JPH0574021B2 - - Google Patents

Info

Publication number
JPH0574021B2
JPH0574021B2 JP63063191A JP6319188A JPH0574021B2 JP H0574021 B2 JPH0574021 B2 JP H0574021B2 JP 63063191 A JP63063191 A JP 63063191A JP 6319188 A JP6319188 A JP 6319188A JP H0574021 B2 JPH0574021 B2 JP H0574021B2
Authority
JP
Japan
Prior art keywords
potential difference
axis direction
axis
grid plate
terminals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63063191A
Other languages
Japanese (ja)
Other versions
JPH01237443A (en
Inventor
Makoto Hayashi
Masahiro Ootaka
Tsukasa Sasaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP63063191A priority Critical patent/JPH01237443A/en
Publication of JPH01237443A publication Critical patent/JPH01237443A/en
Publication of JPH0574021B2 publication Critical patent/JPH0574021B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は格子板検査装置に係り、特に沸騰水型
原子炉上部格子板に生じた応力腐食割れのき裂を
精度よく検査するのに好適な格子板検査装置に関
するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a grid plate inspection device, and is particularly suitable for accurately inspecting stress corrosion cracks occurring in the upper grid plate of a boiling water nuclear reactor. This invention relates to a grid plate inspection device.

〔従来の技術〕[Conventional technology]

従来のこの種装置は、特開昭61−66162号公報
に記載のように、格子板上に配置した格子板に固
定可能な基体にボールねじを一方向にのみ設け、
それに移動ブロツクを取付け、その移動ブロツク
に多数の超音波探触子を有するセンサーホルダー
を備えたものとなつていた。
Conventional devices of this kind, as described in Japanese Patent Application Laid-Open No. 61-66162, have a ball screw installed in only one direction on a base that can be fixed to a grid plate placed on a grid plate.
A moving block was attached to it, and the moving block was equipped with a sensor holder having a large number of ultrasonic probes.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術は、多数の超音波探触子を有する
センサーホルダーを格子板側面に空気シリンダで
押し付けて、ボールねじをモータで回転させるこ
とによりセンサーホルダーを水平方向に移動させ
て、超音波探傷法により格子に発生した欠陥を検
出するような構造となつているが、多数の超音波
探触子が垂直方向に固定されているので、超音波
の到達範囲が限られるため、欠陥を見落す可能性
が高いという問題があつた。また、超音波探傷法
については端部ピークエコー法、開口合成法、ホ
ログラフイ法など種々の方法があり、それぞれ特
徴を有しているが、き裂の検出で特に重要なき裂
先端からのエコーが得られないことがあり、その
場合、き裂の形状を判定できないという問題があ
つた。
The above conventional technology uses an ultrasonic flaw detection method in which a sensor holder having a large number of ultrasonic probes is pressed against the side surface of a grid plate using an air cylinder, and the sensor holder is moved horizontally by rotating a ball screw with a motor. The structure is such that it detects defects that occur in the grid, but since many ultrasonic probes are fixed vertically, the reach of the ultrasonic waves is limited, so defects may be overlooked. There was a problem with high gender. In addition, there are various methods of ultrasonic flaw detection, such as the edge peak echo method, aperture synthesis method, and holography method, each of which has its own characteristics. In this case, there was a problem that the shape of the crack could not be determined.

本発明の目的は、上記格子板に生じたき裂を検
出するためにPDM(直流ポテンシヤル法)の測定
ヘツドを格子板の垂直方向及び水平方向に走査し
て格子板側面の電位差分布を測定し、測定された
電位差分布を独自の方法により解析することによ
りき裂発生位置とき裂寸法を判定できる格子板検
査装置を提供することにある。
The purpose of the present invention is to scan the measurement head of PDM (direct current potential method) in the vertical and horizontal directions of the grid plate to measure the potential difference distribution on the side surface of the grid plate in order to detect cracks generated in the grid plate. The object of the present invention is to provide a grid plate inspection device that can determine the crack occurrence position and crack size by analyzing the measured potential difference distribution using a unique method.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は、格子板上に格子板に固定できるよ
うに配置した筐体にボールねじにより水平方向に
移動できるスライド台を設け、その水平方向スラ
イド台にボールねじにより垂直方向に移動できる
スライド台を設け、その垂直方向スライド台に格
子板表面に垂直な方向に駆動できる空気シリンダ
を取付け、その空気シリンダの軸端に測定ヘツド
を取付け、その測定ヘツドにPDM(直流ポテンシ
ヤル法)により検出するための給電端子と測定端
子を兼用する端子を垂直方向及び水平方向に配置
して、上部格子板の側面の垂直方向及び水平方向
の電位差分布を測定できるようにすることにより
達成される。
The above purpose is to provide a slide base that can be moved horizontally with a ball screw on a casing arranged on a grid plate so that it can be fixed to the grid plate, and a slide base that can be moved vertically with a ball screw on the horizontal slide base. An air cylinder that can be driven in a direction perpendicular to the surface of the grid plate is attached to the vertical slide base, a measuring head is attached to the shaft end of the air cylinder, and a measuring head is attached to the measuring head for detection using PDM (direct current potential method). This is achieved by arranging terminals that serve both as power supply terminals and measurement terminals in the vertical and horizontal directions so that the potential difference distribution in the vertical and horizontal directions on the side surface of the upper grid plate can be measured.

〔作用〕[Effect]

格子板上に配置した筐体に格子板の水平面内の
2方向に位置決め用案内板と固定用空気シリンダ
を配置して筐体を固定できるようにし、筐体の上
部にはボールねじを軸受と共に設けて、それを駆
動モータにより回転させられるようにし、該ボー
ルねじに嵌合する軸受にスライド台を取付けるこ
とにより水平方向に移動できるようにし、その水
平方向スライド台に格子板内に伸びる垂直方向に
長い支持プレートを取付け、その支持プレートに
ボールねじを軸受と共に設けて、それを駆動モー
タにより回転させられるようにして、該ボールね
じに嵌合する軸受にスライド台を取付けることに
より垂直方向に移動できるようにし、その垂直方
向スライド台に格子板表面に垂直な方向に駆動で
きる空気シリンダを取付け、その空気シリンダの
軸端に測定ヘツドを取付けることにより、測定ヘ
ツドは格子板の側面に押し付けられて水平方向、
垂直方向に自由に移動することができ、また、そ
の測定ヘツドにPDM(直流ポテンシヤル法)によ
り検出するための給電端子と測定端子を兼用する
端子を垂直方向及び水平方向に配置することによ
り上部格子板の側面の垂直方向及び水平方向の2
次元の電位差分布が測定できるので、格子板に発
生したき裂の位置と形状を精度良く判定すること
ができる。
A positioning guide plate and a fixing air cylinder are arranged in two directions in the horizontal plane of the grid plate on the case placed on the grid plate so that the case can be fixed, and a ball screw is installed along with a bearing on the top of the case. The ball screw can be rotated by a drive motor, and a slide base is attached to a bearing that fits into the ball screw so that it can be moved horizontally. A long support plate is attached to the support plate, a ball screw is attached to the support plate along with a bearing, and it is rotated by a drive motor, and a slide base is attached to the bearing that fits on the ball screw to move it in the vertical direction. By attaching an air cylinder that can be driven in a direction perpendicular to the surface of the grid plate to the vertical slide base and attaching a measuring head to the shaft end of the air cylinder, the measuring head is pressed against the side of the grid plate. horizontal direction,
It can be moved freely in the vertical direction, and the upper grid can be moved freely by vertically and horizontally arranging terminals that serve as power supply terminals and measurement terminals for detection using PDM (Direct Current Potential Method). Vertical and horizontal directions of the sides of the board
Since the dimensional potential difference distribution can be measured, the position and shape of cracks generated in the grating plate can be determined with high accuracy.

