U JPH0217151Y2 JP H0217151 Y2 JPH0217151 Y2 JP H0217151Y2 JP 1983202413 U JP1983202413 U JP 1983202413U JP 20241383 U JP20241383 U JP 20241383U JP H0217151 Y2 JPH0217151 Y2 JP H0217151Y2
Authority
JP
Japan
Prior art keywords
ceramic member
thermal expansion
ceramic
chamber
shell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1983202413U
Other languages
Japanese (ja)
Other versions
JPS60105828U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP20241383U priority Critical patent/JPS60105828U/en
Publication of JPS60105828U publication Critical patent/JPS60105828U/en
Application granted granted Critical
Publication of JPH0217151Y2 publication Critical patent/JPH0217151Y2/ja
Granted legal-status Critical Current

Links

Description

【考案の詳細な説明】 (産業上の利用分野) この本考案はデイーゼルエンジ等における副室
の構造に関し、特に副室内壁をセラミツクで形成
した構造の改良に関するものである。
[Detailed Description of the Invention] (Industrial Field of Application) The present invention relates to the structure of a subchamber in a diesel engine, etc., and particularly relates to an improvement of a structure in which the subchamber wall is formed of ceramic.

(従来技術) 従来から、主燃焼室に連通する副室を備えたエ
ンジンは種々知られており、例えばデイーゼルエ
ンジンでは、主燃焼室から噴口を通して副室に空
気を流入させ、副室に渦流を生じさせた状態で燃
料を副室内に噴射して着火させるようにした渦室
式のものが広く用いられている。この種のエンジ
ンにおいては、上記副室からの熱の放散を防止し
て副室の温度を高く保つことが低温時の着火性の
向上や半失火の防止に有効であり、とくにシリン
ダヘツドが熱伝導性の高いアルミ合金で形成され
る場合、副室からの熱の放散を防止することが強
く要望される。このため断熱性にすぐれたセラミ
ツク部材によつて副室の内壁を形成したものが開
発されている。
(Prior Art) Various engines have been known that are equipped with an auxiliary chamber that communicates with the main combustion chamber. For example, in a diesel engine, air flows from the main combustion chamber into the auxiliary chamber through a nozzle to create a vortex flow in the auxiliary chamber. A vortex chamber type is widely used in which fuel is injected into a subchamber in the generated state and ignited. In this type of engine, preventing the dissipation of heat from the pre-chamber and keeping the pre-chamber temperature high is effective in improving ignition performance at low temperatures and preventing half-misfires. When made of highly conductive aluminum alloy, it is strongly desired to prevent heat dissipation from the subchamber. For this reason, a device has been developed in which the inner wall of the sub-chamber is made of a ceramic material with excellent heat insulation properties.

また副室内壁をセラミツク部材で形成する場合
に特開昭57−10723号公報に示されるようにセラ
ミツク部材の加工を容易にするとともに加工時の
損傷を防止する等の目的で、セラミツク部材を噴
口部とキヤビテイ部とに予め分割して成形し、こ
の両部の外周に金属製のスリーブを焼きばめ等で
嵌着することにより、これらを一体化するととも
にセラミツク部材に圧縮応力を付与するようにし
たものが知られている。このようにセラミツク部
材に予め圧縮応力を付与しておけば、エンジン作
動中の熱応力に起因したクラツクの発生を防止す
ることもできる。つまりセラミツクは金属と比べ
て引張り強度が低いため、副室内の温度が上昇し
たときのセラミツク部材の内側と外側との温度差
によつてセラミツク部材の外周部に引張り応力が
作用した場合にクラツクが生じ易くなるが、予め
圧縮応力を付与しておけば上記の引張り応力が抑
制される。なお、上記公報では副室内壁のうちで
噴口部と下部周壁とだけをセラミツク部材で形成
しているが、断熱効果をさらに高めるため副室内
壁全体をセラミツク部材で形成するようにしたも
のも提案されており、この場合もセラミツク部材
を予め複数部分に分割し、金属スリーブ等で圧縮
応力を付与しつつ一体化するようにしている。
In addition, when the sub-chamber wall is formed of a ceramic material, as shown in Japanese Unexamined Patent Publication No. 57-10723, the ceramic material is attached to the nozzle for the purpose of facilitating processing of the ceramic material and preventing damage during processing. A ceramic member is molded separately into a cavity part and a cavity part, and a metal sleeve is fitted around the outer periphery of both parts by shrink fitting, etc., to integrate these parts and apply compressive stress to the ceramic member. It is known what has been done. By applying compressive stress to the ceramic member in advance in this manner, it is also possible to prevent the occurrence of cracks due to thermal stress during engine operation. In other words, since ceramic has lower tensile strength than metal, cracks occur when tensile stress is applied to the outer periphery of the ceramic member due to the temperature difference between the inside and outside of the ceramic member when the temperature inside the subchamber rises. Although this is likely to occur, if compressive stress is applied in advance, the above-mentioned tensile stress can be suppressed. In addition, in the above publication, only the nozzle part and the lower peripheral wall of the sub-chamber wall are made of ceramic material, but in order to further enhance the heat insulation effect, a structure in which the entire sub-chamber wall is made of ceramic material has also been proposed. In this case as well, the ceramic member is divided into a plurality of parts in advance, and the parts are integrated while applying compressive stress using a metal sleeve or the like.

