JPH0134661Y2 - - Google Patents

Info

Publication number
JPH0134661Y2
JPH0134661Y2 JP18288083U JP18288083U JPH0134661Y2 JP H0134661 Y2 JPH0134661 Y2 JP H0134661Y2 JP 18288083 U JP18288083 U JP 18288083U JP 18288083 U JP18288083 U JP 18288083U JP H0134661 Y2 JPH0134661 Y2 JP H0134661Y2
Authority
JP
Japan
Prior art keywords
ceramic material
chamber
support member
subchamber
outer periphery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP18288083U
Other languages
Japanese (ja)
Other versions
JPS6088033U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP18288083U priority Critical patent/JPS6088033U/en
Publication of JPS6088033U publication Critical patent/JPS6088033U/en
Application granted granted Critical
Publication of JPH0134661Y2 publication Critical patent/JPH0134661Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Combustion Methods Of Internal-Combustion Engines (AREA)

Description

【考案の詳細な説明】 (産業上の利用分野) 本考案はエンジンの副室、特に内壁をセラミツ
ク材で形成した副室の構造に関する。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to the structure of an engine subchamber, particularly the subchamber whose inner wall is made of ceramic material.

(従来技術) 自動車等のエンジンにおいては、燃焼室を主燃
焼室と該主燃焼室に噴孔を介して連通する副室と
で構成し、該副室内に燃料噴射ノズルから燃料を
噴射して着火させると共に、半燃焼状態のガスを
主燃焼室に噴出して拡散燃焼させるようにした所
謂副室式の燃焼方式が採用されることがある。
(Prior Art) In engines such as automobiles, the combustion chamber is composed of a main combustion chamber and an auxiliary chamber that communicates with the main combustion chamber through a nozzle hole, and fuel is injected from a fuel injection nozzle into the auxiliary chamber. A so-called sub-chamber combustion method is sometimes adopted in which ignition is performed and semi-combusted gas is ejected into the main combustion chamber for diffusion combustion.

この燃焼方式においては、炭化水素等の未燃焼
ガスの排出を抑制する等のために上記副室内を高
温に保持することが重要であり、そこで、例えば
実開昭58−24422号公報に開示されているように、
副室を構成するロアチヤンバを断熱性に優れたセ
ラミツク材で形成することが試みられている。ま
た、上記公報には、第1図に示すようにロアチヤ
ンバAの外周と該チヤンバAが嵌合されるシリン
ダヘツドBの凹部内面との間に間隙Cを設けた構
成が示されているが、このような構成によると上
記間隙Cが断熱空間として作用し、副室Dに対す
る断熱保温効果が一層向上する。
In this combustion method, it is important to maintain the interior of the pre-chamber at a high temperature in order to suppress the emission of unburned gas such as hydrocarbons. As if
Attempts have been made to form the lower chamber constituting the subchamber from a ceramic material with excellent heat insulation properties. Further, the above publication discloses a configuration in which a gap C is provided between the outer periphery of the lower chamber A and the inner surface of the recess of the cylinder head B into which the chamber A is fitted, as shown in FIG. According to such a configuration, the gap C acts as a heat insulating space, and the heat insulating effect on the subchamber D is further improved.

ところで、上記のように副室をセラミツク材で
構成した場合、該セラミツク材は自らの断熱性に
よつて内面が高温、外面が低温の状態となつて、
その温度差に基づく熱膨張差によつて外面側に引
張応力が生じるが、セラミツク材は一般に引張応
力に対して脆弱な性質を有するため、この引張応
力によつて容易にクラツクが発生し或いは破損し
たりする。これに対しては、セラミツク材の外周
に金属製等のリングを焼きばめ等によつて嵌合し
て該セラミツク材に予め圧縮応力を加えることに
より、内外面の温度差が生じても引張応力が発生
しないようにすることができる。しかし、第1図
に示す構成のように、副室に対する保温効果を向
上させるためにセラミツク材の外周囲に間隙を設
けた場合は、該セラミツク材に圧縮応力を加える
ことができず、クラツクや破損を効果的に防止す
ることができない。
By the way, when the sub-chamber is made of ceramic material as described above, the ceramic material has its own heat insulating properties so that the inner surface is hot and the outer surface is cold.
Tensile stress is generated on the outer surface due to the difference in thermal expansion due to the temperature difference, but since ceramic materials are generally vulnerable to tensile stress, this tensile stress can easily cause cracks or breakage. I do things. To deal with this, a ring made of metal or the like is fitted around the outer periphery of the ceramic material by shrink fitting, etc., and compressive stress is applied to the ceramic material in advance. It is possible to prevent stress from occurring. However, when a gap is provided around the outer periphery of the ceramic material in order to improve the heat retention effect for the subchamber as shown in the configuration shown in Figure 1, compressive stress cannot be applied to the ceramic material, resulting in cracks and cracks. Failure to effectively prevent damage.

