JPH02112613A - Structure for subcombustion chamber - Google Patents

Structure for subcombustion chamber

Info

Publication number
JPH02112613A
JPH02112613A JP26399188A JP26399188A JPH02112613A JP H02112613 A JPH02112613 A JP H02112613A JP 26399188 A JP26399188 A JP 26399188A JP 26399188 A JP26399188 A JP 26399188A JP H02112613 A JPH02112613 A JP H02112613A
Authority
JP
Japan
Prior art keywords
combustion chamber
sub
chamber
wall
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26399188A
Other languages
Japanese (ja)
Other versions
JP2906418B2 (en
Inventor
Hideo Kawamura
英男 河村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP63263991A priority Critical patent/JP2906418B2/en
Publication of JPH02112613A publication Critical patent/JPH02112613A/en
Application granted granted Critical
Publication of JP2906418B2 publication Critical patent/JP2906418B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To more improve combustion efficiency, heat resistance, durability, etc., of a subcombustion chamber by forming a wall member, forming the subcombustion chamber, with a heat insulating material while providing a thin film member, consisting of ceramic material, to be arranged in an internal wall surface of this wall member. CONSTITUTION:A subcombustion chamber 2 is connected communicating with a main combustion chamber 1 through a nozzle 3 while built in a cylinder head 10 provided with a cooling jacket 14. Here the subcombustion chamber 2 is formed by two or more wall members 4, 7 respectively molded by a heat insulating material of aluminum titanate or the like. And each wall member 4, 7 arranges in its internal wall surface two or more thin film members 5, 6 consisting of non-oxide system ceramic material or the like. While in order to reinforce the subcombustion chamber 2, a metal-made protecting cylinder 8 is fitted to the one wall member 4 on its peripheral surface. In this way, the subcombustion chamber 2 is more improved in its combustion efficiency, heat resistance and durability or the like.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、内燃機関における副燃焼室の構造に関する
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] This invention relates to the structure of a sub-combustion chamber in an internal combustion engine.

〔従来の技術〕[Conventional technology]

従来、内燃機関の副室構造、特に副室セラミック材で画
成し機関の熱効率、副室の耐熱性、耐久性を高めた副室
構造は、例えば、特開昭61−123714号公報に開
示されている。該公報に開示された内燃機関の副室構造
は、上部セラミック体と、該上部セラミック体に衝合さ
れる下部セラミック体とより成り、主燃焼室に連通ずる
噴孔を有するものであり、上部セラミック体及び下部セ
ラミック体の外周に金属製の環状リングを嵌着し、上部
セラミック体及び下部セラミック体の衝合面に対応する
環状リングの内周面に環状の凹部を設けたものである。
Conventionally, a pre-chamber structure for an internal combustion engine, particularly a pre-chamber structure defined by a pre-chamber ceramic material to improve engine thermal efficiency, heat resistance and durability of the pre-chamber, has been disclosed in, for example, Japanese Patent Laid-Open No. 123714/1983. has been done. The sub-chamber structure of an internal combustion engine disclosed in this publication consists of an upper ceramic body and a lower ceramic body abutted against the upper ceramic body, and has a nozzle hole communicating with the main combustion chamber. A metal annular ring is fitted around the outer periphery of the ceramic body and the lower ceramic body, and an annular recess is provided on the inner peripheral surface of the annular ring corresponding to the abutting surfaces of the upper ceramic body and the lower ceramic body.

また、内周面がセラミック材料で形成された内燃機関の
副室は、例えば、特開昭60−212614号公報に開
示されている。該公報に開示された内燃機関の副室は、
略半球中空体のチャンバ部と主室との連結穴を有する口
金部とを各々違ったセラミック材質の別体で構成したも
のであり、該チャンバ部のセラミックを金属で鋳ぐるむ
と共に、この鋳ぐるみ金属に円筒形突出部を同時形成し
て、この内部に口金部のセラミックを焼成めしたもので
ある。また、チャンバ部が断熱性セラミックスで構成さ
れ、口金部が耐熱性セラミックスで構成されている。更
に、円筒形突出部の内部と口金部のセラミックスとの間
に一部断熱層が設けられている。
Further, a subchamber of an internal combustion engine whose inner peripheral surface is formed of a ceramic material is disclosed in, for example, Japanese Patent Laid-Open No. 60-212614. The subchamber of the internal combustion engine disclosed in the publication is
The chamber part, which is a substantially hemispherical hollow body, and the mouthpiece part, which has a connecting hole with the main chamber, are each made of different ceramic materials. A cylindrical protrusion is simultaneously formed on the surrounding metal, and the ceramic of the base is fired inside this protrusion. Further, the chamber portion is made of heat-insulating ceramics, and the cap portion is made of heat-resistant ceramics. Further, a heat insulating layer is partially provided between the inside of the cylindrical protrusion and the ceramic of the base.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