〔実施例〕〔Example〕

以下、本発明の一実施例を説明する。第1図〜
第3図は本発明の格子板検査装置の一実施例を示
すもので、第1図は平面図、第2図は正面図、第
3図は右側面図である。第1図から第3図におい
て、格子板75の上面には格子より若干大きい目
の框体の格子板検査装置本体1が載せられるよう
になつている。また、図において水平方向をX
軸、垂直方向をY軸、紙面に垂直な方向、即ち、
格子板の上下方向をZ軸とする。本体1には本体
1を格子板75に固定するために、X軸方向固定
用案内板51,51′とX軸方向固定用空気シリ
ンダ52並びにY軸方向固定用案内板39,3
9′とY軸方向固定用空気シリンダ40が設けて
ある。図には示してないが、格子板検査装置は燃
料交換装置83(第13図参照)の先端にZ軸回
転モータ81(第13図参照)を介して吊り下げ
られるような構造となつている。そのため、格子
板検査装置の大体の位置は燃料交換装置83によ
り制御されるが、正確な位置決めは困難であるの
で、X軸方向固定用案内板51,51′とY軸方
向固定用案内板39,39′の格子板75を挟む
方の面にテーパを付けておき、格子板検査装置本
体1を格子板75内に降ろしたときに2方向の格
子がそれぞれX軸方向固定用案内板51,51′
とY軸方向固定用案内板39,39′の間に入る
ようにする。そして本体1が格子板75の上面に
載つた状態でX軸方向固定用空気シリンダ52並
びにY軸方向固定用空気シリンダ40を駆動して
本体1を格子板75に固定する。固定方法の詳細
は後述する。
An embodiment of the present invention will be described below. Figure 1~
FIG. 3 shows an embodiment of the grid plate inspection device of the present invention, in which FIG. 1 is a plan view, FIG. 2 is a front view, and FIG. 3 is a right side view. In FIGS. 1 to 3, on the upper surface of a grid plate 75, a grid plate inspection apparatus main body 1, which is a frame with slightly larger mesh sizes than the grid, is placed. Also, in the figure, the horizontal direction is
axis, the vertical direction is the Y axis, the direction perpendicular to the plane of the paper, i.e.
The vertical direction of the grid plate is the Z axis. In order to fix the main body 1 to the grid plate 75, the main body 1 includes guide plates 51, 51' for fixing in the X-axis direction, air cylinders 52 for fixing in the X-axis direction, and guide plates 39, 3 for fixing in the Y-axis direction.
9' and an air cylinder 40 for fixing in the Y-axis direction. Although not shown in the figure, the grid plate inspection device is structured so that it is suspended from the tip of the fuel exchange device 83 (see FIG. 13) via a Z-axis rotation motor 81 (see FIG. 13). . Therefore, the approximate position of the grid plate inspection device is controlled by the fuel exchange device 83, but since accurate positioning is difficult, the X-axis fixing guide plates 51, 51' and the Y-axis fixing guide plate 3 , 39' are tapered on the sides that sandwich the lattice plate 75, so that when the lattice plate inspection device main body 1 is lowered into the lattice plate 75, the lattices in two directions are respectively fixed in the X-axis direction by the guide plates 51, 39'. 51'
and the Y-axis direction fixing guide plates 39, 39'. Then, with the main body 1 placed on the upper surface of the lattice plate 75, the X-axis fixing air cylinder 52 and the Y-axis fixing air cylinder 40 are driven to fix the main body 1 to the lattice plate 75. Details of the fixing method will be described later.

本体1の上面にX軸方向に平行になるようにX
軸ガイド36とボールねじの軸受30,31とX
軸方向ボールねじ33を配置する。ボールねじの
一端には自在継手32を介してX軸駆動用モータ
2を接続し、X軸駆動用モータ2は本体1の端に
設けられた部材に固定する。X軸ガイド36に嵌
合するX軸スライド軸受37にはX軸スライド台
34を取付け、X軸スライド台34にはX軸方向
ボールねじ33に嵌合するボールねじ軸受35を
取付け、X軸駆動用モータ2を駆動することによ
りX軸スライド台34をX軸方向に往復運動がで
きるようにする。X軸スライド台34の側面には
X軸リミツトスイツチ作動用部材38を設け、本
体1にはX軸リミツトスイツチ4,4′を取付け
て、X軸駆動用モータ2によりX軸スライド台3
4が駆動されたとき、ボールねじ軸受30,31
に衝突しないようにする。
X so that it is parallel to the top surface of main body 1 in the X-axis direction.
Shaft guide 36, ball screw bearings 30, 31, and X
An axial ball screw 33 is arranged. An X-axis drive motor 2 is connected to one end of the ball screw via a universal joint 32, and the X-axis drive motor 2 is fixed to a member provided at the end of the main body 1. The X-axis slide stand 34 is attached to the X-axis slide bearing 37 that fits in the X-axis guide 36, and the ball screw bearing 35 that fits in the X-axis direction ball screw 33 is attached to the X-axis slide stand 34, and the X-axis drive By driving the motor 2, the X-axis slide table 34 can be reciprocated in the X-axis direction. An X-axis limit switch actuating member 38 is provided on the side surface of the X-axis slide base 34, and X-axis limit switches 4, 4' are attached to the main body 1, and the X-axis slide base 3 is operated by the X-axis drive motor 2.
4 is driven, the ball screw bearings 30, 31
Avoid collisions.

X軸スライド台34には垂直方向、即ち、格子
板75の上下方向で格子板75の内部方向に伸び
るZ軸支持プレート57(第3図)を取付ける。
そのZ軸支持プレート57にはZ軸に平行になる
ように、Z軸ガイド58とボールねじの軸受5
3,54とZ軸方向ボールねじ56を配置する。
ボールねじ56の一端には自在継手55を介して
Z軸駆動用モータ5を接続し、Z軸駆動用モータ
5はZ軸支持プレート57の端に設けられた部材
に固定する。Z軸ガイド58に嵌合するZ軸スラ
イド軸受59にはZ軸スライド台60を取付け、
Z軸スライド台60にはZ軸方向ボールねじ56
に嵌合するボールねじ軸受61を取付け、Z軸駆
動用モータ5を駆動することによりZ軸スライド
台60をZ軸方向に往復運動できるようにする。
Z軸スライド台60の側面にはZ軸リミツトスイ
ツチ作動用プレート72,72′を設け、Z軸支
持プレート57にはZ軸リミツトスイツチ7,
7′を取付けて、Z軸駆動用モータ5によりZ軸
スライド台60が駆動されたとき、ボールねじ軸
受53,54に衝突しないようにする。
A Z-axis support plate 57 (FIG. 3) is attached to the X-axis slide table 34, which extends vertically, that is, in the vertical direction of the lattice plate 75 and toward the inside of the lattice plate 75.
A Z-axis guide 58 and a ball screw bearing 5 are mounted on the Z-axis support plate 57 so as to be parallel to the Z-axis.
3, 54 and a Z-axis direction ball screw 56 are arranged.
The Z-axis drive motor 5 is connected to one end of the ball screw 56 via a universal joint 55, and the Z-axis drive motor 5 is fixed to a member provided at the end of the Z-axis support plate 57. A Z-axis slide base 60 is attached to the Z-axis slide bearing 59 that fits into the Z-axis guide 58,
A Z-axis direction ball screw 56 is attached to the Z-axis slide table 60.
A ball screw bearing 61 is fitted to the Z-axis slide base 60, and the Z-axis slide table 60 can be reciprocated in the Z-axis direction by driving the Z-axis drive motor 5.
Z-axis limit switch operating plates 72, 72' are provided on the side surface of the Z-axis slide table 60, and Z-axis limit switches 7, 72' are provided on the Z-axis support plate 57.
7' is attached to prevent it from colliding with the ball screw bearings 53 and 54 when the Z-axis slide base 60 is driven by the Z-axis drive motor 5.

第4図に測定ヘツド周辺の構造を示す。前述し
たように、Z軸支持プレート57にはZ軸ガイド
58が取付けてあり、Z軸ガイド58にはZ軸ス
ライド軸受59が嵌合しており、更にそのZ軸ス
ライド軸受59にはZ軸スライド台60が取付け
てある。Z軸スライド台60にはZ軸方向ボール
ねじ56(第3図参照)に嵌合するボールねじ軸
受61を取付けてあり、Z軸方向駆動用モータ5
の駆動によりZ軸方向に移動できる。Z軸スライ
ド台60の格子板75と向き合う面には測定ヘツ
ド駆動用空気シリンダ13が取付けてあり、その
軸端には不導体材料で作られた測定ヘツド71が
取付けてある。ただし、このままでは測定ヘツド
71が自由に回転するので、測定ヘツド71の両
端には測定ヘツド案内棒73をそれぞれ1個設
け、それをZ軸スライド台60の内部に設けた図
示されていない直線軸受に嵌合させておく。測定
ヘツド71には電位差測定のための端子を多数設
ける。第4図では水平方向電位差測定用の給電端
子16と測定端子17が示してある。
Figure 4 shows the structure around the measurement head. As mentioned above, the Z-axis guide 58 is attached to the Z-axis support plate 57, the Z-axis slide bearing 59 is fitted to the Z-axis guide 58, and the Z-axis slide bearing 59 is further fitted with the Z-axis slide bearing 59. A slide stand 60 is attached. A ball screw bearing 61 that fits into the Z-axis ball screw 56 (see FIG. 3) is attached to the Z-axis slide base 60, and the Z-axis drive motor 5
can be moved in the Z-axis direction by driving. A measuring head driving air cylinder 13 is attached to the surface of the Z-axis slide table 60 facing the grid plate 75, and a measuring head 71 made of a non-conducting material is attached to the shaft end of the air cylinder 13. However, since the measuring head 71 will rotate freely in this state, one measuring head guide rod 73 is provided at each end of the measuring head 71, and it is attached to a linear bearing (not shown) provided inside the Z-axis slide table 60. Let it fit. The measurement head 71 is provided with a number of terminals for measuring potential differences. In FIG. 4, a power supply terminal 16 and a measurement terminal 17 for measuring the horizontal potential difference are shown.