(考案の目的) 本考案は、副室の内壁面をセラミツク材で構成
した場合における上記のような問題に対処するも
ので、セラミツク材の外周に断熱空間を形成し、
しかも該セラミツク材に圧縮応力を加えることを
可能とし、これにより副室に対する断熱保温効果
に優れ、且つセラミツク材の内外面の温度差に基
づくクラツクや破損が生じないようにした副室構
造を実現することを目的とする。
(Purpose of the invention) The present invention deals with the above-mentioned problems when the inner wall surface of the auxiliary chamber is made of ceramic material.
Furthermore, it is possible to apply compressive stress to the ceramic material, thereby realizing a subchamber structure that has excellent heat insulation effects on the subchamber and prevents cracks and damage due to temperature differences between the inner and outer surfaces of the ceramic material. The purpose is to

(考案の構成) 即ち、本考案に係るエンジンの副室構造は、主
燃焼室に噴孔を介して連通する副室の内壁をセラ
ミツク材で構成し、且つ該セラミツク材の外周に
圧縮応力を加えた状態でリング状の支持部材を嵌
合した構成において、上記セラミツク材の外周に
先細り形状の突起を多数形成すると共に、該突起
の先端を上記支持部材の内面に圧接させるように
構成する。
(Structure of the invention) That is, the subchamber structure of the engine according to the present invention is such that the inner wall of the subchamber that communicates with the main combustion chamber through the nozzle hole is made of a ceramic material, and compressive stress is applied to the outer periphery of the ceramic material. In the structure in which a ring-shaped support member is fitted in the added state, a large number of tapered protrusions are formed on the outer periphery of the ceramic material, and the tips of the protrusions are brought into pressure contact with the inner surface of the support member.

このような構成によれば、セラミツク材の外周
と支持部材との間における各突起間に断熱空間が
形成されると共に、各突起を介して支持部材から
セラミツク材に圧縮力が加えられることになり、
上記目的が達成される。その場合に、各突起は断
面が先細り形状、即ちセラミツク材の周壁部側ほ
ど肉厚が厚く、先端部ほど肉厚が薄くなる形状と
されることにより、先端から作用する圧縮力がセ
ラミツク材の周壁部に均等に加わることになり、
また該セラミツク材外周部の熱変形が吸収される
ことになる。
According to such a configuration, a heat insulating space is formed between each protrusion between the outer periphery of the ceramic material and the support member, and compressive force is applied from the support member to the ceramic material via each protrusion. ,
The above objectives are achieved. In this case, each protrusion has a tapered cross section, that is, the wall thickness is thicker toward the peripheral wall of the ceramic material, and the wall thickness is thinner toward the tip, so that the compressive force acting from the tip is applied to the ceramic material. It will be applied evenly to the surrounding wall,
Further, thermal deformation of the outer peripheral portion of the ceramic material is absorbed.

(実施例) 以下、本考案の実施例を図面に基づいて説明す
る。
(Example) Hereinafter, an example of the present invention will be described based on the drawings.