一般に、内燃機関の燃焼室において、副室式は直接噴射
式に比較して冷却水損失が大きく、燃費が悪い、しかし
、副室式は燃料と空気との混合が副燃焼室と主燃焼室と
で2回行われ、混合状態が直接噴射式に比較して良好で
ある。更に、副室式は、直接噴射式に比較して、NOx
及びHCの発生が少なく、スモーク、パテキュレートの
発生も少ないものである。ところで、スート(SQOT
)の生成プロセスについては、混合気の燃料濃度が濃い
方が発生し易く、温度が低い方が発生し易い。NOにの
生成プロセスについては、混合気の燃料4度が薄い方が
発生し易く、温度が高い方が発生し易い。また、HCの
生成プロセスについては、混合気の燃料濃度が薄い方が
発生し易く、温度が低い方が発生し易い。
In general, in the combustion chamber of an internal combustion engine, the pre-chamber type has a larger loss of cooling water and lower fuel efficiency than the direct injection type. The mixing condition is better than that of the direct injection method. Furthermore, the pre-chamber type reduces NOx compared to the direct injection type.
Also, the generation of HC is small, and the generation of smoke and particulates is also small. By the way, SQOT
) is more likely to occur when the fuel concentration of the air-fuel mixture is high, and more likely to occur when the temperature is low. Regarding the process of producing NO, it is more likely to occur when the fuel mixture is lean and the temperature is high. Furthermore, the process of generating HC is more likely to occur when the fuel concentration of the air-fuel mixture is low, and more likely to occur when the temperature is low.

上記のことより、内燃機関において、副室式は、スート
(SOOT)、NOx及びHCの発生を低減させること
では直接噴射式に比較して有利であるが、副室式の冷却
水損失を少な(とも直接噴射式の冷却水損失程度にまで
或いはそれ以上に如何にして改善するかが課題となる。
From the above, in internal combustion engines, the pre-chamber type is more advantageous than the direct injection type in terms of reducing the generation of soot, NOx, and HC, but the pre-chamber type reduces cooling water loss. (In both cases, the problem is how to improve the cooling water loss to the level or even more than that of the direct injection type.

即ち、副燃焼室での1混合気燃焼期間の温度上昇を図り
、スモーク発生量、パテキュレート中間生成物の発生を
抑えるため、特に、ディーゼルエンジンの副室/l!7
1流室燃焼室では燃焼室の外周から熱が放散しない構造
が好ましく、しかも冷却水損失を小さくして燃費を改善
するには副室を如何に断熱構造に構成するか、また、副
室を断熱構造に構成した場合に副室自体の強度を如何に
確保するかの課題がある。
That is, in order to increase the temperature during one mixture combustion period in the sub-combustion chamber and to suppress the amount of smoke generated and the generation of particulate intermediate products, the pre-combustion chamber/l! 7
In the first-flow combustion chamber, it is preferable to have a structure in which heat does not dissipate from the outer periphery of the combustion chamber.In addition, in order to reduce cooling water loss and improve fuel efficiency, it is important to consider how to configure the pre-chamber with an insulating structure. There is a problem in how to ensure the strength of the auxiliary chamber itself when constructed with a heat insulating structure.

ところで、前掲特開昭61−123714号公報に開示
された内燃機関の副室構造については、副室の形成壁を
オールセラミックスによって構成したものであり、副室
自体の断熱について十分な断熱効果を得るという点では
問題がある。また、前掲特開昭60−212614号公
報に開示された内燃機関の副室は、チャンバ部のセラミ
ックを金属で鋳ぐるんだものであり、上記と同様に、副
室の断熱については問題がある。
By the way, in the pre-chamber structure of an internal combustion engine disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 61-123714, the wall forming the pre-chamber is made entirely of ceramics, and the pre-chamber itself has a sufficient heat insulation effect. There is a problem with obtaining it. Furthermore, the pre-chamber of the internal combustion engine disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 60-212614 is made by casting metal into the ceramic of the chamber, and similarly to the above, there is a problem with the insulation of the pre-chamber. be.

しかるに、上記のようなセラミックスを断熱材又は耐熱
材として使用して副室を構成した構造のものでは、壁面
の強度を確保し、断熱特性を十分に得ることは、極めて
困難であり、十分な強度を得るため、セラミックスの壁
厚を厚くしなければならず、壁厚を厚くしても十分な断
熱効果を得ることができないという問題がある。
However, in structures such as those described above in which the subchamber is constructed using ceramics as a heat insulator or heat-resistant material, it is extremely difficult to ensure the strength of the wall surface and obtain sufficient heat insulation properties. In order to obtain strength, the wall thickness of the ceramic must be increased, and even if the wall thickness is increased, there is a problem in that a sufficient heat insulation effect cannot be obtained.