第5図に測定ヘツド71における端子の配置の
一例を示す。図で中央部に開けられた3個の孔は
測定ヘツド駆動用シリンダ13の軸への取付けと
測定ヘツド案内棒73を取付けるためのものであ
る。その他の丸印で示したのは端子16,17の
配置である。直流ポテンシヤル法によつてき裂を
検出する場合には理想的にはき裂に対して電流を
垂直方向に供給して電気差分布を測定した方が良
い。従つて、測定ヘツド71は回転可能としても
良いが、回転形の場合には実際には格子板75の
上端と下端、それに格子板75の交差する箇所の
コーナー部が測定できないという欠点がある。そ
こで、第5図に示したように、水平方向と垂直方
向の2方向の電位差分布測定用にそれぞれ専用の
端子16,17を配置するようにした。即ち、測
定ヘツド71の左右の両端に垂直方向に並べたの
が垂直方向電位差分布測定用であり、上下の両端
に水平方向に並べたのが水平方向電位差分布測定
用である。測定ヘツド71は水平方向には格子板
75の内部しか移動出来ないので、測定ヘツド7
1の左右に端子16,17を配置してある。上下
方向は測定ヘツド71を格子板75の外に移動さ
せて格子板75の上端部、下端部周辺の電位差分
布を測定できるが、効率を良くするために上下に
端子を設けてある。
FIG. 5 shows an example of the arrangement of terminals in the measurement head 71. The three holes drilled in the center of the figure are for attaching the measuring head driving cylinder 13 to the shaft and for attaching the measuring head guide rod 73. The other circles indicate the arrangement of the terminals 16 and 17. When detecting a crack using the DC potential method, ideally it is better to supply current perpendicularly to the crack and measure the electrical difference distribution. Therefore, although the measuring head 71 may be rotatable, the rotary type has the disadvantage that it cannot actually measure the upper and lower ends of the grating plate 75 and the corners where the grating plate 75 intersects. Therefore, as shown in FIG. 5, dedicated terminals 16 and 17 are arranged for measuring the potential difference distribution in two directions, horizontal and vertical. That is, those arranged vertically at both left and right ends of the measurement head 71 are for measuring the vertical potential difference distribution, and those arranged horizontally at both the upper and lower ends are for measuring the horizontal potential difference distribution. Since the measuring head 71 can only move within the grid plate 75 in the horizontal direction, the measuring head 71
Terminals 16 and 17 are arranged on the left and right sides of 1. In the vertical direction, the measurement head 71 can be moved outside the grid plate 75 to measure the potential difference distribution around the upper and lower ends of the grid plate 75, but terminals are provided above and below to improve efficiency.

端子の形状の一例を第6図に示す。端子の形状
としては2段の円柱状で、先端はコーン形状とし
てある。先端の段付き部の後方にコイルばねを配
置して上部格子板75の表面に対して垂直方向に
は移動可能とし、且つ、ある一定量押し付けるこ
とによつて端子と格子板75との間の接触抵抗が
測定値に影響しないようにしてある。
An example of the shape of the terminal is shown in FIG. The terminal has a two-stage cylindrical shape with a cone-shaped tip. A coil spring is placed behind the stepped portion at the tip to allow movement in the direction perpendicular to the surface of the upper grid plate 75, and by pressing a certain amount, the tension between the terminal and the grid plate 75 is increased. This prevents contact resistance from affecting the measured values.

次に電位差分布の測定方法について説明する。
垂直方向の電位差分布を測定するときは第7図で
黒丸で示した端子から上下方向に電流を供給し
て、その中間の5個の端子により4箇所の電位差
Vを測定する。左右に端子が配列してあるので、
同時に8箇所の電位差が測定できる。この場合直
流電源20は左右別々に2台用意する。水平方向
の電位差分布を測定するときは第8図で黒丸で示
した端子から左右方向に電流を供給して、その中
間の2個の端子により1箇所の電位差Vを測定す
る。左右、上下に端子は配列してあるので、同時
に4箇所の電位差を測定できる。この場合にも直
流電源20は別々に4台用意する。
Next, a method for measuring the potential difference distribution will be explained.
When measuring the vertical potential difference distribution, a current is supplied in the vertical direction from the terminals indicated by black circles in FIG. 7, and the potential difference V at four locations is measured using the five terminals in between. Since the terminals are arranged on the left and right,
Potential differences at 8 locations can be measured simultaneously. In this case, two DC power supplies 20 are prepared separately for left and right. When measuring the horizontal potential difference distribution, a current is supplied in the left and right direction from the terminals indicated by the black circles in FIG. 8, and the potential difference V at one location is measured using two terminals in the middle. Since the terminals are arranged on the left and right, and on the top and bottom, it is possible to measure potential differences at four locations at the same time. In this case as well, four DC power supplies 20 are separately prepared.

第9図には別の端子の配置方法を示す。測定ヘ
ツド71の測定ヘツド駆動用空気シリンダ13と
測定ヘツド案内棒73(第4図)のある部分には
端子を配置出来ないので、そこを除いた部分に端
子を水平方向、垂直方向共に等間隔でマトリクス
状に配置する。この場合、端子は出来るだけ細か
い間隔で、また水平方向、垂直方向共に同じ間隔
で設けた方が良い。垂直方向の電位差分布を測定
するときは第10図で黒丸で示した端子から上下
方向に電流を供給して、その中間の7個の端子に
より6箇所の電位差Vを測定する。左右に6列ず
つ端子は配列してあるので、同時に36箇所の電位
差が測定できる。直流電源20は給電端子1対に
対して1台用意しなければならないので、このよ
うな端子の配列では合計12台の直流電源20が必
要である。水平方向の電位差分布を測定するとき
は第11図で黒丸で示した端子から左右方向に電
流を供給して、その中間の4個の端子により3箇
所の電位差Vを測定する。上下に9列、左右に2
個所、端子は配列してあるので、同時に54箇所の
電位差を測定できる。このような端子配列の場合
には直流電源20は全部で18台必要であるが、第
11図では煩雑となるので4台だけ示してある。
第12図には別の方法を示す。黒丸で示した左右
両端の端子から電流を供給して、左側の5列の端
子により36箇所の電位差Vを、右側の5列の端子
により36箇所の電位差Vを、合計72箇所の電位差
Vを測定する。この場合には直流電源20は9台
必要となるが、第12図では2台だけ示してあ
る。
FIG. 9 shows another method of arranging terminals. Since terminals cannot be placed in the part of the measuring head 71 where the air cylinder 13 for driving the measuring head and the measuring head guide rod 73 (Fig. 4) are located, the terminals are placed at equal intervals both horizontally and vertically in the part other than that part. Arrange them in a matrix. In this case, it is better to provide the terminals at as fine intervals as possible, and at the same intervals in both the horizontal and vertical directions. When measuring the vertical potential difference distribution, a current is supplied in the vertical direction from the terminals indicated by black circles in FIG. 10, and the potential differences V at six locations are measured using the seven terminals in the middle. Since the terminals are arranged in six rows on each side, it is possible to measure potential differences at 36 locations at the same time. Since one DC power supply 20 must be prepared for one pair of power supply terminals, a total of 12 DC power supplies 20 are required with such a terminal arrangement. When measuring the horizontal potential difference distribution, current is supplied in the left and right direction from the terminals indicated by black circles in FIG. 11, and the potential differences V at three locations are measured using the four terminals in between. 9 rows up and down, 2 rows left and right
Since the locations and terminals are arranged, it is possible to measure potential differences at 54 locations simultaneously. In the case of such a terminal arrangement, a total of 18 DC power supplies 20 are required, but only four are shown in FIG. 11 to avoid complication.
FIG. 12 shows another method. By supplying current from the left and right terminals indicated by black circles, the 5 rows of terminals on the left create a potential difference V at 36 locations, the 5 rows of terminals on the right create a potential difference V at 36 locations, and a total of 72 potential differences V. Measure. In this case, nine DC power supplies 20 are required, but only two are shown in FIG. 12.