ところでこのような構造においては、上記金属
スリーブの熱膨張率がセラミツク部材よりも高
く、またセラミツク部材を分割構造とする場合で
特に耐熱衝撃性が要求される部分とそれ以外の部
分とを別種のセラミツク部材で形成するような場
合にはこれらの部分の熱膨張率も異なるので、セ
ラミツク部材およびスリーブの温度が変化すると
上記の圧縮応力も変化する。このため、上記のよ
うな熱膨張率の相違を吸収してセラミツク部材に
常に均一な圧縮応力を付与するような手段が望ま
れていた。
Incidentally, in such a structure, the coefficient of thermal expansion of the metal sleeve is higher than that of the ceramic member, and when the ceramic member is divided into parts, the parts that require particularly high thermal shock resistance and the other parts are made of different types. In the case of a ceramic member, the coefficients of thermal expansion of these parts are different, so that as the temperature of the ceramic member and sleeve changes, the above-mentioned compressive stress also changes. Therefore, there has been a desire for a means that can absorb the above-mentioned difference in coefficient of thermal expansion and always apply uniform compressive stress to the ceramic member.

(考案の目的) 本考案はこれらの事情に鑑み、副室の内壁を形
成するセラミツク部材に均一な圧縮応力を付与
し、セラミツク部材の外周を覆う保持部材が熱膨
張してもセラミツク部材に付与される圧縮応力が
低下することを防止して、セラミツク部材にクラ
ツクが発生することをより確実に防止することの
できるエンジン副室構造を提供するものである。
(Purpose of the invention) In view of these circumstances, the present invention applies uniform compressive stress to the ceramic member forming the inner wall of the subchamber, and prevents stress from being applied to the ceramic member even if the holding member covering the outer periphery of the ceramic member expands thermally. An object of the present invention is to provide an engine pre-chamber structure that can more reliably prevent the occurrence of cracks in ceramic members by preventing the compressive stress caused by the ceramic member from decreasing.