この発明の目的は、上記の課題を解決することであり、
副燃焼室の燃焼ガスに晒される内面部分を耐熱性、熱シ
ヨツク性に優れた窒化珪素、炭化珪素、サイアロン[(
Si、Al)i (0,N)++1等のセラミックスの
’9!膜即ち薄肉部材によって形成して高温燃焼ガスに
耐えることができるように構成し、副燃焼室の形成壁本
体をチタン酸アルミニウム(AhTiO%)等の熱伝導
率αの小さい材料から成る断熱材で構成し、しかも前記
薄肉部材が受ける機械的応力及び熱応力を、前記薄肉部
材の外周部に位置する前記断熱材で吸収し、セラミック
製薄肉部材の強度を確保し、セラミック材料の肉厚の減
少に伴う強度上の劣化を防止することができる副燃焼室
の構造を提供することである。
The purpose of this invention is to solve the above problems,
The inner surface of the auxiliary combustion chamber exposed to combustion gas is made of silicon nitride, silicon carbide, or sialon [(
'9 of ceramics such as Si, Al) i (0, N)++1! The main body of the wall forming the auxiliary combustion chamber is made of a heat insulating material made of a material with a low thermal conductivity α such as aluminum titanate (AhTiO%). In addition, the mechanical stress and thermal stress applied to the thin-walled member are absorbed by the heat insulating material located on the outer periphery of the thin-walled member, thereby ensuring the strength of the ceramic thin-walled member and reducing the wall thickness of the ceramic material. It is an object of the present invention to provide a structure of a sub-combustion chamber that can prevent deterioration in strength due to this.

(?!!、題を解決するための手段〕 この発明は、上記の目的を達成するために次のように構
成されている。即ち、この発明は、主燃焼室に噴孔を通
じて連通した副燃焼室を形成する副燃焼室壁体をチタン
酸アルミニウム等の断熱材によって構成し、前記副燃焼
室壁体の内壁面に非酸化物系セラミック材から成る薄膜
部材を配置したことを特徴とする副燃焼室の構造に関す
る。
(?!, Means for Solving the Problem) In order to achieve the above object, the present invention is configured as follows. That is, the present invention provides a sub-combustion chamber that communicates with the main combustion chamber through a nozzle hole. The sub-combustion chamber wall forming the combustion chamber is made of a heat insulating material such as aluminum titanate, and a thin film member made of a non-oxide ceramic material is arranged on the inner wall surface of the sub-combustion chamber wall. Regarding the structure of the auxiliary combustion chamber.

また、前記副燃焼室壁体の外周面に金属製保護筒を嵌着
したものである。
Further, a metal protection cylinder is fitted onto the outer peripheral surface of the wall of the sub-combustion chamber.

[作用) この発明による副燃焼室の構造は、以上のように構成さ
れており、次のように作用する。即ち、この副燃焼室の
構造は、副燃焼室を形成する副燃焼室壁体をチタン酸ア
ルミニウム等の断熱材によって構成し、前記副燃焼室壁
体の内壁面に非酸化物系セラミック製薄膜部材を配置し
たので、燃焼時に発生する熱応力等による破損の恐れは
なく、前記断熱材によって副燃焼室の断熱効果を高める
ことができ、冷却水損失を低減でき燃費を向上できる。
[Function] The structure of the auxiliary combustion chamber according to the present invention is constructed as described above, and functions as follows. That is, the structure of this sub-combustion chamber is such that the sub-combustion chamber wall forming the sub-combustion chamber is made of a heat insulating material such as aluminum titanate, and the inner wall surface of the sub-combustion chamber wall is covered with a thin film made of non-oxide ceramic. Since the members are arranged, there is no fear of damage due to thermal stress generated during combustion, and the insulation effect of the sub-combustion chamber can be enhanced by the heat insulating material, reducing cooling water loss and improving fuel efficiency.

また、前記副燃焼室の壁面即ちセラミック体の肉厚を薄
くして熱容量を小さくし、副燃焼室自体の熱容量は小さ
いので、短時間で温度上昇させると共に燃料噴霧と空気
との混合を速やかに実行させることができ、前記副燃焼
室から前記主燃焼室ヘスワールとして吹き出させること
ができる。
In addition, the wall surface of the sub-combustion chamber, that is, the thickness of the ceramic body, is made thinner to reduce the heat capacity.Since the heat capacity of the sub-combustion chamber itself is small, the temperature can be raised in a short time and the fuel spray and air can be mixed quickly. The air can be blown out from the auxiliary combustion chamber to the main combustion chamber as a heswart.

更に、チタン酸アルミニウム自体は強度が小さいが、ヤ
ング率が小さいので、外力に対して破断し難いが、チタ
ン酸アルミニウムは多孔質材で熱ショックに弱い性質を
持っているので、内周壁面のセラミック!!薄肉部材で
燃焼に係わる熱応力に対する強度を確保でき、また薄肉
部材自体が熱膨張したとしても外周面に位置する断熱材
で吸収することができ、薄肉部材が受けるメカニカルス
トレス及びサーマルストレスを低減でき、前記薄膜部材
に亀裂、破壊等は発生しない。
Furthermore, although aluminum titanate itself has low strength and Young's modulus, it is difficult to break due to external forces, but since aluminum titanate is a porous material and is susceptible to thermal shock, ceramic! ! The thin-walled member can ensure strength against thermal stress related to combustion, and even if the thin-walled member itself expands thermally, it can be absorbed by the insulating material located on the outer peripheral surface, reducing mechanical stress and thermal stress that the thin-walled member receives. , cracks, destruction, etc. do not occur in the thin film member.