第13図に格子板検査装置本体1の制御・駆
動・測定システムの系統図を示す。25はコンピ
ユータ、26は測定結果とデータ処理結果を表示
するためのCRT、27はデータやプログラムを
記憶させるためのハードデイスク等の外部記憶装
置である。コンピユータ25はインタフエース2
4やGP−IBインタフエース23を介して各種駆
動装置や電磁弁、計算機器を制御したり、測定値
を取り込んで処理し、結果を出力する。格子板検
査装置の全体を移動させる燃料交換装置83には
専用の制御装置84が付いているが、格子板検査
装置本体1を制御するコンピユータ25とも接続
して1つの装置として機能させる。第1図に示し
たように格子板検査装置本体1は格子板75の1
つの側面しか検査できないので、検査を終えると
一旦格子板75を上方に持ち上げて、90°ずつ回
転させて、再び下降し、格子内に挿入して別の側
面を検査しなければならない。そのため、格子板
検査装置本体1を回転させるためのZ軸回転モー
タ81はモータ駆動装置82から電源を供給さ
れ、駆動するための信号はインタフエース24を
介してコンピユータ25から出力される。X軸駆
動用モータ2とZ軸駆動用モータ5はそれぞれモ
ータ駆動装置3と6から電源を供給され、駆動す
るための信号はインタフエース24を介してコン
ピユータ25から出力される。X軸とZ軸に関し
てはそれぞれリミツトスイツチを軸の両端に設け
ておき、それぞれのスライド台が軸受にぶつかつ
て壊れることのないようにする。格子板検査装置
本体1の格子板75への固定用のY方向固定用シ
リンダ9とX方向固定用シリンダ11及び測定ヘ
ツド駆動用シリンダ13はそれぞれ電磁弁10,
12,14を通じて圧縮空気源8に接続され、電
磁弁10,12,14はインタフエース24を介
してコンピユータ25により制御される。複数の
直流電源20からの直流電源はコンピユータ25
により制御される電流極性変換装置19により一
定時間毎にその極性を切り換えられてマルチプレ
クサー18に供給され、更に電流供給先が振り分
けられて給電端子16,16′に電流が供給され
る。多数の測定端子17,17′の間の電位差は
マルチプレクサー21により測定する測定端子を
切り換えられて、微小電位差計22に接続されて
測定される。測定された電位差はGP−IBインタ
フエース23を介してコンピユータ25に転送さ
れる。コンピユータ25は後述の方法により格子
板75の水平方向、垂直方向の電位差分布よりき
裂の寸法を判定する。ここで、マルチプレクサー
18,21及び微小電位差計22はGP−IBイン
タフエース23或いはインタフエース24を介し
てコンピユータ25により制御されるものであ
る。
FIG. 13 shows a system diagram of the control, drive, and measurement system of the grid plate inspection device main body 1. 25 is a computer, 26 is a CRT for displaying measurement results and data processing results, and 27 is an external storage device such as a hard disk for storing data and programs. Computer 25 is interface 2
4 and the GP-IB interface 23, it controls various drive devices, solenoid valves, and computing equipment, takes in measured values, processes them, and outputs the results. The fuel exchange device 83 that moves the entire grid plate inspection device is equipped with a dedicated control device 84, but is also connected to a computer 25 that controls the grid plate inspection device main body 1 so that it functions as one device. As shown in FIG.
Since only one side can be inspected, once the inspection is completed, the grid plate 75 must be lifted upward, rotated 90 degrees at a time, lowered again, and inserted into the grid to inspect the other side. Therefore, the Z-axis rotation motor 81 for rotating the grid plate inspection apparatus main body 1 is supplied with power from the motor drive device 82, and a driving signal is outputted from the computer 25 via the interface 24. The X-axis drive motor 2 and the Z-axis drive motor 5 are supplied with power from motor drive devices 3 and 6, respectively, and driving signals are outputted from a computer 25 via an interface 24. For the X-axis and the Z-axis, limit switches are provided at both ends of the shafts to prevent each slide table from colliding with the bearing and breaking. The Y-direction fixing cylinder 9 and the X-direction fixing cylinder 11 for fixing the grating plate inspection device main body 1 to the grating plate 75 and the measuring head driving cylinder 13 are each provided with a solenoid valve 10,
The solenoid valves 10, 12, 14 are controlled by a computer 25 via an interface 24. The DC power from the plurality of DC power supplies 20 is connected to the computer 25.
A current polarity converter 19 controlled by the current polarity converter 19 switches the polarity of the current at regular intervals and supplies the current to the multiplexer 18, and further the current is distributed to the current supply destinations and the current is supplied to the power supply terminals 16, 16'. The potential difference between the plurality of measurement terminals 17, 17' is measured by switching the measurement terminal to be measured by a multiplexer 21 and connecting it to a minute potentiometer 22. The measured potential difference is transferred to the computer 25 via the GP-IB interface 23. The computer 25 determines the size of the crack from the potential difference distribution in the horizontal and vertical directions of the grid plate 75 using a method described later. Here, the multiplexers 18 and 21 and the minute potentiometer 22 are controlled by a computer 25 via a GP-IB interface 23 or 24.

次に、格子板の検査方法について述べる。第1
4図に検査のフローチヤートを示す。検査を開始
すると、ステツプ(1)で燃料交換装置83を駆
動して格子板検査装置本体1の位置決めを行い、
ステツプ(2)で格子板検査装置本体1を下降さ
せ、ステツプ(3)で格子内に挿入する。このと
き、Y方向固定用シリンダ9とX方向固定用シリ
ンダ11を引つ込めた状態にしておき、格子板検
査装置本体1の下端面が格子板75の上端面に当
たるまで下降させる。次に、Y方向固定用シリン
ダ9とX方向固定用シリンダ11を駆動して検査
装置本体1を格子板75に固定する。ただし、こ
れを一度に行うと、正確な位置決めができない。
そこで、初めにステツプ(4)でY方向固定用シ
リンダ9を駆動して格子板75をY方向固定用シ
リンダ9の軸端とY軸方向固定用案内板39(第
1図)の間に一旦固定する。次にステツプ(5)
でY方向固定用シリンダ9を引つ込める。ステツ
プ(6)でX方向固定用シリンダ11を駆動して
格子板75をX方向固定用シリンダ11の軸端と
X軸方向固定用案内板51(第2図)の間に一旦
固定する。次に、ステツプ(7)でX方向固定用
シリンダ11を引つ込める。ステツプ(4)から
ステツプ(7)を繰返して格子板75がX方向、
Y方向共に、X軸方向固定用案内板51とY軸方
向固定用案内板39にきちんと当たるようにす
る。ステツプ(8)ではこの繰返し数をカウント
する。ステツプ(9)とステツプ(10)で最終的
にY方向固定用シリンダ9とX方向固定用シリン
ダ11を駆動して検査装置本体1を格子板75に
固定する。ステツプ(11)で電位差分布を測定す
る。その詳細は後述する。ステツプ(12)では測
定終了か否かを判定する。測定が終了していない
場合には、ステツプ(13)でY方向固定用シリン
ダ9とX方向固定用シリンダ11を引つ込めた上
で燃料交換装置83を駆動して検査装置本体1を
上昇させる。ステツプ(14)では1つの格子の測
定が終了したか否かを判定して、終了した場合に
はステツプ(15)で燃料交換装置83により移動
して次の格子に移る。終了していない場合にはス
イツプ16でZ軸回転モータ81により90°回転
させて、ステツプ(17)で燃料交換装置83によ
り移動して格子の次の面に移動させる。この手順
を全ての格子板75の検査が終了するまで繰り返
す。
Next, a method for inspecting the grid plate will be described. 1st
Figure 4 shows the flowchart of the inspection. When the inspection starts, in step (1), the fuel exchange device 83 is driven to position the grid plate inspection device main body 1;
In step (2), the grid plate inspection device main body 1 is lowered, and in step (3) it is inserted into the grid. At this time, the cylinder 9 for fixing in the Y direction and the cylinder 11 for fixing in the X direction are kept in a retracted state, and are lowered until the lower end surface of the grid plate inspection device main body 1 hits the upper end surface of the grid plate 75. Next, the inspection device main body 1 is fixed to the grid plate 75 by driving the Y-direction fixing cylinder 9 and the X-direction fixing cylinder 11. However, if this is done all at once, accurate positioning cannot be achieved.
Therefore, first, in step (4), the Y-direction fixing cylinder 9 is driven to temporarily place the lattice plate 75 between the shaft end of the Y-direction fixing cylinder 9 and the Y-axis fixing guide plate 39 (FIG. 1). Fix it. Next step (5)
to retract the Y-direction fixing cylinder 9. In step (6), the X-direction fixing cylinder 11 is driven to temporarily fix the lattice plate 75 between the shaft end of the X-direction fixing cylinder 11 and the X-axis fixing guide plate 51 (FIG. 2). Next, in step (7), the X-direction fixing cylinder 11 is retracted. Repeat steps (4) to (7) to move the grid plate 75 in the X direction.
Make sure to properly contact the guide plate 51 for fixing in the X-axis direction and the guide plate 39 for fixing in the Y-axis direction in both the Y direction. In step (8), the number of repetitions is counted. In step (9) and step (10), the Y-direction fixing cylinder 9 and the X-direction fixing cylinder 11 are finally driven to fix the inspection device body 1 to the grid plate 75. Measure the potential difference distribution in step (11). The details will be described later. In step (12), it is determined whether the measurement is complete. If the measurement has not been completed, in step (13), the Y-direction fixing cylinder 9 and the X-direction fixing cylinder 11 are retracted, and the fuel exchange device 83 is driven to raise the inspection device main body 1. . In step (14), it is determined whether or not the measurement of one grid has been completed, and if it has been completed, the fuel exchange device 83 moves to the next grid in step (15). If it has not been completed, it is rotated by 90 degrees by the Z-axis rotary motor 81 with the switch 16, and moved by the fuel exchange device 83 in step (17) to the next surface of the grid. This procedure is repeated until all the grid plates 75 have been inspected.