(考案の構成) 本考案は、主燃焼室と連通する副室を備え、こ
の副室の内壁がセラミツク部材で形成され、この
セラミツク部材の外周を覆う支持部材がセラミツ
ク部材より熱膨張率の大きい材料で形成されてい
るエンジンの副室構造において、上記セラミツク
部材とその外周を覆う支持部材との間に、温度上
昇に伴つて厚さ方向に膨張するマツト状の熱膨張
部材が介在し、この熱膨張部材を介して上記支持
部材から上記セラミツク部材に均一な圧縮応力が
付与されている構造としたものである。この構造
によると、予め上記セラミツク部材に上記支持部
材から上記熱膨張部材を介して圧縮応力が付与さ
れるとともに、温度上昇時にも、厚さ方向に熱膨
張する熱膨張部材がセラミツク部材に対する圧縮
力を増大する作用を有効に発揮し、上記支持部材
の熱膨張による圧縮力の低下が補われる。
(Structure of the invention) The present invention includes an auxiliary chamber that communicates with the main combustion chamber, an inner wall of the auxiliary chamber is formed of a ceramic member, and a support member that covers the outer periphery of the ceramic member has a coefficient of thermal expansion larger than that of the ceramic member. In the subchamber structure of an engine made of material, a mat-like thermal expansion member that expands in the thickness direction as the temperature rises is interposed between the ceramic member and a support member that covers the outer periphery of the ceramic member. The structure is such that uniform compressive stress is applied from the support member to the ceramic member via the thermal expansion member. According to this structure, compressive stress is applied in advance to the ceramic member from the support member via the thermal expansion member, and even when the temperature rises, the thermal expansion member that thermally expands in the thickness direction applies compressive stress to the ceramic member. The support member effectively exhibits the effect of increasing the compressive force, thereby compensating for the decrease in compressive force caused by the thermal expansion of the support member.

(実施例) 第1図は渦室式デイーゼルエンジンに適用され
る副室構造の一実施例を示す。これらの図におい
て、1はシリンダブロツク、2はシリンダヘツド
であり、両者はアルミ合金等で成形されている。
上記シリンダブロツク1のシリンダ孔3にはピス
トン4が挿入され、このピストン4の上方に主燃
焼室5が形成されている。一方、シリンダヘツド
2の側辺近傍部には、噴口7を介して主燃焼室5
と連通する副室(渦流室)6が設けられている。
またこの副室6内の所定位置に向けて燃料を噴射
する燃料噴射弁8と、先端が副室6内に突入した
始動時の予備加熱用のグローブラグ9とがシリン
ダヘツド2に取付けられている。そしてピストン
4の作動に伴い、主燃焼室5から噴口7を通して
副室6内に空気が流入し、副室6内で空気が高圧
縮されるとともに渦流が生じた状態で燃料噴射弁
8から燃料が噴射されて自己着火し、その火炎が
上記噴口7から主燃焼室5に送り出されるように
なつている。10は燃料噴射弁8の先端に装備さ
れたシール部材である。
(Embodiment) FIG. 1 shows an embodiment of a pre-chamber structure applied to a swirl chamber type diesel engine. In these figures, 1 is a cylinder block and 2 is a cylinder head, both of which are molded from aluminum alloy or the like.
A piston 4 is inserted into the cylinder hole 3 of the cylinder block 1, and a main combustion chamber 5 is formed above the piston 4. On the other hand, a main combustion chamber 5 is provided in the vicinity of the side of the cylinder head 2 through a nozzle 7.
A subchamber (vortex chamber) 6 communicating with the vortex chamber is provided.
Furthermore, a fuel injection valve 8 that injects fuel toward a predetermined position within the auxiliary chamber 6, and a globe lug 9 whose tip extends into the auxiliary chamber 6 for preheating during startup are attached to the cylinder head 2. There is. As the piston 4 operates, air flows from the main combustion chamber 5 through the nozzle 7 into the auxiliary chamber 6, and the air is highly compressed in the auxiliary chamber 6, and fuel is injected from the fuel injection valve 8 in a state where a vortex is generated. is injected and self-ignited, and the flame is sent out from the nozzle 7 to the main combustion chamber 5. 10 is a seal member installed at the tip of the fuel injection valve 8.