この実施例はデイーゼルエンジンについて適用
したもので、第2図に示すように、該エンジン1
は燃焼室として、シリンダブロツク2とシリンダ
ヘツド3とピストン4とによつて形成された主燃
焼室5と、シリンダヘツド3内に設けられて噴孔
6を介して主燃焼室5に連通された副室7とを有
する。この副室7は、第3図に示すように予め組
立て一体化された中空状の副室構造体8をシリン
ダヘツド3に設けられた凹部3aに嵌合すること
により設けられるが、該構造体8は金属製のリン
グ状支持部材9と、該支持部材9の内側に嵌合さ
れた中空のセラミツク材10とで構成され、該セ
ラミツク材10の内部が副室7とされている。ま
た、シリンダヘツド3には上記副室7内に燃料を
噴射する燃料噴射ノズル11と、エンジン1の始
動時に該副室7内を予熱するグロープラグ12と
が装着されていると共に、上記燃料の噴流を副室
7内に導入するため、またグロープラグ12の先
端部を副室7内に突入させるために、上記セラミ
ツク材10の上部に貫通孔13,14が形成され
ている。
This embodiment is applied to a diesel engine, and as shown in FIG.
The combustion chamber includes a main combustion chamber 5 formed by the cylinder block 2, cylinder head 3, and piston 4, and a main combustion chamber 5 provided within the cylinder head 3 and communicated with the main combustion chamber 5 through a nozzle hole 6. It has an auxiliary chamber 7. The auxiliary chamber 7 is provided by fitting a pre-assembled and integrated hollow auxiliary chamber structure 8 into a recess 3a provided in the cylinder head 3, as shown in FIG. 8 is composed of a metal ring-shaped support member 9 and a hollow ceramic material 10 fitted inside the support member 9, and the inside of the ceramic material 10 is used as the subchamber 7. Further, the cylinder head 3 is equipped with a fuel injection nozzle 11 for injecting fuel into the auxiliary chamber 7, and a glow plug 12 for preheating the inside of the auxiliary chamber 7 when the engine 1 is started. Through holes 13 and 14 are formed in the upper part of the ceramic material 10 in order to introduce the jet stream into the subchamber 7 and to allow the tip of the glow plug 12 to enter the subchamber 7.

ここで、この実施例においては、上記セラミツ
ク材10が、噴孔6が形成された下部15と、貫
通孔13,14が形成された上部16と、その両
者に挟まれた中間部17とに分割され、また中間
部17は製造上等の理由によつて上下に2分割さ
れている。そして、各部の材質として、高温の燃
焼ガスと低温の空気が交互に通過する噴孔6が形
成された下部15、及び貫通孔13,14によつ
てクラツクの生じ易い形状となつている上部16
は熱的強度に優れた窒化珪素が用いられ、またシ
リンダヘツド3との間の断熱作用が特に要求され
る中間部17は特に断熱性に優れたジルコニア
(部分安定化ジルコニア)が用いられている。ま
た、副室構造体8は支持部材9の下端に設けられ
た鍔部9aの外周面が凹部3aの入口部に圧入さ
れることによりシリンダヘツド3に保持されるよ
うになつている。
In this embodiment, the ceramic material 10 has a lower part 15 in which the injection hole 6 is formed, an upper part 16 in which the through holes 13 and 14 are formed, and an intermediate part 17 sandwiched between the two. Furthermore, the intermediate portion 17 is divided into upper and lower halves for manufacturing reasons. The materials of each part include a lower part 15 in which a nozzle hole 6 is formed through which high-temperature combustion gas and low-temperature air pass alternately, and an upper part 16 in which a crack is likely to occur due to the through holes 13 and 14.
Silicon nitride, which has excellent thermal strength, is used, and zirconia (partially stabilized zirconia), which has particularly excellent heat insulation properties, is used for the intermediate part 17, which requires a particularly good heat insulation effect between it and the cylinder head 3. . Further, the sub-chamber structure 8 is held in the cylinder head 3 by press-fitting the outer circumferential surface of a flange 9a provided at the lower end of the support member 9 into the entrance of the recess 3a.