電位差分布測定による欠陥形状検出の全体のフ
ローチヤートを第15図に示す。ステツプ(21)
で測定範囲(x1〜x2,z1〜z2)と測定ピツチ△
x,△zを設定する。ステツプ(22)で測定開始
点(x1,z1)へ移動し、ステツプ(23)で電位差
分布を測定する。初めに、測定範囲全体の電位差
分布を粗いピツチで測定する。測定された電位差
分布からき裂のない測定開始点付近の電位差を基
準電位差V0として電位差比V/V0の分布を求め
る。ステツプ(24)では測定された電位差分布か
ら欠陥位置を判定する。ステツプ(25)では欠陥
周辺の詳細な電位差分布を測定する。詳細な電位
差分布とは電位差測定ピツチを細かくすることを
言う。従つて、ステツプ(23)の電位差分布測定
では測定ピツチを測定端子の間隔と等しくする。
次に、ステツプ(26)で欠陥周辺の電位差分布か
ら欠陥に沿つた電位差分布を判定し、ステツプ
(27)で後述する簡易表面き裂形状決定法により
欠陥形状を判定する。そしてステツプ(28)で判
定された欠陥の形状を出力する。
FIG. 15 shows an overall flowchart of defect shape detection by potential difference distribution measurement. Step (21)
Measurement range (x 1 ~ x 2 , z 1 ~ z 2 ) and measurement pitch △
Set x, △z. In step (22), move to the measurement start point (x 1 , z 1 ), and in step (23) measure the potential difference distribution. First, the potential difference distribution over the entire measurement range is measured at coarse pitches. The distribution of the potential difference ratio V/V 0 is determined from the measured potential difference distribution by setting the potential difference near the measurement start point where there is no crack as the reference potential difference V 0 . In step (24), the defect position is determined from the measured potential difference distribution. In step (25), the detailed potential difference distribution around the defect is measured. Detailed potential difference distribution means making the potential difference measurement pitch finer. Therefore, in the potential difference distribution measurement in step (23), the measurement pitch is made equal to the interval between the measurement terminals.
Next, in step (26), the potential difference distribution along the defect is determined from the potential difference distribution around the defect, and in step (27), the defect shape is determined by a simple surface crack shape determination method to be described later. Then, the shape of the defect determined in step (28) is output.

次に、電位差分布測定のフローチヤートを第1
6図に示す。ここでは垂直方向の電位差分布を設
定する場合を説明する。ステツプ(31)で測定範
囲(x1〜x2,z1〜z2)と測定ピツチ△x,△zを
設定する。ステツプ(32)で測定開始点(x1
z1)へ移動する。ステツプ(33)でマルチプレク
サー18を制御することにより格子板75の垂直
方向給電端子16に直流電流を供給して格子板7
5の垂直方向に電場を形成する。ステツプ(34)
で電位差分布を測定する。ここで、多数の測定端
子間の電位差の測定であるが、垂直方向に隣り合
つた端子間の電位差をマルチプレクサー21によ
り測定端子を切り換えて測定する。測定された電
位差はGP−IBインタフエース23を通じてコン
ピユータ25に転送され、データ処理されるが、
電位差は電流の極性を切り換えて+の電流を流し
たときと−の電流を流したときの2回測定したも
のの振幅で評価するものとする。そのためステツ
プ(35)で測定回数Jをカウントする。+の電流
を流して電位差分布を測定した場合にはステツプ
(36)で測定回数Jに1を加算して、ステツプ
(37)で直流電流の極性を電流極性変換装置19
により切り換える。そして、再びステツプ(34)
で−の電流を流したときの電位差分布を測定し
て、電位差振幅を計算してステツプ(38)で電位
差測定値に座標を振り当てる。ステツプ(39)で
は、測定範囲を超えているかどうかを判別する。
ステツプ(40)では垂直方向、即ち、Z軸方向の
座標が測定範囲を超えているかどうかを判別し
て、超えていなければ、ステツプ(41)でZ軸駆
動モータ5を駆動して検査装置本体1をZ軸方向
に移動させる。このステツプ(34)からステツプ
(40)を繰返して、ステツプ(40)でZ軸方向の
座標が測定範囲を超えたと判別されると、ステツ
プ(42)でX軸駆動モータ2を駆動してX軸方向
に検査装置本体1を移動させる。ステツプ(43)
からステツプ(49)を繰返して、ステツプ(49)
でZ軸方向の座標が測定範囲を超えたと判別され
ると、ステツプ(51)でX軸駆動モータ2を駆動
してX軸方向に検査装置本体1を移動させる。こ
のステツプ(34)からステツプ(51)を繰返し
て、全範囲の電位差分布を測定すると、ステツプ
(52)で検査装置本体1を測定開始点(x1,z1
へ移動、ステツプ(53)で原点(x0,z0)へ移動
させて測定を終了する。
Next, the flowchart for measuring the potential difference distribution is shown in the first section.
It is shown in Figure 6. Here, a case will be described in which a vertical potential difference distribution is set. In step (31), the measurement range (x 1 to x 2 , z 1 to z 2 ) and measurement pitches △x, △z are set. At step (32), the measurement start point (x 1 ,
Move to z 1 ). In step (33), by controlling the multiplexer 18, a DC current is supplied to the vertical feed terminal 16 of the grid plate 75, and the grid plate 7
An electric field is created in the vertical direction of 5. Step (34)
Measure the potential difference distribution. Here, the potential difference between a large number of measurement terminals is measured, and the potential difference between vertically adjacent terminals is measured by switching the measurement terminals using the multiplexer 21. The measured potential difference is transferred to the computer 25 through the GP-IB interface 23 and processed as data.
The potential difference shall be evaluated by the amplitude of two measurements, one when the polarity of the current is switched and a positive current is caused to flow, and another when a negative current is caused to flow. Therefore, the number of measurements J is counted in step (35). When the potential difference distribution is measured by passing a + current, 1 is added to the number of measurements J in step (36), and the polarity of the DC current is changed to the current polarity converter 19 in step (37).
Switch by. And step again (34)
Measure the potential difference distribution when a negative current is passed through, calculate the potential difference amplitude, and assign coordinates to the potential difference measurement value in step (38). In step (39), it is determined whether the measurement range is exceeded.
In step (40), it is determined whether the coordinate in the vertical direction, that is, in the Z-axis direction, exceeds the measurement range. If not, in step (41), the Z-axis drive motor 5 is driven to move the inspection device main body. 1 in the Z-axis direction. This step (34) to step (40) are repeated, and when it is determined in step (40) that the coordinate in the Z-axis direction exceeds the measurement range, the X-axis drive motor 2 is driven in step (42) to The inspection device main body 1 is moved in the axial direction. Step (43)
Repeat step (49) from step (49).
When it is determined that the coordinate in the Z-axis direction exceeds the measurement range, in step (51), the X-axis drive motor 2 is driven to move the inspection apparatus main body 1 in the X-axis direction. After repeating this step (34) to step (51) to measure the potential difference distribution over the entire range, in step (52) the inspection device main body 1 is set at the measurement starting point (x 1 , z 1 ).
Then, in step (53), move to the origin (x 0 , z 0 ) and complete the measurement.

上述の電位差測定において電流の極性を切り換
えて+の電流を流したときと−の電流を流したと
きの2回測定したものの振幅で評価する理由は、
被測定試料に多少の温度分布があると、測定端子
と被測定試料の間に熱起電力が生じ、それが測定
された電位差の中に平均的な電位差として含まれ
ることになる。従つて、被測定試料そのものの電
位差を測定するためには熱起電力を何らかの方法
で取り除かねばならない。1つの方法は電流を流
して測定した電位差から電流を切つて測定した電
位差を差し引くものである。いま1つの方法は直
流電流の極性を間接的に切り換えて電位差の振幅
を測定するものである。後者の方が測定される電
位差の絶縁値が大きいので、それだけ測定精度が
向上する。また、電流を切る方法では電流を流し
た後に電流が安定するまでに時間がかかるという
欠点があるが、電流の極性を切り換える方法では
瞬時に電流が安定するという利点がある。この電
流の極性を切り換えるための装置が電流極性変換
装置19である。
In the potential difference measurement described above, the reason for evaluating by the amplitude of two measurements, one when the polarity of the current is switched and a positive current is passed, and another when a negative current is passed, is as follows.
If there is some temperature distribution in the sample to be measured, a thermoelectromotive force will be generated between the measurement terminal and the sample to be measured, and this will be included as an average potential difference in the measured potential difference. Therefore, in order to measure the potential difference of the sample to be measured itself, the thermoelectromotive force must be removed by some method. One method is to subtract the potential difference measured when the current is turned off from the potential difference measured when the current is applied. Another method is to measure the amplitude of the potential difference by indirectly switching the polarity of the direct current. In the latter case, the insulation value of the potential difference to be measured is larger, so the measurement accuracy is improved accordingly. In addition, the method of cutting off the current has the disadvantage that it takes time for the current to stabilize after flowing, but the method of switching the polarity of the current has the advantage that the current stabilizes instantly. A device for switching the polarity of this current is a current polarity converter 19.