上記副室6は、その内壁全体がセラミツク部材
11で形成されている。このセラミツク部材11
は、セラミツク材料のうちで耐熱衝撃性にすぐれ
た窒化ケイ素からなる部分と、これより耐熱衝撃
性は劣るが断熱性にすぐれた部分安定化ジルコニ
アからなる部分とを組合わせて形成することが望
ましい。例えば噴口7を有する下端壁11aと、
下部周壁11bと、燃料噴射弁8を臨ませる貫通
孔12およびグローブラグ9を挿通する貫通孔1
3を有する上部ドーム状壁11cの三者に予めセ
ラミツク部材11を分割し、噴口7付近に大きな
熱衝撃を受ける上記下端壁11aは窒化ケイ素
で、下部周壁11bは部分安定化ジルコニアで、
また上部ドーム壁11cは窒化ケイ素もしくは部
分安定化ジルコニアでそれぞれ成形しておき、こ
れら三者を接合して所定形状に形成する。あるい
はセラミツク部材を周壁中間部より下部と上部と
に予め2分割し、下部を窒化ケイ素で成形し、上
部を部分安定化ジルコニアで成形しておいてもよ
い。
The entire inner wall of the auxiliary chamber 6 is formed of a ceramic member 11. This ceramic member 11
It is desirable to form the ceramic material by combining a part made of silicon nitride, which has excellent thermal shock resistance, and a part made of partially stabilized zirconia, which has inferior thermal shock resistance but excellent heat insulation properties. . For example, a lower end wall 11a having a spout 7,
The lower peripheral wall 11b, the through hole 12 through which the fuel injection valve 8 is exposed, and the through hole 1 through which the globe lug 9 is inserted.
The ceramic member 11 is divided in advance into three parts: an upper dome-shaped wall 11c having a diameter of 3, the lower end wall 11a receiving a large thermal shock near the nozzle 7 is made of silicon nitride, and the lower peripheral wall 11b is made of partially stabilized zirconia;
The upper dome wall 11c is formed of silicon nitride or partially stabilized zirconia, and these three are bonded together to form a predetermined shape. Alternatively, the ceramic member may be preliminarily divided into two parts, a lower part and an upper part from the middle part of the peripheral wall, the lower part being molded with silicon nitride, and the upper part being molded with partially stabilized zirconia.

上記セラミツク部材11は金属等で形成された
シエル(支持部材)14内に保持され、このシエ
ル14の内周面とセラミツク部材11の外周面と
の間には熱膨張部材15が介在している。上記シ
エル14は、セラミツク部材11の下端面を除く
部材全体を覆うように形成され、その上端部付近
に、セラミツク部材11の前記貫通孔12,13
に対応する貫通孔16,17が設けられている。
また上記熱膨張部材15は、セラミツクフアイバ
ーまたはグラスフアイバー等の耐熱性繊維材に蛭
石またはバーミキユライト等の加熱膨張物質を混
入させてマツト状に形成したもので、温度上昇に
応じて厚さ方向に膨張する性質を有し、かつ弾力
性と耐熱性とを兼ね備えている。そして、この熱
膨張部材15が、セラミツク部材11の下部周壁
11bと上部壁11cの上端部を除く範囲の外周
とを囲繞するように装備され、その外側から上記
シエル14がセラミツク部材11に嵌着されるこ
とにより、熱膨張部材15が圧縮された状態で、
この熱膨張部材15を介してシエル15からセラ
ミツク部材11に圧縮応力が付与されている。
The ceramic member 11 is held within a shell (supporting member) 14 made of metal or the like, and a thermal expansion member 15 is interposed between the inner peripheral surface of the shell 14 and the outer peripheral surface of the ceramic member 11. . The shell 14 is formed to cover the entire member except the lower end surface of the ceramic member 11, and the through holes 12, 13 of the ceramic member 11 are formed near the upper end of the shell 14.
Corresponding through holes 16 and 17 are provided.
The thermal expansion member 15 is formed into a mat shape by mixing a heat-resistant fiber material such as ceramic fiber or glass fiber with a thermal expansion substance such as vermiculite or vermiculite, and the thickness changes depending on the temperature rise. It has the property of expanding in one direction and has both elasticity and heat resistance. This thermal expansion member 15 is installed so as to surround the lower peripheral wall 11b of the ceramic member 11 and the outer periphery of the range excluding the upper end of the upper wall 11c, and the shell 14 is fitted onto the ceramic member 11 from the outside. As a result, the thermal expansion member 15 is in a compressed state,
Compressive stress is applied from the shell 15 to the ceramic member 11 via the thermal expansion member 15.