また、前記副燃焼室壁体の外周面に金属製保護筒を嵌着
したので、前記副燃焼室壁体を補強して強度を確保でき
、メカニカルストレス及びサーマルストレスにより前記
副燃焼室壁体が破壊されるようなことはない。
In addition, since a metal protection tube is fitted to the outer peripheral surface of the auxiliary combustion chamber wall, the auxiliary combustion chamber wall can be reinforced to ensure strength, and the auxiliary combustion chamber wall can be damaged by mechanical stress and thermal stress. It's not going to get destroyed.

〔実施例〕〔Example〕

以下、図面を参照して、この発明による副燃焼室の構造
の実施例を詳述する。
Hereinafter, embodiments of the structure of the sub-combustion chamber according to the present invention will be described in detail with reference to the drawings.

第1図において、この発明の実施例である副燃焼室の構
造の概略断面図が示されている。この副燃焼室の構造は
、主燃焼室lに噴孔3を通じて副燃焼室2を連通し、該
副燃焼室2を形成する副燃焼室壁体4.7を断熱材によ
って構成し、副燃焼室壁体4,7の内壁面にセラミック
材から成る薄膜部材5.6を配置したものである。この
場合、窒化珪素(SiJ4)等のセラミック材をチタン
酸アルミニウム材に対して化学蒸着(CV D)又はプ
ラズマスプレー・コーティングによって付着させること
が可能である。また、副燃焼室壁体4の外周面には、金
属製保護筒8が嵌着されている。副燃焼室2は、冷却ジ
ャケット14を備えたシリンダヘッドlOに組み込まれ
ている。シリンダヘッド10はへッドガスケソト13を
介在してシリンダボディ11に固定されている。シリン
ダボディ11のシリンダ15には、ピストンリング16
を嵌着したピストン12が往復運動する。また、副燃焼
室2には、燃料噴射ノズルからの燃料が噴射されるもの
であり、副燃焼室壁体4及び内壁面の薄膜部材5には燃
料噴射ノズルの取付孔9.17が形成されている。
FIG. 1 shows a schematic cross-sectional view of the structure of a sub-combustion chamber according to an embodiment of the present invention. The structure of this sub-combustion chamber is such that the sub-combustion chamber 2 is communicated with the main combustion chamber l through the nozzle hole 3, and the sub-combustion chamber wall 4.7 forming the sub-combustion chamber 2 is made of a heat insulating material. Thin film members 5 and 6 made of a ceramic material are arranged on the inner wall surfaces of the chamber walls 4 and 7. In this case, a ceramic material such as silicon nitride (SiJ4) can be deposited onto the aluminum titanate material by chemical vapor deposition (CVD) or plasma spray coating. Further, a metal protection tube 8 is fitted onto the outer circumferential surface of the sub-combustion chamber wall 4. The auxiliary combustion chamber 2 is integrated into a cylinder head 10 equipped with a cooling jacket 14. The cylinder head 10 is fixed to the cylinder body 11 with a head gasket 13 interposed therebetween. A piston ring 16 is attached to the cylinder 15 of the cylinder body 11.
The piston 12 fitted with the piston 12 reciprocates. Further, fuel is injected into the sub-combustion chamber 2 from a fuel injection nozzle, and a mounting hole 9.17 for the fuel injection nozzle is formed in the sub-combustion chamber wall 4 and the thin film member 5 on the inner wall surface. ing.

この発明による副燃焼室の構造において、副燃焼室2の
壁体を構成する副燃焼室壁体4,7は、チタン酸アルミ
ニウム(AIzTiOs)等の熱伝導率αの小さい材料
から成る断熱材で構成している。
In the structure of the sub-combustion chamber according to the present invention, the sub-combustion chamber walls 4 and 7 constituting the walls of the sub-combustion chamber 2 are made of a heat insulating material made of a material with a low thermal conductivity α such as aluminum titanate (AIzTiOs). It consists of

チタン酸アルミニウムについては、 熱伝導率α: 0.0035 cal/sec cm 
’c、強度: 51g7m+11’、 熱衝撃8900℃、 ヤング率: 13 GN/m”、 線膨張係数F 1.5/106 Kである。
For aluminum titanate, thermal conductivity α: 0.0035 cal/sec cm
'c, strength: 51g7m+11', thermal shock 8900°C, Young's modulus: 13 GN/m'', linear expansion coefficient F 1.5/106K.

このチタン酸アルミニウムは、強度は余り強くはないが
、極めて断熱性、耐熱衝撃、耐熱膨張性に富んでいる。
This aluminum titanate is not very strong, but it has extremely high heat insulation properties, thermal shock resistance, and thermal expansion resistance.