水平方向の電位差分布測定は第16図と全く同
様である。垂直方向と水平方向の2方向に電流を
流すのは以下の理由による。今、き裂が格子板の
垂直方向に平行に入つている場合、垂直方向に電
流を流しても電場は垂直方向であるので電場はき
裂によつて乱されることはないので、測定される
電位差分布はき裂がない場合と全く同じとなり、
き裂はないと判定されてしまうことになる。とこ
ろが、そのような格子板75の垂直方向のき裂に
対して水平方向に電流を流すと、水平方向電場は
き裂によつて大きく乱されるため電位差分布が生
じ、その電位差分布の乱れ方からき裂の大きさを
判定することができる。もし、き裂が格子板75
の垂直方向及び水平方向の両方向に対して傾いて
発生した場合には両方向から電流を流して測定さ
れた電位差分布からその傾きを含めて形状を判定
することが可能である。
The horizontal potential difference distribution measurement is exactly the same as that shown in FIG. 16. The reason why current is passed in two directions, vertical and horizontal, is as follows. Now, if the crack is parallel to the vertical direction of the grid plate, even if a current is passed in the vertical direction, the electric field is in the vertical direction, so the electric field will not be disturbed by the crack, so it will not be measured. The potential difference distribution is exactly the same as when there is no crack,
It will be determined that there is no crack. However, when a current is passed horizontally through such vertical cracks in the grid plate 75, the horizontal electric field is greatly disturbed by the cracks, resulting in a potential difference distribution. The size of the crack can be determined from this. If the crack is in the lattice plate 75
In the case where the polarization occurs at an angle with respect to both the vertical and horizontal directions, it is possible to determine the shape including the inclination from the potential difference distribution measured by passing current from both directions.

第15図のステツプ(23)の電位差分布測定
で、水平方向に電流を流して水平方向の電位差を
測定して得られた電位差比V/V0の分布の模式
図を第17図に示す。第17図では横が格子板7
5の水平方向、縦が垂直方向としてある。き裂の
周辺では電場が乱されるため電位差比が大きくな
る。電位差比V/V0が大きいところは垂直方向
に長く伸びている。そこで、電位差比が最も大き
いところを検出して、例えば電位差比V/V0
1.02よりも大きいところにき裂があると判定す
る。次に、き裂の周辺だけ軸方向、周方向ともに
細いピツチで電位差分布を測定する。例えば第1
5図では〓〓〓〓〓の範囲は全て電位差比V/
V0が1.02よりも大きいので、この領域を含むよう
に測定する。ただし、基準電位差V0が必要であ
るので、〓〓〓〓〓の範囲よりもある程度広い領
域を測定する。第15図のステツプ(25)の電位
差分布測定で得られたき裂周辺の電位差比分布の
模式図を第18図に示す。垂直方向き裂の場合、
測定された電位差分布の水平方向の分布において
最大の電位差となつたところにき裂は存在すると
判定され、同時にそれらの最大の電位差の周方向
の分布をき裂に沿つての電位差分布と判定する。
その電位差分布を用いて後述する簡易表面き裂形
状決定法によりき裂形状を判定する。
FIG. 17 shows a schematic diagram of the distribution of the potential difference ratio V/V 0 obtained by flowing a current in the horizontal direction and measuring the horizontal potential difference in the potential difference distribution measurement in step (23) of FIG. 15. In Figure 17, the side is the grid plate 7.
5, the horizontal direction and the vertical direction are taken as the vertical direction. Because the electric field is disturbed around the crack, the potential difference ratio increases. Areas where the potential difference ratio V/V 0 is large extend long in the vertical direction. Therefore, by detecting the point where the potential difference ratio is the largest, for example, the potential difference ratio V/V 0 is
It is determined that there is a crack where the value is greater than 1.02. Next, the potential difference distribution is measured at narrow pitches in both the axial and circumferential directions only around the crack. For example, the first
In Figure 5, the range of 〓〓〓〓〓 is all potential difference ratio V/
Since V 0 is greater than 1.02, measure to include this area. However, since a reference potential difference V 0 is required, a somewhat wider area than the range of 〓〓〓〓〓 is measured. FIG. 18 shows a schematic diagram of the potential difference distribution around the crack obtained by measuring the potential difference distribution in step (25) of FIG. 15. For vertical cracks,
It is determined that a crack exists where the maximum potential difference is found in the horizontal direction distribution of the measured potential difference distribution, and at the same time, the circumferential distribution of these maximum potential differences is determined to be the potential difference distribution along the crack. .
Using the potential difference distribution, the crack shape is determined by a simple surface crack shape determination method described later.

き裂に沿つた電位差分布からのき裂形状決定方
法を以下に示す。表面き裂形状決定法のフローチ
ヤートを第19図に示す。予め、汎用大型計算機
により各種アスペクト比、例えば、a/c=1.0,
0.5,0.25,0.1のき裂について電場を解析し、き
裂面に垂直な方向の表面の電位差分布をコンピユ
ータ25の記憶装置、または外部記憶装置27に
記憶させておく。記憶させる電位差分布の一例と
してアスペクト比a/c=0.5の各き裂深さに対
する電位差分布を第20図に示す。第19図は板
厚t=20mmの平板の中央にき裂がある場合につい
てFEM(有効要素法)により電場を解析して得ら
れたものである。板厚tで基準化したき裂の深さ
a/tはき裂中央の最深点で0,0.125,0.25,
0.375,0.5,0.625および0.75である。き裂がない
(a/t=0)の場合には電位差はき裂からの距
離zに比例する。一方、き裂がある場合にはき裂
の近傍で電位差が大きくなつている。これらの電
位差分布はn次近似してコンピユータ25に記憶
させておく。き裂形状決定に当たつては最初に測
定されたき裂周辺の電位差分布から表面き裂長さ
2c*と最大電位差比V/V0naxを求める。一例と
して第21図にステンレス鋼12B管の内面に疲
労により導入したき裂周辺での電位差分布を示
す。き裂がないところでは電位差はほぼ一定であ
り、その平均を求めると、基準電位差としてV0
=37.25μVが得られる。き裂のあるところでは電
位差は大きくなつており、この部分の電位差分布
をn次近似する。第21図では4次近似した結果
得られた曲線が示してある。この4次近似曲線と
基準電位差V0との交点から表面におけるき裂長
さ2cを求めると、2c=22.5mmが得られる。近似曲
線からき裂の最深点に対応する最大の電位差比
V/V0naxを決定する。第21図の場合にはVnax
=38.0μVであるのでV/V0nax=38.0/24.75=
1.535が得られた。次に、第9図に示した電位差
分布から各種アスペクト比a/cのき裂に対する
電位差比V/V0とき裂深さa/tの関係を作成
するために電位差比V/V0とアスペクト比a/
cの関係を作成する。この場合、FEMによる電
場解析では板厚t=20mmの平板について解析して
いるので、測定端子間距離dに対応した測定位置
d*における電位差比V/V0とアスペクト比
a/cの関係を作成しなければならない。従つ
て、被測定部材の板厚t*で補正されたd*=d
×20/t*の位置の各き裂深さに対する電位差を
求めて電位差比V/V0とアスペクト比a/cの
関係を第22図のように作成する。電位差比V/
V0とアスペクト比a/cの関係は各き裂深さ
a/t毎にn次近似してコンピユータ25の記憶
装置27に記憶させる。次に、電位差比V/V0
とアスペクト比a/cの関係を用いてアスペクト
比a/c=0.5に対する電位差比V/V0とき裂深
さa/tの関係のマスターカーブを第23図のよ
うに作成する。この場合にも電位差比V/V0
き裂深さa/tの関係はn次近似、例えば5次近
似する。このマスターカーブに電位差分布を4次
近似して得られた最大電位差比V/V0naxを代入
してき裂深さa*を求める。次いで、板厚補正し
た表面き裂長さ2c*(=2c×20/t)によりき裂
のアスペクト比a*/c*を求め、マスターカー
ブのアスペクト比a/cと比較する。両者が一致
していなければ、改めて電位差比V/V0とアス
ペクト比a/cの関係を用いてアスペクト比a/
c=a*/c*に対する電位差比V/V0とき裂
深さa/tの関係のマスターカーブを作成し、最
大電位差比V/V0naxを代入してき裂深さa*を
求める。この作業を両者が一致するまで、例え
ば、a/cとa*/c*の差が0.01以下となるま
で繰り返す。一致したときのアスペクト比に対す
る電位差比V/V0とき裂深さa/tの関係のマ
スターカーブに各測定位置における電位差比を代
入することによりき裂全体の形状を決定するもの
である。この場合電位差比は各測定位置における
電位差比を代入しても良いし、n次近似した電位
差比分布を代入しても良い。
The method for determining the crack shape from the potential difference distribution along the crack is shown below. A flowchart of the surface crack shape determination method is shown in FIG. Various aspect ratios, e.g. a/c=1.0, are determined in advance by a general-purpose large-scale computer.
The electric field is analyzed for cracks of 0.5, 0.25, and 0.1, and the potential difference distribution on the surface in the direction perpendicular to the crack surface is stored in the storage device of the computer 25 or the external storage device 27. As an example of the potential difference distribution to be stored, the potential difference distribution for each crack depth with an aspect ratio a/c=0.5 is shown in FIG. Figure 19 is obtained by analyzing the electric field using FEM (effective element method) in the case where there is a crack in the center of a flat plate with a thickness of t = 20 mm. The depth a/t of the crack standardized by the plate thickness t is 0, 0.125, 0.25 at the deepest point at the center of the crack.
0.375, 0.5, 0.625 and 0.75. When there is no crack (a/t=0), the potential difference is proportional to the distance z from the crack. On the other hand, if there is a crack, the potential difference increases near the crack. These potential difference distributions are approximated to the nth order and stored in the computer 25. When determining the crack shape, the surface crack length is first determined from the measured potential difference distribution around the crack.
Find 2c* and the maximum potential difference ratio V/V 0nax . As an example, FIG. 21 shows the potential difference distribution around a crack introduced into the inner surface of a stainless steel 12B pipe due to fatigue. Where there are no cracks, the potential difference is almost constant, and when the average is calculated, the reference potential difference is V 0
= 37.25μV is obtained. The potential difference is large where there is a crack, and the potential difference distribution in this area is approximated to the nth order. FIG. 21 shows a curve obtained as a result of fourth-order approximation. When the crack length 2c on the surface is determined from the intersection of this fourth-order approximate curve and the reference potential difference V 0 , 2c = 22.5 mm is obtained. The maximum potential difference ratio V/V 0nax corresponding to the deepest point of the crack is determined from the approximate curve. In the case of Figure 21, V nax
=38.0μV, so V/V 0nax =38.0/24.75=
1.535 was obtained. Next, in order to create the relationship between the potential difference ratio V/V 0 and the crack depth a/t for cracks with various aspect ratios a/c from the potential difference distribution shown in FIG. ratio a/
Create the relationship c. In this case, in the electric field analysis using FEM, a flat plate with a thickness t = 20 mm is analyzed, so the relationship between the potential difference ratio V/V 0 and the aspect ratio a/c at the measurement position d* corresponding to the distance d between the measurement terminals is must be created. Therefore, d* = d corrected by the plate thickness t* of the member to be measured
The potential difference for each crack depth at the position x20/t* is determined, and the relationship between the potential difference ratio V/V 0 and the aspect ratio a/c is created as shown in FIG. Potential difference ratio V/
The relationship between V 0 and aspect ratio a/c is approximated to the nth order for each crack depth a/t and stored in the storage device 27 of the computer 25. Next, the potential difference ratio V/V 0
Using the relationship between the aspect ratio a/c and the aspect ratio a/c, a master curve of the relationship between the potential difference ratio V/V 0 and the crack depth a/t for the aspect ratio a/c=0.5 is created as shown in FIG. In this case as well, the relationship between the potential difference ratio V/V 0 and the crack depth a/t is approximated to the nth order, for example, to the fifth order. The crack depth a* is determined by substituting the maximum potential difference ratio V/V 0nax obtained by fourth-order approximation of the potential difference distribution into this master curve. Next, the aspect ratio a*/c* of the crack is determined from the surface crack length 2c* (=2c×20/t) corrected for the plate thickness, and compared with the aspect ratio a/c of the master curve. If the two do not match, use the relationship between the potential difference ratio V/V 0 and the aspect ratio a/c to determine the aspect ratio a/c.
A master curve of the relationship between the potential difference ratio V/V 0 and the crack depth a/t for c=a*/c* is created, and the maximum potential difference ratio V/V 0nax is substituted to determine the crack depth a*. This operation is repeated until the two match, for example, until the difference between a/c and a*/c* is 0.01 or less. The shape of the entire crack is determined by substituting the potential difference ratio at each measurement position into a master curve of the relationship between the aspect ratio, the potential difference ratio V/V 0 and the crack depth a/t when they match. In this case, the potential difference ratio at each measurement position may be substituted for the potential difference ratio, or an nth-order approximated potential difference ratio distribution may be substituted.