このようにして一体化されたセラミツク部材1
1とシエル14と熱膨張部材15とで副室用イン
サート18が構成され、このインサート18は、
シリンダヘツド2に形成された凹孔19に対し、
シエル14の下端縁部14aとシリンダヘツド2
とにそれぞれ設けられた位置決め用の小孔20,
21とこれらに結合するピン22とで周方向の位
置決めがされた状態で嵌め込まれ、上記下端縁部
14aが凹孔19の下端部内面に嵌着することに
よつてシリンダヘツド2に固定されている。
Ceramic member 1 integrated in this way
1, the shell 14, and the thermal expansion member 15 constitute a sub-chamber insert 18, and this insert 18 includes:
For the recessed hole 19 formed in the cylinder head 2,
The lower edge 14a of the shell 14 and the cylinder head 2
A small hole 20 for positioning provided in each of the
21 and a pin 22 connected thereto, the cylinder head 2 is fitted into the cylinder head 2 while being positioned in the circumferential direction, and the lower end edge 14a is fitted into the inner surface of the lower end of the recessed hole 19, thereby being fixed to the cylinder head 2. There is.

この副室構造においては、副室6内で着火、燃
焼が繰返されて副室6内の温度が上昇する場合
に、副室6の内壁がセラミツク部材11で形成さ
れていることによつて保温性が高めらる。また、
このセラミツク部材11には、前記シエル14か
ら熱膨張部材15を介して圧縮応力が付与されて
いるため、セラミツク部材11の内側と外側との
温度差によつて生じる引張り応力が抑止され、セ
ラミツク部材11にクラツクの発生することが防
止される。
In this auxiliary chamber structure, when ignition and combustion are repeated in the auxiliary chamber 6 and the temperature inside the auxiliary chamber 6 rises, the inner wall of the auxiliary chamber 6 is formed of the ceramic member 11 to maintain heat. Sexuality is enhanced. Also,
Since compressive stress is applied to the ceramic member 11 from the shell 14 via the thermal expansion member 15, tensile stress caused by the temperature difference between the inside and outside of the ceramic member 11 is suppressed, and the ceramic member 11 is prevented from occurring.

上記シエル14はセラミツク部材11よりも熱
膨張率が高いので、シエル14が直接セラミツク
部材11の外周面に圧接させるような構造による
と、シエル14が熱膨張したときにセラミツク部
材11に対する圧縮力が低下するが、上記のよう
に熱膨張部材15を介在させておけば、この熱膨
張部材15は温度上昇に伴つてセラミツク部材1
1に対する圧縮力を増大させるため、シエル14
の熱膨張による圧縮力の低下が補われる。また前
記のようにセラミツク部材11が別種のセラミツ
ク材料を用いた複数部分11a,11b,11c
からなつて、これらの部分の熱膨張率が異なる場
合でも、弾力性に富む上記熱膨張部材15を介し
て均一な圧縮力がセラミツク部材11に加えられ
る。従つて、セラミツク部材11およびシエル1
4の温度が変化しても、これらの熱膨張差により
保持力が低下してセラミツク部材11が離脱する
というような事態が防止されるとともに、クラツ
クの発生もより確実に防止されることとなる。
Since the shell 14 has a higher coefficient of thermal expansion than the ceramic member 11, if the shell 14 is in direct pressure contact with the outer peripheral surface of the ceramic member 11, the compressive force on the ceramic member 11 will be reduced when the shell 14 thermally expands. However, if the thermal expansion member 15 is interposed as described above, this thermal expansion member 15 will cause the ceramic member 1 to decrease as the temperature rises.
Shell 14 to increase the compressive force on 1
The decrease in compressive force due to thermal expansion is compensated for. Further, as described above, the ceramic member 11 has a plurality of parts 11a, 11b, 11c using different types of ceramic materials.
Therefore, even if these parts have different coefficients of thermal expansion, a uniform compressive force is applied to the ceramic member 11 via the highly elastic thermal expansion member 15. Therefore, the ceramic member 11 and the shell 1
Even if the temperature of the ceramic member 11 changes, this difference in thermal expansion will prevent the holding force from decreasing and the ceramic member 11 will come off, and the occurrence of cracks will be more reliably prevented. .

