JPH0574750A - Cleaning method for semiconductor substrate - Google Patents

Cleaning method for semiconductor substrate

Info

Publication number
JPH0574750A
JPH0574750A JP23585091A JP23585091A JPH0574750A JP H0574750 A JPH0574750 A JP H0574750A JP 23585091 A JP23585091 A JP 23585091A JP 23585091 A JP23585091 A JP 23585091A JP H0574750 A JPH0574750 A JP H0574750A
Authority
JP
Japan
Prior art keywords
substrate
oxide film
vacuum
electron beam
cleaning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP23585091A
Other languages
Japanese (ja)
Inventor
Noriyuki Miyata
典幸 宮田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP23585091A priority Critical patent/JPH0574750A/en
Publication of JPH0574750A publication Critical patent/JPH0574750A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Cleaning Or Drying Semiconductors (AREA)

Abstract

PURPOSE:To provide a method capable of removing a surface oxide film on a silicon substrate by a treatment of a low temperature of 800 deg.C or lower in regard to a method of cleaning the surface of the silicon substrate. CONSTITUTION:1) A silicon substrate 1 is heated while an energy line is emitted on the surface of the substrate 1 in a vacuum, 2) after the energy line is emitted on the surface of the substrate 1 in the vacuum the substrate 1 is heated and 3) the substrate is constituted so that the energy line is an electron beam.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はシリコン(Si)基板表面の
清浄化方法に関する。Si基板上への成長前基板処理とし
て, 基板の高温加熱処理が行われているが,デバイス形
成の微細化, 高密度化に伴いプロセスの低温化が要求さ
れている。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for cleaning a surface of a silicon (Si) substrate. High-temperature heat treatment of the substrate is performed as a pre-growth substrate treatment on the Si substrate, but the process temperature is required to be lowered with the miniaturization of device formation and higher density.

【0002】本発明はこの要求に対応した方法として利
用できる。
The present invention can be used as a method to meet this demand.

【0003】[0003]

【従来の技術】従来よりSiの分子線エピタキシ(MBE) 等
の成長前の基板清浄化方法は, 基板を800℃以上に加熱
することにより, 溶液洗浄により基板上に形成された自
然酸化膜を蒸発させる方法がとられていた。
2. Description of the Related Art Conventionally, a method of cleaning a pre-growth substrate such as Si molecular beam epitaxy (MBE) before growth involves heating a substrate to 800 ° C. or higher to remove a natural oxide film formed on the substrate by solution cleaning. The method of evaporation was taken.

【0004】図2は従来例を説明する断面図である。図
において,1はSi基板,2は自然酸化物膜である。従来
法では真空中で基板1を 800℃以上に加熱することによ
り,自然酸化膜2を除去している。
FIG. 2 is a sectional view for explaining a conventional example. In the figure, 1 is a Si substrate and 2 is a natural oxide film. In the conventional method, the native oxide film 2 is removed by heating the substrate 1 to 800 ° C or higher in a vacuum.

【0005】この理由として,基板と酸化膜との反応に
よりSiO として真空中に離脱することが知られている。
For this reason, it is known that SiO 2 is released into a vacuum due to a reaction between a substrate and an oxide film.

【0006】[0006]

【発明が解決しようとする課題】従来例において,完全
に表面酸化膜を除去しようとすると, 800 ℃以上の高温
加熱が必要であり,その結果, デバイスの微細化に伴う
浅い接合に対し,不純物が工程中の熱処理により縦横方
向に拡散して高密度化を阻害する等の問題が生じてい
た。
In the conventional example, in order to completely remove the surface oxide film, it is necessary to heat it at a high temperature of 800 ° C. or higher. However, there was a problem that the heat treatment during the process diffused in the vertical and horizontal directions to hinder the densification.

【0007】本発明は基板上の表面酸化膜を800 ℃以下
の低温処理で除去できる方法の提供を目的とする。
An object of the present invention is to provide a method capable of removing a surface oxide film on a substrate by a low temperature treatment of 800 ° C. or lower.

【0008】[0008]

【課題を解決するための手段】上記課題の解決は, 1)真空中でシリコン基板表面にエネルギー線を照射し
ながら該基板を加熱する半導体基板の清浄化方法,ある
いは 2)真空中でシリコン基板表面にエネルギー線を照射
後,該基板を加熱する半導体基板の清浄化方法,あるい
は 3)前記エネルギー線が電子線である前記1)あるいは
2)記載の半導体基板の清浄化方法により達成される。
Means for Solving the Problems To solve the above problems, 1) a method for cleaning a semiconductor substrate in which the surface of a silicon substrate is heated while irradiating the surface of the silicon substrate with energy rays in vacuum, or 2) a silicon substrate in vacuum This is achieved by a method for cleaning a semiconductor substrate, which comprises heating the substrate after irradiating the surface with an energy ray, or 3) the method for cleaning a semiconductor substrate according to 1) or 2), wherein the energy ray is an electron beam.