然して、この副室構造体8におけるセラミツク
材10は、支持部材9に焼きばめ等によつて周囲
から圧縮力が作用する状態で嵌合されていると共
に、第3,4図に示すように該セラミツク材10
における中間部17の外周面には縦方向の突起1
8…18が一定ピツチで多数形成されている。こ
の突起18…18はセラミツク材中間部17の外
周面を半円状に切込むことによつて形成されて、
該セラミツク材中間部17の周壁部に連続する断
面が先細り形状の突起とされており、その先端面
18a…18aにおいて上記支持部材9の内面に
圧接されて、各突起18…18間に断面半円形の
多数の空間19…19が形成されている。
However, the ceramic material 10 in this subchamber structure 8 is fitted to the support member 9 by shrink fitting or the like in a state where compressive force is applied from the surroundings, and as shown in FIGS. 3 and 4. The ceramic material 10
A vertical protrusion 1 is provided on the outer circumferential surface of the intermediate portion 17 in
8...18 are formed in large numbers at a constant pitch. These protrusions 18...18 are formed by cutting the outer circumferential surface of the ceramic intermediate portion 17 into a semicircular shape.
The ceramic intermediate portion 17 has a tapered protrusion in cross section that is continuous with the peripheral wall, and its tip surfaces 18a...18a are pressed against the inner surface of the support member 9, so that a half cross section is formed between each of the protrusions 18...18. A large number of circular spaces 19...19 are formed.

上記の構成によれば、エンジン1の運転時に副
室7内には圧縮行程時に主燃焼室5から噴孔6を
通つて空気が押し込められて渦流が形成されると
共に、圧縮行程から膨張行程に移行する際の所定
時期に該副室7内に燃料噴射ノズル11から燃料
が噴射される。この燃料は副室7内で直ちに着火
されると共に、半燃焼状態のガスとなつて上記噴
孔6から主燃焼室5に噴出され、該主燃焼室5に
おいて更に燃焼してピストン4を押し下げる。
According to the above configuration, when the engine 1 is operating, air is forced into the auxiliary chamber 7 from the main combustion chamber 5 through the nozzle holes 6 during the compression stroke, forming a vortex flow, and from the compression stroke to the expansion stroke. Fuel is injected from the fuel injection nozzle 11 into the auxiliary chamber 7 at a predetermined time during the transition. This fuel is immediately ignited in the auxiliary chamber 7, becomes semi-combusted gas, and is injected from the nozzle hole 6 into the main combustion chamber 5, where it is further combusted and pushes down the piston 4.

然して上記副室7は、その略全周囲をセラミツ
ク材10で覆われていると共に、特にシリンダヘ
ツド3側に熱が放散し易い中間部17の外側には
支持部材9との間に多数の空間19…19が形成
されているから、セラミツク材自身の断熱性及び
上記空間19…19の断熱作用によつて副室7内
が高温に保持され、これにより該副室7内におけ
る燃料の着火、燃焼が良好に行われることにな
る。
However, the auxiliary chamber 7 is covered almost all around with the ceramic material 10, and there are many spaces between the sub chamber 7 and the support member 9 on the outside of the intermediate section 17 where heat is easily dissipated, especially toward the cylinder head 3 side. 19...19 are formed, the inside of the pre-chamber 7 is maintained at a high temperature due to the heat insulating properties of the ceramic material itself and the heat insulating effect of the spaces 19...19, and as a result, the ignition of the fuel in the pre-chamber 7, This results in good combustion.