第2図は本考案の別の実施例を示す。この実施
例では、シエル24がセラミツク部材11の下端
面と上端ドーム状部分とを除く範囲の外周を覆う
円筒状に形成され、その外周に環状の断熱空間2
6が設けられている。この断熱空間26は、シリ
ンダヘツド2の凹孔19の内周面所定範囲をシエ
ル24より大径にしておくことによつて形成され
ている。またセラミツク部材11とシエル24と
の間に介在させた熱膨張部材25は、上端がシエ
ル24より上方に延出し、この上端部25aが凹
孔19の内面とセラミツク部材11との間に介在
している。
FIG. 2 shows another embodiment of the invention. In this embodiment, the shell 24 is formed into a cylindrical shape that covers the outer periphery of the ceramic member 11 except for the lower end surface and the upper dome-shaped portion, and an annular heat insulating space 2 is formed on the outer periphery.
6 is provided. This heat insulating space 26 is formed by making a predetermined range of the inner peripheral surface of the recessed hole 19 of the cylinder head 2 larger in diameter than the shell 24. Further, the thermal expansion member 25 interposed between the ceramic member 11 and the shell 24 has an upper end extending upward from the shell 24, and this upper end portion 25a is interposed between the inner surface of the recessed hole 19 and the ceramic member 11. ing.

この構造による場合、上記断熱空間26によつ
てセラミツク部材11の外周からの放熱が抑制さ
れるため、副室6の保温性が高められるととも
に、セラミツク部材11の内側と外側との温度差
が小さくなり、クラツクの発生防止により有効で
ある。またこの場合、熱膨張部材25は、第1実
施例の熱膨張部材15と同様の作用に加え、その
上端部25aが凹孔19内面とセラミツク部材1
1との間に介在してガスの流通を阻止するシール
作用も発揮する。従つて副室6内のガスが貫通孔
12,13から断熱空間26に洩れることが防止
され、断熱空間26がデツドボリユームとなるこ
とが防止される。
With this structure, heat radiation from the outer periphery of the ceramic member 11 is suppressed by the heat insulating space 26, so that the heat retention of the subchamber 6 is enhanced and the temperature difference between the inside and outside of the ceramic member 11 is reduced. This is more effective in preventing cracks. In this case, the thermal expansion member 25 has the same function as the thermal expansion member 15 of the first embodiment, and also has an upper end 25a that connects the inner surface of the recess 19 and the ceramic member 1.
1 and also exerts a sealing effect to prevent gas flow. Therefore, gas in the auxiliary chamber 6 is prevented from leaking into the heat insulating space 26 from the through holes 12 and 13, and the heat insulating space 26 is prevented from becoming a dead volume.