【0009】[0009]

【作用】本発明は次の2つの事実から自然酸化膜除去処
理の低温化を実現することができた。 (1) 従来法における自然酸化膜の加熱蒸発では, 基板と
自然酸化膜との界面でSiとSiO2が反応してSiO が生成さ
れ,生成されたSiO が真空中に離脱されている。
According to the present invention, the temperature of the natural oxide film removing process can be reduced from the following two facts. (1) In the conventional method of heating and evaporating the native oxide film, Si and SiO 2 react at the interface between the substrate and the native oxide film to produce SiO, and the produced SiO is released into the vacuum.

【0010】従って, SiとSiO2とが接する部分を増やす
ことによって,低温での蒸発が期待できる。 (2) 一方, 酸化膜へ電子線を照射することにより, 酸化
膜表面に金属Siが析出することが知られている。
Therefore, evaporation at low temperature can be expected by increasing the portion where Si and SiO 2 are in contact with each other. (2) On the other hand, it is known that by irradiating the oxide film with an electron beam, metallic Si is deposited on the surface of the oxide film.

【0011】以上の(1),(2) の事実から, 真空中で酸化
膜に電子線を照射しながら加熱することにより, 従来法
よりも低温で自然酸化膜が除去できることが分かる。
From the facts of (1) and (2) above, it can be seen that the natural oxide film can be removed at a lower temperature than the conventional method by heating the oxide film while irradiating it with an electron beam in a vacuum.

【0012】[0012]

【実施例】図1は本発明の実施例を説明する断面図であ
る。図において,1はSi基板,2は自然酸化膜である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a sectional view for explaining an embodiment of the present invention. In the figure, 1 is a Si substrate and 2 is a natural oxide film.

【0013】塩酸溶液洗浄により,基板上に薄い酸化膜
を形成した後に,これを真空中で電子線を照射しながら,
基板を 500℃で加熱した。この際,塩酸溶液洗浄は次
の条件で行った。
After forming a thin oxide film on the substrate by washing with a hydrochloric acid solution, irradiating it with an electron beam in a vacuum,
The substrate was heated at 500 ° C. At this time, the hydrochloric acid solution was washed under the following conditions.

【0014】塩酸溶液(HCl:H2O2:H20 =1:1:4)
中に浸漬して10分間煮沸する。この場合, 電子線照射に
より酸化膜表面に析出したSiはSiO2と反応してSiO が生
成されるため,従来例より 300℃も低い温度で自然酸化
膜を除去することができた。
Hydrochloric acid solution (HCl: H 2 O 2 : H 2 0 = 1: 1: 4)
Soak in and boil for 10 minutes. In this case, Si of the electron beam irradiation was deposited on the surface of the oxide film because SiO is generated reacts with SiO 2, it was possible to remove the natural oxide film at a temperature lower 300 ° C. than the conventional example.

【0015】実施例の電子線の照射はAES(オージェ電子
分光) システムの電子銃を用い次の条件で行った。 加速電圧: 500 eV 照射時の電子銃よりの放射電流: 100μA 照射部の直径: 400μm 酸化膜が除去されたことの検査は次のようにして行っ
た。
The electron beam irradiation of the embodiment was performed under the following conditions using an electron gun of AES (Auger electron spectroscopy) system. Acceleration voltage: Radiation current from electron gun at irradiation of 500 eV: 100 μA Diameter of irradiated part: 400 μm The inspection that the oxide film was removed was conducted as follows.

【0016】Siのエピタキシャル成長においては,前処
理が不十分でSi基板表面の自然酸化膜の除去が不完全で
あると,不完全の部分に多結晶が堆積し,自然酸化膜が
完全に除去された部分(実際には微量な0 やC が残るこ
ともある) に単結晶が成長する。
In the epitaxial growth of Si, if the pretreatment is insufficient and the removal of the native oxide film on the surface of the Si substrate is incomplete, polycrystalline is deposited on the incomplete portion and the native oxide film is completely removed. The single crystal grows in the part where there is actually a trace of 0 or C left.

【0017】この性質を利用して,Si基板上に局部的に
電子線照射による前記前処理を行った後, エピタキシャ
ル成長を行い, その表面を干渉顕微鏡で観察した結果,
照射部には単結晶が成長し,照射しない部分には多結晶
が堆積していた。
Utilizing this property, the above pretreatment was locally performed on the Si substrate by electron beam irradiation, and then epitaxial growth was performed. As a result of observing the surface with an interference microscope,
A single crystal grew in the irradiated area and a polycrystal was deposited in the unirradiated area.

【0018】この結果より,照射部が清浄化されている
ことが確認された。また, 本発明の従来例以外に水素還
元による清浄化法も利用されているが,850℃以上の高温
で行うため,低温処理法として利用できない。
From this result, it was confirmed that the irradiation part was cleaned. In addition to the conventional example of the present invention, a cleaning method by hydrogen reduction is also used, but since it is performed at a high temperature of 850 ° C or higher, it cannot be used as a low temperature treatment method.