従って、副燃焼室2を@熱するため、該副燃焼室2を形
成する副燃焼室壁体4,7として使用することは、極め
て有効である。しかしながら、該チタン酸アルミニウム
等の断熱材を、副燃焼室2の内壁面に直接的に使用する
と、副燃焼室2は燃料噴霧と火炎の交互作用によって大
きな熱ショックを受け、破損することになる。そこで、
この発明による副燃焼室の構造は、この状態を避けるた
め、副燃焼室2に内壁面に強度に富んだセラミックスか
ら成る薄膜部材5.6を配置したものである。
Therefore, in order to heat the sub-combustion chamber 2, it is extremely effective to use it as the sub-combustion chamber walls 4, 7 forming the sub-combustion chamber 2. However, if a heat insulating material such as aluminum titanate is used directly on the inner wall surface of the sub-combustion chamber 2, the sub-combustion chamber 2 will receive a large thermal shock due to the interaction of fuel spray and flame, resulting in damage. . Therefore,
In order to avoid this situation, the structure of the auxiliary combustion chamber according to the present invention is such that a thin film member 5.6 made of strong ceramics is disposed on the inner wall surface of the auxiliary combustion chamber 2.

副燃焼室壁体4,7の内壁面に配置された薄膜部材5,
6は、窒化珪素(SisNa) 、炭化硅素(SiC)
、サイアロンf(Si、AI)b (0,N)sl等の
セラミックスの薄膜、例えば、厚さ1輸ii〜1.5!
1111の薄膜部材から構成されている。これらのセラ
ミックスは、耐熱性、耐衝撃性に富んだものである。
a thin film member 5 disposed on the inner wall surface of the sub-combustion chamber walls 4, 7;
6 is silicon nitride (SisNa), silicon carbide (SiC)
, Sialon f (Si, AI) b (0, N) sl, etc. Thin film of ceramics, for example, thickness 1 mm ii ~ 1.5!
It is composed of 1111 thin film members. These ceramics are highly heat resistant and impact resistant.

例えば、窒化珪素(Si、N、)については、熱伝導率
α: 0.03 cal/see ca+ ’c、強度
: 80 kg/+m” 熱衝撃ニア00℃、 ヤング率: 300 GN/m” 線膨張係数: 3.2 /10” Kである。
For example, for silicon nitride (Si, N,), thermal conductivity α: 0.03 cal/see ca+ 'c, strength: 80 kg/+m'' thermal shock near 00℃, Young's modulus: 300 GN/m'' wire Expansion coefficient: 3.2/10"K.

ところで、副燃焼室2の内壁面には、燃料噴霧と火炎の
交互作用によって大きな熱ショックが作用するが、上記
セラミックスから成る薄膜部材56を副燃焼室2の内壁
面に配置することによって、副燃焼室2に熱シヨツク性
の強度が高い内壁面を(することができる。従って、副
燃焼室2を構成する副燃焼室壁体4,5を、強度は余り
強くないが、断熱性に富んだチタン酸アルミニウム等の
断熱材で構成しても、強度に十分に耐えることができ、
併せて断熱性に冨んだ副燃焼室2を提供できる。
By the way, a large thermal shock acts on the inner wall surface of the sub-combustion chamber 2 due to the alternating action of fuel spray and flame, but by arranging the thin film member 56 made of ceramics on the inner wall surface of the sub-combustion chamber 2, the thermal shock can be reduced. It is possible to provide the combustion chamber 2 with an inner wall surface having high thermal shock strength. Therefore, the auxiliary combustion chamber walls 4 and 5 constituting the auxiliary combustion chamber 2 are not very strong, but have high thermal insulation properties. Even when constructed with a heat insulating material such as aluminum titanate, it can withstand sufficient strength.
In addition, it is possible to provide a sub-combustion chamber 2 with excellent heat insulation properties.

この副燃焼室の構造の製造工程については、例えば、次
のようにして組み立てることができる。
Regarding the manufacturing process of the structure of this sub-combustion chamber, for example, it can be assembled as follows.