(考案の効果) 以上のような本考案は、副室の内壁を形成する
セラミツク部材とその外周を覆う保持部材との間
に、温度上昇に伴つて厚さ方向に膨張するマツト
状の熱膨張部材が介在し、この熱膨張部材を介し
て上記支持部材から上記セラミツク部材に均一な
圧縮応力が付与されている構造としたものである
ため、温度上昇時の上記セラミツク部材と保持部
材との熱膨張率の差に起因した圧縮応力の低下が
上記熱膨張部材によつて補われ、セラミツク部材
を確実に保持することができるとともに、クラツ
クの発生をより確実に防止することができる。そ
の上、上記熱膨張部材により、セラミツク部材の
周囲の断熱性やシール性も高めることができるも
のである。
(Effect of the invention) The present invention as described above has a mat-like thermal expansion that expands in the thickness direction as the temperature rises between the ceramic member forming the inner wall of the subchamber and the retaining member covering the outer periphery of the ceramic member. Since the structure has a structure in which a uniform compressive stress is applied from the support member to the ceramic member through the thermal expansion member, the heat between the ceramic member and the holding member when the temperature rises is reduced. The decrease in compressive stress caused by the difference in expansion coefficients is compensated for by the thermal expansion member, making it possible to securely hold the ceramic member and more reliably prevent the occurrence of cracks. Furthermore, the thermal expansion member can improve the heat insulation and sealing properties around the ceramic member.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の一実施例を示す断面図、第2
図は別の実施例を示す断面図である。 1…シリンダブロツク、2…シリンダヘツド、
5…主燃焼室、6…副室、11…セラミツク部
材、14,24…シエル(保持部材)、15,2
5…熱膨張部材。
Fig. 1 is a sectional view showing one embodiment of the present invention;
The figure is a sectional view showing another embodiment. 1...Cylinder block, 2...Cylinder head,
5... Main combustion chamber, 6... Sub-chamber, 11... Ceramic member, 14, 24... Shell (holding member), 15, 2
5...Thermal expansion member.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 主燃焼室と連通する副室を備え、この副室の内
壁がセラミツク部材で形成され、このセラミツク
部材の外周を覆う支持部材がセラミツク部材より
熱膨張率の大きい材料で形成されているエンジン
の副室構造において、上記セラミツク部材とその
外周を覆う支持部材との間に、温度上昇に伴つて
厚さ方向に膨張するマツト状の熱膨張部材が介在
し、この熱膨張部材を介して上記支持部材から上
記セラミツク部材に均一な圧縮応力が付与されて
いる構造としたことを特徴とするエンジンの副室
構造。
A sub-chamber that communicates with the main combustion chamber, an inner wall of the sub-chamber is made of a ceramic member, and a support member that covers the outer periphery of the ceramic member is made of a material with a higher coefficient of thermal expansion than the ceramic member. In the chamber structure, a mat-shaped thermal expansion member that expands in the thickness direction as the temperature rises is interposed between the ceramic member and a support member that covers the outer periphery of the ceramic member, and the support member is expanded through the thermal expansion member. A pre-chamber structure for an engine, characterized in that a uniform compressive stress is applied to the ceramic member.
JP20241383U 1983-12-23 1983-12-23 Engine pre-chamber structure Granted JPS60105828U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20241383U JPS60105828U (en) 1983-12-23 1983-12-23 Engine pre-chamber structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20241383U JPS60105828U (en) 1983-12-23 1983-12-23 Engine pre-chamber structure

Publications (2)

Publication Number Publication Date
JPS60105828U JPS60105828U (en) 1985-07-19
JPH0217151Y2 true JPH0217151Y2 (en) 1990-05-14

Family

ID=30764855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20241383U Granted JPS60105828U (en) 1983-12-23 1983-12-23 Engine pre-chamber structure

Country Status (1)

Country Link
JP (1) JPS60105828U (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5199718A (en) * 1975-02-28 1976-09-02 Kubota Ltd TEIKO GAINAINENKIKANNO SHIRINDA

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5199718A (en) * 1975-02-28 1976-09-02 Kubota Ltd TEIKO GAINAINENKIKANNO SHIRINDA

Also Published As

Publication number Publication date
JPS60105828U (en) 1985-07-19

Similar Documents

Publication Publication Date Title
EP0049396A1 (en) Poppet valve shield
JPH0357817A (en) Heat insulating structure of subchamber
JPH0223788Y2 (en)
JPH0217151Y2 (en)
JPS61123714A (en) Subchamber structure for internal-combustion engine
US5738066A (en) Piston structure with heat insulated combustion chamber
JPH02112613A (en) Structure for subcombustion chamber
JPH0134663Y2 (en)
JP3254827B2 (en) Heat shield piston
JPH0247250Y2 (en)
JPH074247A (en) Auxiliary chamber structure in auxiliary chamber type engine
JPS6313384Y2 (en)
JPH0217150Y2 (en)
JPH0238027Y2 (en)
JPS59188025A (en) Method of assemblying auxiliary combustion chamber in diesel-engine
JPH0134661Y2 (en)
JPH0138260Y2 (en)
JPH0531210Y2 (en)
JPH029066Y2 (en)
JPH0240257Y2 (en)
JPH07247843A (en) Structure of combustion chamber
JPS6314019Y2 (en)
JPH0754580Y2 (en) Sub chamber structure of engine
JPH0240258Y2 (en)
JPH0541231Y2 (en)