第21図に示した疲労き裂周辺の電位差分布に
ついて具体的に計算した結果について示す。ステ
ンレス鋼管の板厚はt*=15.8mmであり、測定端
子間距離はd=5mmであるので、d*=d×20/
t*=5×20/15.8=6.3mmの位置における各ア
スペクト比の各き裂深さに対する電位差を求め
る。ただし、き裂が測定端子の中央に来るように
して電位差を測定しているので、z=d*/2=
3.15mmの位置の電位差を求め、第22図のような
電位差比V/V0とアスペクト比a/cの関係を
作成する。これらの関係を用いて第22図に示す
ようにアスペクト比a/c=0.5に対する電位差
比V/V0とき裂深さa/tの関係のマスターカ
ーブを作成する。このカーブに最大電位差比V/
V0nax=1.535を代入すると、a*/t=0.2665と
なり、a*=5.31mmが得られる。表面き裂長さ2c
=22.5mmを板厚補正すると2c*=22.5×20/15.8
=28.48mmとなり、き裂のアスペクト比はa*/
c*=5.31/14.28=0.37となる。そこで、次に
a/c=0.37に対するマスターカーブを作成して
き裂深さを求めると、a*=4.97mmが得られ、a
*/c*=0.348となる。再び、a/c=0.34に
対するマスターカーブを作成してき裂深さを求め
ると、a*=4.92mmが得られ、a*/c*=
0.344となり、アスペクト比がほぼ一致した。こ
れらは手計算による結果であるが、コンピユータ
25により計算した場合はa/c=0.348に対す
るマスターカーブを作成してa*=4.94mm,a/
c=0.345が得られ、アスペクト比はほとんど一
致した。このようにして求めた表面き裂形状と破
断後の破面のビーチマークとの対応を第24図に
示す。第21図で分かるように電位差測定間隔が
粗かつたために、表面のき裂先端近傍でややき裂
が浅目になつているが、そこを除けば非常に良く
一致している。従つて、もしもつと細かいピツチ
で電位差分布を測定できれば、更に精度が良くな
る。
The results of specific calculations regarding the potential difference distribution around the fatigue crack shown in FIG. 21 will be shown. The plate thickness of the stainless steel pipe is t* = 15.8 mm, and the distance between the measurement terminals is d = 5 mm, so d* = d x 20/
Find the potential difference for each crack depth for each aspect ratio at the position of t*=5×20/15.8=6.3 mm. However, since the potential difference is measured with the crack located at the center of the measurement terminal, z=d*/2=
The potential difference at the position of 3.15 mm is determined, and the relationship between the potential difference ratio V/V 0 and the aspect ratio a/c as shown in FIG. 22 is created. Using these relationships, a master curve of the relationship between the potential difference ratio V/V 0 and the crack depth a/t for the aspect ratio a/c=0.5 is created as shown in FIG. This curve shows the maximum potential difference ratio V/
Substituting V 0nax =1.535 gives a*/t=0.2665, giving a*=5.31 mm. Surface crack length 2c
=22.5mm with plate thickness correction 2c*=22.5×20/15.8
= 28.48mm, and the aspect ratio of the crack is a*/
c*=5.31/14.28=0.37. Therefore, when we next created a master curve for a/c = 0.37 and determined the crack depth, a * = 4.97 mm was obtained, and a
*/c*=0.348. Once again, by creating a master curve for a/c=0.34 and finding the crack depth, a*=4.92mm is obtained, and a*/c*=
The aspect ratio was 0.344, and the aspect ratios were almost the same. These are the results of manual calculations, but when calculated using the computer 25, a master curve for a/c = 0.348 was created and a* = 4.94mm, a/
c=0.345 was obtained, and the aspect ratios were almost the same. FIG. 24 shows the correspondence between the surface crack shape determined in this way and the beach mark on the fracture surface after fracture. As can be seen in FIG. 21, because the potential difference measurement interval was coarse, the cracks were a little shallow near the crack tips on the surface, but apart from that, the results were in very good agreement. Therefore, if the potential difference distribution can be measured at a finer pitch, the accuracy will be even better.

ただし、上述の方法ではき裂が電場に対して垂
直にある場合に適用できるものであつて、傾いて
いるき裂に対してはそのまま適用できない。第2
5図に傾いているき裂周辺で測定された電位差分
布の模式図を示す。図では水平方向に電流を流し
たときに得られた電位差分布において、水平方向
での電位差の最大値となつた位置が示してある。
このような場合にはその電位差が最大となつた測
定位置の座標点を最小自乗法により直線近似して
水平方向に対する角度を求めると共に、両端座標
からき裂長さ2c*を求める。この時、き裂の法線
方向と電場方向とのなす角度をΘとすると、電位
差比V/V0′はき裂が電場に対して直角にあると
きの電位差比V/V0よりも小さくなり、第一次
近似してはV/V0′=V/V0°cps〓となる。従つて、
上述の方法でき裂形状を求める場合には測定され
た電位差比V/V0′をΘで補正してV/V0=V/
V0
However, the above-mentioned method can be applied when the crack is perpendicular to the electric field, and cannot be applied directly to a crack that is inclined. Second
Figure 5 shows a schematic diagram of the potential difference distribution measured around the tilted crack. In the figure, the position where the potential difference in the horizontal direction reaches the maximum value is shown in the potential difference distribution obtained when a current is passed in the horizontal direction.
In such a case, the angle with respect to the horizontal direction is determined by linearly approximating the coordinate point of the measurement position where the potential difference is maximum using the method of least squares, and the crack length 2c* is determined from the coordinates at both ends. At this time, if the angle between the normal direction of the crack and the direction of the electric field is Θ, the potential difference ratio V/V 0 ' is smaller than the potential difference ratio V/V 0 when the crack is perpendicular to the electric field. Therefore, in the first approximation, V/V 0 '=V/V 0 ° cps 〓. Therefore,
When determining the crack shape using the above method, the measured potential difference ratio V/V 0 ' is corrected by Θ and V/V 0 = V/
V 0