まず、窒化珪素等のセラミックスから逆カップ状で且つ
燃料噴射ノズル取付孔17を備えた薄膜部材5と、窒化
珪素等のセラミックスから平板状で且つ噴孔18を備え
た薄膜部材6とを、例えば、化学蒸着(CVD)、コー
ティング等の適宜な手段で接合部19で接合し、薄膜部
材5と薄膜部材6とで副燃焼室2の内壁を構成する。ま
た、チタン酸アルミニウムによって逆カップ状で且つ燃
料噴射ノズル取付孔9を備えた副燃焼室壁体4を成形し
、該副燃焼室壁体4に薄膜部材5.6から成る内壁を嵌
入し、次いで、チタン酸アルミニウムによって平板状で
且つ噴孔3を備えた副燃焼室壁体7を、副燃焼室壁体4
に嵌合する。この成形工程によって、副燃焼室2の内壁
面を構成する薄膜部材5,6の全外面に副燃焼室壁体4
,7が配置された状態に成形される。この組立体を焼成
することによって副燃焼室2が製作される。この副燃焼
室2を補強するため、副燃焼室壁体4の外周面に金属製
保護筒8を焼き嵌め等によって圧入するごとによって嵌
着する。この金属製保護筒8付き副燃焼室2を、シリン
ダへノド1oに取付けることによって、主燃焼室1に連
通ずる副燃焼室2を完成することができる。なお、噴孔
3,18は、流体の出入によって副燃焼室2又は主燃焼
室1においてスワールが促進されるように、傾斜状態に
設定されている。更に、副燃焼室2における燃料噴霧と
空気との混合を促進するため、噴孔3. 18の軸線と
燃料噴射ノズル取付孔9,17の軸線は偏倚即ちオフセ
ットしており、互いに対向して配置されている。
First, a thin film member 5 made of ceramic such as silicon nitride and having an inverted cup shape and provided with a fuel injection nozzle mounting hole 17, and a thin film member 6 made of ceramic such as silicon nitride and having a flat plate shape and provided with nozzle holes 18, for example. The thin film members 5 and 6 constitute the inner wall of the sub-combustion chamber 2 by joining at a joint 19 by appropriate means such as chemical vapor deposition (CVD), coating, or the like. Further, a sub-combustion chamber wall 4 having an inverted cup shape and provided with a fuel injection nozzle mounting hole 9 is formed from aluminum titanate, and an inner wall made of a thin film member 5.6 is fitted into the sub-combustion chamber wall 4. Next, the sub-combustion chamber wall 7 having a flat plate shape and provided with the nozzle holes 3 is made of aluminum titanate.
Fits in. Through this forming process, the entire outer surface of the thin film members 5 and 6 constituting the inner wall surface of the sub-combustion chamber 2 is coated with the sub-combustion chamber wall 4.
, 7 are arranged. The auxiliary combustion chamber 2 is manufactured by firing this assembly. In order to reinforce the sub-combustion chamber 2, a metal protective cylinder 8 is fitted onto the outer circumferential surface of the sub-combustion chamber wall 4 by press-fitting it by shrink fitting or the like. By attaching this auxiliary combustion chamber 2 with the metal protective tube 8 to the cylinder at the throat 1o, the auxiliary combustion chamber 2 communicating with the main combustion chamber 1 can be completed. Note that the nozzle holes 3 and 18 are set in an inclined state so that swirl is promoted in the sub-combustion chamber 2 or the main combustion chamber 1 by the inflow and outflow of fluid. Further, in order to promote mixing of the fuel spray and air in the sub-combustion chamber 2, nozzle holes 3. 18 and the axes of the fuel injection nozzle mounting holes 9, 17 are offset or offset and are arranged opposite to each other.

〔発明の効果〕〔Effect of the invention〕

この発明による副燃焼室の構造は、以」二のように構成
されているので、次のような効果を有する。
Since the structure of the sub-combustion chamber according to the present invention is configured as described below, it has the following effects.

即ち、この副燃焼室の構造は、主燃焼室に噴孔を通じて
連通した副燃焼室を形成する副燃焼室壁体をチタン酸ア
ルミニウム等の断熱材によって構成し、前記副燃焼室壁
体の内壁面にセラミック材から成る薄膜部材を配置した
ので、副燃焼室は壁面を通じての熱伝導通路が前記断熱
材で遮断され、熱の外部への放熱がなく、即ち、前記断
熱材によって副燃焼室の断熱効果を高め、副燃焼室とし
て理想的な構造を得ることができ、更に冷却水損失を低
減でき、燃費を向上できる。また、上記のように断熱効
果が優れ、且つ前記副燃焼室の壁面即ちセラミック体の
肉厚を薄くして熱容量を小さくし、副燃焼室自体の空容
量は小さいので、短時間で温度上昇させることができる
と共に、燃料噴霧と空気との混合を速やかに実行させる
ことができ、前記副燃焼室から前記主燃焼室ヘスワール
として吹き出させることができる。即ち、前記副燃焼室
内は短時間に温度上昇させると共に燃料噴霧と空気との
混合を速やかに実行させ得るので、燃料と空気との燃料
当量比と燃焼温度とで決定されるスモーク発生温度ゾー
ンでの燃焼を直ちにクリアし、火炎が前記副燃焼室から
前記主燃焼室ヘスワールとして吹き出される。次いで、
火炎が前記副燃焼室から前記主燃焼室に吹き出されるこ
とによって、急激に燃料当量比が低下され且つ燃焼温度
は低下するので、燃料当量比と燃焼温度とで決定される
NOx発生温度ゾーンでの燃焼を避けることができる。
That is, the structure of this sub-combustion chamber is such that the sub-combustion chamber wall, which forms the sub-combustion chamber that communicates with the main combustion chamber through the nozzle holes, is made of a heat insulating material such as aluminum titanate, and the inner part of the sub-combustion chamber wall is Since the thin film member made of ceramic material is placed on the wall surface of the sub-combustion chamber, the heat conduction path through the wall surface of the sub-combustion chamber is blocked by the heat insulating material, and no heat is radiated to the outside. It enhances the heat insulation effect, provides an ideal structure for a sub-combustion chamber, reduces cooling water loss, and improves fuel efficiency. In addition, as mentioned above, the heat insulation effect is excellent, and the wall surface of the sub-combustion chamber, that is, the ceramic body, is thinned to reduce the heat capacity, and the empty capacity of the sub-combustion chamber itself is small, so the temperature can be raised in a short time. At the same time, the fuel spray and air can be quickly mixed, and the fuel can be blown out from the auxiliary combustion chamber as a heswart into the main combustion chamber. That is, since the temperature in the sub-combustion chamber can be raised in a short time and the fuel spray and air can be mixed quickly, the temperature within the auxiliary combustion chamber can be increased within the smoke generation temperature zone determined by the fuel equivalence ratio of fuel and air and the combustion temperature. immediately clears the combustion, and the flame is blown out from the auxiliary combustion chamber to the main combustion chamber as a heswar. Then,
As the flame is blown out from the auxiliary combustion chamber to the main combustion chamber, the fuel equivalence ratio and combustion temperature are lowered, so that the NOx generation temperature zone determined by the fuel equivalence ratio and the combustion temperature is combustion can be avoided.