【0019】実施例では, Si基板表面に電子線を照射し
ながら加熱したが, 室温で基板に電子線を照射してもSi
をSiO2上に析出させることは可能であるため,基板に電
子線を照射後に, 基板を低温加熱しても同様の効果があ
ることも前記の検査方法で確認した。
In the example, the surface of the Si substrate was heated while being irradiated with an electron beam, but even if the substrate was irradiated with an electron beam at room temperature, the Si substrate was heated.
Since it is possible to deposit on the SiO 2 , it was confirmed by the above inspection method that the same effect can be obtained by heating the substrate at a low temperature after irradiating the substrate with an electron beam.

【0020】また,実施例ではエネルギー線として電子
線を用いたが,SiO2中の電子を励起できるようなエネル
ギー線であればよく, 従って10 eV 以上のエネルギーを
持つ光, 真空紫外領域より高いエネルギーを持つ光であ
ってもよい。
Although the electron beam is used as the energy beam in the embodiment, any energy beam can be used as long as it can excite electrons in SiO 2 , and therefore light having an energy of 10 eV or more, higher than the vacuum ultraviolet region. It may be light with energy.

【0021】[0021]

【発明の効果】基板上の表面酸化膜を800 ℃以下の低温
処理で除去できる方法が得られた。この結果,基板処理
の低温化が達成されて基板中に導入された不純物の拡散
が抑制されることにより,デバイスの微細化に寄与する
ことができた。
EFFECT OF THE INVENTION A method has been obtained in which the surface oxide film on the substrate can be removed by a low temperature treatment at 800 ° C. or lower. As a result, the substrate processing temperature was lowered and the diffusion of impurities introduced into the substrate was suppressed, which contributed to the miniaturization of the device.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施例を説明する断面図FIG. 1 is a sectional view illustrating an embodiment of the present invention.

【図2】 従来例を説明する断面図FIG. 2 is a sectional view illustrating a conventional example.

【符号の説明】[Explanation of symbols]

1 Si基板 2 自然酸化膜 1 Si substrate 2 Natural oxide film

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 真空中でシリコン基板表面にエネルギー
線を照射しながら該基板を加熱することを特徴とする半
導体基板の清浄化方法。
1. A method of cleaning a semiconductor substrate, which comprises heating the surface of a silicon substrate in vacuum while irradiating the surface with energy rays.
【請求項2】 真空中でシリコン基板表面にエネルギー
線を照射後,該基板を加熱することを特徴とする半導体
基板の清浄化方法。
2. A method for cleaning a semiconductor substrate, which comprises heating the substrate after irradiating the surface of the silicon substrate with energy rays in vacuum.
【請求項3】 前記エネルギー線が電子線であることを
特徴とする請求項1あるいは2記載の半導体基板の清浄
化方法。
3. The method for cleaning a semiconductor substrate according to claim 1, wherein the energy beam is an electron beam.
JP23585091A 1991-09-17 1991-09-17 Cleaning method for semiconductor substrate Withdrawn JPH0574750A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23585091A JPH0574750A (en) 1991-09-17 1991-09-17 Cleaning method for semiconductor substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23585091A JPH0574750A (en) 1991-09-17 1991-09-17 Cleaning method for semiconductor substrate

Publications (1)

Publication Number Publication Date
JPH0574750A true JPH0574750A (en) 1993-03-26

Family

ID=16992186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23585091A Withdrawn JPH0574750A (en) 1991-09-17 1991-09-17 Cleaning method for semiconductor substrate

Country Status (1)

Country Link
JP (1) JPH0574750A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007141995A1 (en) 2006-06-05 2007-12-13 Konica Minolta Medical & Graphic, Inc. Display processing device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007141995A1 (en) 2006-06-05 2007-12-13 Konica Minolta Medical & Graphic, Inc. Display processing device

Similar Documents

Publication Publication Date Title
US5122482A (en) Method for treating surface of silicon
JPH0574750A (en) Cleaning method for semiconductor substrate
JP2663583B2 (en) Method for manufacturing heteroepitaxial film on silicon substrate
JP2663518B2 (en) Silicon substrate cleaning method
JP2595935B2 (en) Surface cleaning method
JP4978544B2 (en) Epitaxial wafer manufacturing method
JPH0319218A (en) Formation process and device of soi substrate
JPH05213695A (en) Method for depositing thin diamond film
JP2663580B2 (en) Method and apparatus for passivating silicon surface
JPS635531A (en) Cleaning and flattening of si surface and apparatus therefor
JP2637950B2 (en) Surface cleaning method
JPH0644562B2 (en) Surface cleaning method
JPH02102520A (en) Vapor epitaxial deposition
JPH0517291A (en) Treatment of substrate for deposition of diamond thin film
JPH02291127A (en) Cleaning method for silicon surface
JPH118238A (en) Method of forming silicon oxide thin film where generation of initial particle is suppressed
JP2998336B2 (en) Method for etching compound semiconductor and method for forming semiconductor structure
JP2717165B2 (en) Method for forming structure of compound semiconductor
JP2643899B2 (en) Surface cleaning method
JP2003347304A (en) Silicon substrate and manufacturing method therefor
JPS62293724A (en) Method for cleaning surface
JPH05209271A (en) Selective cvd method
JPS61256716A (en) Apparatus for optical excitation
JPS6031230A (en) Forming method for thin film
JPH04214626A (en) Method of removing the oxide film from silicon substrate

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19981203