一方、セラミツク材10は自らの断熱性によつ
て内面が高温、外面が低温の状態となつて、その
温度差によつて外面側に引張応力が生じるように
熱変形しようとする。しかし、該セラミツク材1
0の下部15及び上部16は支持部材9によつて
直接周囲から圧縮力が加えられており、また外側
に空間19…19が設けられた中間部17は突起
18…18を介して支持部材9によつて圧縮力が
加えられている。そのため、上記の如き熱変形に
よつても引張応力が生じることはなく、これによ
り該セラミツク材10におけるクラツクの発生や
破損が防止される。特に、この実施例においてセ
ラミツク材10の中間部17に用いられている断
熱性に優れたジルコニアは、上記の如き引張応力
に対して特に弱い性質を有するが、上記突起18
…18を介して加えられる圧縮力によつて引張応
力の発生ないしクラツクの発生が確実に防止され
るのである。
On the other hand, the inner surface of the ceramic material 10 is at a high temperature and the outer surface is at a low temperature due to its own heat insulating properties, and the temperature difference causes the ceramic material 10 to thermally deform so as to generate tensile stress on the outer surface. However, the ceramic material 1
The lower part 15 and upper part 16 of 0 are directly compressed by the supporting member 9 from the surroundings, and the intermediate part 17, which has spaces 19...19 on the outside, is compressed by the supporting member 9 via the protrusions 18...18. Compressive force is applied by Therefore, no tensile stress is generated even by the thermal deformation described above, thereby preventing the occurrence of cracks or damage in the ceramic material 10. In particular, zirconia, which has excellent heat insulation properties and is used for the intermediate portion 17 of the ceramic material 10 in this embodiment, has a property that is particularly weak against the above-mentioned tensile stress.
The compressive force applied through the ... 18 reliably prevents the generation of tensile stress or cracks.

また、上記突起18…18は先細り形状とされ
ているため、支持部材9によつて先端面18a…
18aから加えられる圧縮力が第5図に矢印で示
すようにセラミツク材10(中間部17)の周壁
部に均等に分散されて作用することになり、また
半円状の空間19…19によつて該セラミツク材
10の外周部における熱変形が吸収され、これら
によつて上記引張応力の発生が一層効果的に防止
されるのである。
Further, since the projections 18...18 have a tapered shape, the tip surfaces 18a...
The compressive force applied from 18a is evenly distributed and acts on the peripheral wall of the ceramic material 10 (intermediate portion 17) as shown by the arrows in FIG. As a result, thermal deformation at the outer circumferential portion of the ceramic material 10 is absorbed, thereby more effectively preventing the generation of the above-mentioned tensile stress.

更に、この実施例では、第2図に示すようにセ
ラミツク材中間部17の周壁は上下方向に肉厚が
略等しくされて上下方向での温度差ができるだけ
生じないようにされ、これによつても熱応力の発
生を軽減するように図られている。
Furthermore, in this embodiment, as shown in FIG. 2, the circumferential wall of the ceramic intermediate portion 17 has approximately the same wall thickness in the vertical direction to prevent temperature differences in the vertical direction as much as possible. It is also designed to reduce the occurrence of thermal stress.

尚、セラミツク材中間部17の外周に形成する
切込みは断面半円状に限らず、放物線状等として
もよく、要するに先細り形状の突起が形成される
ものであればよい。
Note that the cut formed on the outer periphery of the ceramic intermediate portion 17 is not limited to a semicircular cross section, but may be a parabola or the like, as long as it forms a tapered protrusion.

また、特に強度が要求されるセラミツク材の下
部15及び上部16については耐熱金属で形成し
てもよい。
Further, the lower part 15 and the upper part 16 made of ceramic material, which particularly require strength, may be formed of a heat-resistant metal.