従って、前記副燃焼室及び前記主燃焼室において、スモ
ーク、HC及びNOつの発生を避ける燃焼を行わせるこ
とができる。
Therefore, combustion can be performed in the sub-combustion chamber and the main combustion chamber while avoiding the generation of smoke, HC, and NO.

更に、一般に、副燃焼室については、燃料噴霧と火炎と
の交互作用によって大きな熱ショックが作用するもので
ある。この副燃焼室の構造では、このような熱ショック
を受けた場合に、チタン酸アルミニウム自体は強度が小
さいが、内周壁面のセラミック製薄肉部材は上記熱ショ
ックに対する強度が強く、副燃焼室自体の十分な強度を
確保できるので、副燃焼室に亀裂、破壊等が発生するよ
うなことがない、また、前記薄肉部材自体が熱膨張した
としても外周面に位置する前記断熱材で該熱膨張を吸収
することができ、前記薄肉部材が受けるメカニカルスト
レス及びサーマルストレスを低減でき、前記薄膜部材に
亀裂、破壊等は発生しない。
Furthermore, in general, a large thermal shock is applied to the sub-combustion chamber due to the interaction between fuel spray and flame. In the structure of this sub-combustion chamber, when subjected to such a thermal shock, aluminum titanate itself has low strength, but the thin ceramic member on the inner peripheral wall has strong strength against the above-mentioned thermal shock, and the sub-combustion chamber itself Since sufficient strength can be secured for the sub-combustion chamber, cracks, destruction, etc. will not occur in the sub-combustion chamber, and even if the thin-walled member itself expands thermally, the thermal insulation material located on the outer peripheral surface will absorb the thermal expansion. can be absorbed, the mechanical stress and thermal stress that the thin-walled member receives can be reduced, and cracks, destruction, etc. do not occur in the thin-film member.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明による副燃焼室の構造の一実施例を示
す断面図である。 1−=−王燃焼室、2−一−−−副燃焼室、3.18噴
孔、4.7−−−−副燃焼室壁体、5,6−・−・薄膜
部材、8−−一金属製保護筒、9.17−・−燃料噴射
ノズル取付孔、10− ・−シリンダヘッド、lシリン
ダボディ、 l 2・− ピストン。
FIG. 1 is a sectional view showing an embodiment of the structure of a sub-combustion chamber according to the present invention. 1-=-King combustion chamber, 2-1-- Sub-combustion chamber, 3.18 injection hole, 4.7-- Sub-combustion chamber wall, 5, 6-- Thin film member, 8-- -Metal protection tube, 9.17-.-Fuel injection nozzle mounting hole, 10-.-Cylinder head, l-cylinder body, l2--Piston.

Claims (2)

【特許請求の範囲】[Claims] (1) 主燃焼室に噴孔を通じて連通した副燃焼室を形
成する副燃焼室壁体を断熱材によって構成し、前記副燃
焼室壁体の内壁面にセラミック材から成る薄膜部材を配
置したことを特徴とする副燃焼室の構造。
(1) A sub-combustion chamber wall forming a sub-combustion chamber communicating with the main combustion chamber through a nozzle hole is made of a heat insulating material, and a thin film member made of a ceramic material is arranged on the inner wall surface of the sub-combustion chamber wall. The structure of the auxiliary combustion chamber is characterized by:
(2) 前記副燃焼室壁体の外周面に金属製保護筒を嵌
着したことを特徴とする請求項1に記載の副燃焼室の構
造。
(2) The structure of the auxiliary combustion chamber according to claim 1, characterized in that a metal protection tube is fitted onto the outer peripheral surface of the auxiliary combustion chamber wall.
JP63263991A 1988-10-21 1988-10-21 Secondary combustion chamber structure Expired - Lifetime JP2906418B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63263991A JP2906418B2 (en) 1988-10-21 1988-10-21 Secondary combustion chamber structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63263991A JP2906418B2 (en) 1988-10-21 1988-10-21 Secondary combustion chamber structure

Publications (2)

Publication Number Publication Date
JPH02112613A true JPH02112613A (en) 1990-04-25
JP2906418B2 JP2906418B2 (en) 1999-06-21

Family

ID=17397027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63263991A Expired - Lifetime JP2906418B2 (en) 1988-10-21 1988-10-21 Secondary combustion chamber structure

Country Status (1)

Country Link
JP (1) JP2906418B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0598605A1 (en) * 1992-11-19 1994-05-25 Isuzu Ceramics Research Institute Co., Ltd. Pre-chamber type engine
US5483933A (en) * 1994-03-28 1996-01-16 Isuzu Ceramics Research Institute Co., Ltd. Combustion chamber structure for diesel engines
US5515823A (en) * 1993-12-06 1996-05-14 Isuzu Ceramics Research Institute Co., Ltd. Engine with precombustion chambers
US5645028A (en) * 1995-11-21 1997-07-08 Isuzu Motors Limited Piston structure with a combustion chamber
US20130139784A1 (en) * 2011-12-01 2013-06-06 Cummins Intellectual Property, Inc. Prechamber device for internal combustion engine
US11359537B1 (en) 2021-06-30 2022-06-14 Saudi Arabian Oil Company Spark ignition engine, pre-chamber, and method for cooling a pre-chamber

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5123602U (en) * 1974-08-12 1976-02-21
JPS5973530U (en) * 1982-11-09 1984-05-18 臼井国際産業株式会社 Sub-combustion chamber structure in split combustion chamber method
JPS6193227A (en) * 1984-10-11 1986-05-12 Mazda Motor Corp Manufacturing method of engine subchamber
JPS61186735U (en) * 1985-05-14 1986-11-21
JPS6346624U (en) * 1986-09-12 1988-03-29
JPS63215819A (en) * 1987-03-03 1988-09-08 Nissan Motor Co Ltd Combustion chamber of diesel engine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5123602U (en) * 1974-08-12 1976-02-21
JPS5973530U (en) * 1982-11-09 1984-05-18 臼井国際産業株式会社 Sub-combustion chamber structure in split combustion chamber method
JPS6193227A (en) * 1984-10-11 1986-05-12 Mazda Motor Corp Manufacturing method of engine subchamber
JPS61186735U (en) * 1985-05-14 1986-11-21
JPS6346624U (en) * 1986-09-12 1988-03-29
JPS63215819A (en) * 1987-03-03 1988-09-08 Nissan Motor Co Ltd Combustion chamber of diesel engine

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0598605A1 (en) * 1992-11-19 1994-05-25 Isuzu Ceramics Research Institute Co., Ltd. Pre-chamber type engine
US5425337A (en) * 1992-11-19 1995-06-20 Izusu Ceramics Research Institute Co., Ltd. Pre-chamber type engine
US5515823A (en) * 1993-12-06 1996-05-14 Isuzu Ceramics Research Institute Co., Ltd. Engine with precombustion chambers
US5483933A (en) * 1994-03-28 1996-01-16 Isuzu Ceramics Research Institute Co., Ltd. Combustion chamber structure for diesel engines
US5645028A (en) * 1995-11-21 1997-07-08 Isuzu Motors Limited Piston structure with a combustion chamber
US20130139784A1 (en) * 2011-12-01 2013-06-06 Cummins Intellectual Property, Inc. Prechamber device for internal combustion engine
AT514055A5 (en) * 2011-12-01 2015-03-15 Cummins Ip Inc Prechamber device for an internal combustion engine
US9217360B2 (en) 2011-12-01 2015-12-22 Cummins Intellectual Property, Inc. Prechamber device for internal combustion engine
AT514055B1 (en) * 2011-12-01 2016-02-15 Cummins Ip Inc Prechamber device for an internal combustion engine
US9441528B2 (en) 2011-12-01 2016-09-13 Cummins Intellectual Property, Inc. Prechamber device for internal combustion engine
DE112012005045B4 (en) 2011-12-01 2019-07-18 Cummins Intellectual Property, Inc. Prechamber device for an internal combustion engine
US11359537B1 (en) 2021-06-30 2022-06-14 Saudi Arabian Oil Company Spark ignition engine, pre-chamber, and method for cooling a pre-chamber

Also Published As

Publication number Publication date
JP2906418B2 (en) 1999-06-21

Similar Documents

Publication Publication Date Title
JP2718071B2 (en) Sub-chamber insulated engine
US5040504A (en) Heat-insulating engine swirl chamber
JPH02112613A (en) Structure for subcombustion chamber
JPS61123714A (en) Subchamber structure for internal-combustion engine
JPH02112614A (en) Heat insulating structure for subcombustion chamber
JPH03179153A (en) Structure of insulated engine
JP3254827B2 (en) Heat shield piston
JPH032680Y2 (en)
JP2565489Y2 (en) Sub-chamber insulated engine
JP3074721B2 (en) Manufacturing method of adiabatic combustion chamber
JPH01208552A (en) Piston for diesel engine and manufacture thereof
JPH09170437A (en) Structure of piston with thermal insulation combustion chamber
JPH0319364B2 (en)
JPS5851372Y2 (en) Pre-chamber of internal combustion engine
JPH0118821Y2 (en)
JPH029066Y2 (en)
JPH0217151Y2 (en)
JPH0868330A (en) Structure of piston having auxiliary chamber
JPH0510556B2 (en)
JPH074247A (en) Auxiliary chamber structure in auxiliary chamber type engine
JPH0777105A (en) Structure of piston provided with auxiliary chamber
JPH0524400B2 (en)
JPH0630435U (en) Heat-shielding structure of the auxiliary combustion chamber
JPH0233453A (en) Structure for adiabatic engine
JP2580948Y2 (en) Heat shield structure for sub-chamber engine