(考案の効果) 以上のように本考案によれば、副室の内壁をセ
ラミツク材で構成し且つ該セラミツク材をその外
周を覆うリング状の支持部材によつて支持するよ
うにした副室構造において、上記セラミツク材の
外周と支持部材との間に断熱空間を形成し、且つ
該セラミツク材に支持部材によつて圧縮力を加え
ることが可能となる。これにより、副室に対する
断熱保温効果が向上され、しかもセラミツク材に
おけるクラツクの発生や破損が防止されることに
なる。
(Effect of the invention) As described above, according to the present invention, the sub-chamber structure has an inner wall of the sub-chamber made of ceramic material, and the ceramic material is supported by a ring-shaped support member covering the outer periphery of the ceramic material. In this method, a heat insulating space is formed between the outer periphery of the ceramic material and the support member, and compressive force can be applied to the ceramic material by the support member. This improves the heat insulation effect on the auxiliary chamber, and prevents cracks and damage in the ceramic material.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は副室構造の従来例を示す断面図、第2
〜5図は本考案副室構造の実施例を示すもので、
第2図はエンジンにおける副室周辺の縦断面図、
第3図は副室構造体の一部破断斜視図、第4図は
第2図−線で切断した副室構造体の横断平面
図、第5図は作用を示す要部拡大横断平面図であ
る。 1……エンジン、5……主燃焼室、6……噴
孔、7……副室、9……支持部材、10……セラ
ミツク材、18……突起、19……断熱空間。
Figure 1 is a sectional view showing a conventional example of subchamber structure;
Figures 5 to 5 show an example of the subchamber structure of the present invention.
Figure 2 is a longitudinal sectional view of the area around the pre-chamber in the engine.
Fig. 3 is a partially cutaway perspective view of the subchamber structure, Fig. 4 is a cross-sectional plan view of the sub-chamber structure cut along the line of Fig. 2, and Fig. 5 is an enlarged cross-sectional plan view of the main parts showing the operation. be. DESCRIPTION OF SYMBOLS 1...Engine, 5...Main combustion chamber, 6...Nozzle hole, 7...Subchamber, 9...Supporting member, 10...Ceramic material, 18...Protrusion, 19...Insulating space.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 主燃焼室に噴孔を介して連通する副室の内壁を
セラミツク材で構成すると共に、該セラミツク材
をその外周を覆う支持部材により圧縮応力を加え
た状態で支持する構成において、上記セラミツク
材の外周に先細り形状の突起を多数形成すると共
に、該突起の先端を上記支持部材の内面に圧接さ
せて、該支持部材とセラミツク材との間に断熱空
間を形成するようにしたことを特徴とするエンジ
ンの副室構造。
In a configuration in which the inner wall of the auxiliary chamber that communicates with the main combustion chamber through the nozzle hole is made of a ceramic material, and the ceramic material is supported under compressive stress by a support member that covers the outer periphery of the ceramic material, the ceramic material is A large number of tapered protrusions are formed on the outer periphery, and the tips of the protrusions are brought into pressure contact with the inner surface of the support member to form a heat insulating space between the support member and the ceramic material. Engine pre-chamber structure.
JP18288083U 1983-11-25 1983-11-25 Engine pre-chamber structure Granted JPS6088033U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18288083U JPS6088033U (en) 1983-11-25 1983-11-25 Engine pre-chamber structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18288083U JPS6088033U (en) 1983-11-25 1983-11-25 Engine pre-chamber structure

Publications (2)

Publication Number Publication Date
JPS6088033U JPS6088033U (en) 1985-06-17
JPH0134661Y2 true JPH0134661Y2 (en) 1989-10-23

Family

ID=30395938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18288083U Granted JPS6088033U (en) 1983-11-25 1983-11-25 Engine pre-chamber structure

Country Status (1)

Country Link
JP (1) JPS6088033U (en)

Also Published As

Publication number Publication date
JPS6088033U (en) 1985-06-17

Similar Documents

Publication Publication Date Title
JPS60159365A (en) Seal
JPH0212265Y2 (en)
JPH029067Y2 (en)
JPH0223788Y2 (en)
JPH0134661Y2 (en)
JPS61123714A (en) Subchamber structure for internal-combustion engine
JPS608449A (en) Heat strain resistant structure of engine
EP0780554B1 (en) Piston structure with heat insulated combustion chamber
JPH029066Y2 (en)
JPH0217150Y2 (en)
JPH02112613A (en) Structure for subcombustion chamber
JPH0134662Y2 (en)
JP3924970B2 (en) INJECTION NOZZLE ASSEMBLY SEALING MEMBER AND FUEL INJECTION DEVICE
JPH0217151Y2 (en)
JPH0645625Y2 (en) Direct injection diesel engine starter
JPH0115861Y2 (en)
JPH0429055Y2 (en)
JPH0240261Y2 (en)
JPH0240259Y2 (en)
JPS6350422Y2 (en)
JPH0134663Y2 (en)
JPH0118821Y2 (en)
JPS5815635Y2 (en) Internal combustion engine combustion subchamber component mounting structure
JPH0541231Y2 (en)
JPS6314019Y2 (en)