Claims (1)

【特許請求の範囲】 1 部材表面に相互に離間した少なくとも1組の
給電端子対により直流電流を印加し、該給電端子
対の間に少なくとも1組の電位差測定端子対を設
けて電位差を測定し、該電位差から欠陥を検出す
る原子炉上部格子板の格子板検査装置において、
前記格子板の上面に配置された本体に、該本体を
前記格子板の直行するX方向、Y方向に固定する
ための位置決め板と固定用空気シリンダを設け、
前記本体の上面にはX軸方向直線スライドガイト
とボールねじの軸受を取り付け、該ホールねじ軸
受にはボールねじを嵌合させ、該ボールねじの一
端には自在継手を介してX軸駆動用モータを設
け、前記X軸方向直線スライドガイドに嵌合する
軸受の上部にはX軸方向駆動部を取付け、該駆動
部にはZ軸方向に伸びる支持部材を設け、該支持
部材にはZ軸方向直線スライドガイドとボールね
じの軸受を取付け、該ボールねじ軸にはボールね
じを嵌合させ、該ボールねじの一端には自在継手
を介してZ軸駆動用モータを設け、前記Z軸方向
直線スライドガイドに嵌合する軸受の上部にはZ
軸方向駆動部を取付け、該駆動部には前記格子板
の側面に直交する方向に駆動可能な空気シリンダ
を取付け、該空気シリンダの軸端には直流電流供
給と電位差測定を兼用する電極を多数配置した不
導体製の測定ヘツドを取付け、前記本体の上部に
は吊下げ用部材を設け、該部材の上部には軸端を
燃料交換装置の先端に取付け可能とした部材に接
続されたZ軸回転用モータを取付けた構成とした
ことを特徴とする格子板検査装置。 2 前記本体の上面にX軸方向リミツトスイツチ
を2個設けると共に、前記X軸方向駆動部の側面
にリミツトスイツチ作動用部材を設け、前記Z軸
方向に伸びる支持部材にZ軸方向リミツトスイツ
チを2個設けると共に、前記Z軸方向駆動部の側
面にリミツトスイツチ作動用部材を設けた特許請
求の範囲第1項記載の格子板検査装置。 3 制御用のコンピユータと、測定結果とデータ
処理結果を表示するCRTと,データとプログラ
ムを記録する外部記憶装置と、モータ駆動用の駆
動装置と、空気シリンダを駆動するための電磁弁
と、給電端子に電流を供給するための直流電源
と、電流極性変換装置と、前記コンピユータに接
続するためのインタフエースと、前記格子板上の
電位差分布を測定する微小電位差計と、マルチプ
レクサー及びGP−IBインタフエースを設けてあ
る特許請求の範囲第1項または第2項記載の格子
板検査装置。 4 前記測定ヘツドにX軸方向、Y軸方向の電位
差分布を測定できるように2方向に電流供給と電
位差測定を兼用する端子を配置した特許請求の範
囲第1項または第2項または第3項記載の格子板
検査装置。 5 X軸方向、Y軸方向に配置した前記端子を前
記測定ヘツドの外周部に配置した特許請求の範囲
第4項記載の格子板検査装置。 6 前記測定ヘツドに配置した端子をX軸方向、
Y軸方向共に等間隔でマトリクス状に配置した特
許請求の範囲第4項記載の格子板検査装置。
[Claims] 1. Direct current is applied to the surface of the member through at least one pair of power supply terminals spaced apart from each other, and at least one pair of potential difference measurement terminals is provided between the pair of power supply terminals to measure the potential difference. , in a grid plate inspection device for a nuclear reactor upper grid plate that detects defects from the potential difference,
A positioning plate and a fixing air cylinder are provided on the main body disposed on the upper surface of the lattice plate for fixing the main body in the X direction and the Y direction perpendicular to the lattice plate,
An X-axis linear slide guide and a ball screw bearing are attached to the top surface of the main body, a ball screw is fitted to the hall screw bearing, and an X-axis drive motor is connected to one end of the ball screw via a universal joint. an X-axis direction drive section is attached to the upper part of the bearing that fits into the X-axis direction linear slide guide, a support member extending in the Z-axis direction is provided on the drive section, and a support member extending in the Z-axis direction is provided on the support member. A linear slide guide and a ball screw bearing are attached, a ball screw is fitted to the ball screw shaft, a Z-axis driving motor is provided at one end of the ball screw via a universal joint, and the linear slide in the Z-axis direction is installed. There is a Z mark on the top of the bearing that fits into the guide.
An axial drive unit is attached, an air cylinder that can be driven in a direction perpendicular to the side surface of the grid plate is attached to the drive unit, and a number of electrodes are installed at the shaft end of the air cylinder for both supplying direct current and measuring potential difference. A measuring head made of a non-conductor is attached to the main body, a hanging member is provided on the upper part of the main body, and a Z-axis is connected to a member whose shaft end can be attached to the tip of the fuel exchange device. A grid plate inspection device characterized by having a configuration in which a rotation motor is attached. 2. Two X-axis direction limit switches are provided on the upper surface of the main body, a limit switch actuating member is provided on the side surface of the X-axis direction driving section, and two Z-axis direction limit switches are provided on the support member extending in the Z-axis direction. 2. The grid plate inspection device according to claim 1, further comprising a limit switch actuating member provided on a side surface of the Z-axis direction drive section. 3 A computer for control, a CRT for displaying measurement results and data processing results, an external storage device for recording data and programs, a drive device for driving the motor, a solenoid valve for driving the air cylinder, and a power supply. A DC power source for supplying current to the terminals, a current polarity converter, an interface for connecting to the computer, a micropotentiometer for measuring the potential difference distribution on the grid plate, a multiplexer, and a GP-IB. A grid plate inspection device according to claim 1 or 2, which is provided with an interface. 4. Claims 1, 2, or 3, wherein terminals for both current supply and potential difference measurement are arranged in two directions in the measurement head so that the potential difference distribution in the X-axis direction and the Y-axis direction can be measured. The grid plate inspection device described. 5. The grid plate inspection device according to claim 4, wherein the terminals arranged in the X-axis direction and the Y-axis direction are arranged on the outer periphery of the measurement head. 6. Direct the terminals placed on the measurement head in the X-axis direction,
The lattice plate inspection device according to claim 4, wherein the lattice plate inspection device is arranged in a matrix at equal intervals in both the Y-axis directions.
JP63063191A 1988-03-18 1988-03-18 Lattice plate checking apparatus Granted JPH01237443A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63063191A JPH01237443A (en) 1988-03-18 1988-03-18 Lattice plate checking apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63063191A JPH01237443A (en) 1988-03-18 1988-03-18 Lattice plate checking apparatus

Publications (2)

Publication Number Publication Date
JPH01237443A JPH01237443A (en) 1989-09-21
JPH0574021B2 true JPH0574021B2 (en) 1993-10-15

Family

ID=13222087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63063191A Granted JPH01237443A (en) 1988-03-18 1988-03-18 Lattice plate checking apparatus

Country Status (1)

Country Link
JP (1) JPH01237443A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8526564B2 (en) * 2010-12-13 2013-09-03 Westinghouse Electric Company Llc Top guide inspection fixture
CN103559921B (en) * 2013-10-18 2016-02-10 中国核动力研究设计院 A kind of hooking test unit of reactor fuel assemblies grid spacer
WO2020087519A1 (en) * 2018-11-02 2020-05-07 大族激光科技产业集团股份有限公司 Quality test device, method, and system, and integrated probe assembly
CN109596677A (en) * 2018-11-02 2019-04-09 大族激光科技产业集团股份有限公司 A kind of quality detection device, method, system and integrated probe component

Also Published As

Publication number Publication date
JPH01237443A (en) 1989-09-21

Similar Documents

Publication Publication Date Title
KR100376809B1 (en) Apparatus and method for performing non-destructive inspections of large area aircraft structures
EP0289615B1 (en) Surface defect inspection method and surface defect inspection apparatus
CN1804624A (en) Apparatus for testing cement-based material deformation under multiple environmental conditions
CN105842335A (en) Multi-parameter-integrated ferromagnetic metal material micro-crack detection method
US5036707A (en) Ultrasonic testing apparatus and method for rapidly inspecting a large number of gas cylinders of similar design for internal neck-shoulder defects
JPH0574021B2 (en)
CN106645433A (en) Three-dimensional calibration test block for ultrasonic automatic detection system
CN112415094A (en) Special ultrasonic detection tool and method for blade root of back arc surface of compressor moving blade
US6414480B1 (en) Method and system for eddy current inspection calibration
CN109625317B (en) Detection instrument with eddy current inspection function of airplane and engine parts
CN113237582B (en) Wall internal stress detection method and detection system for engineering acceptance
CN213813455U (en) Special ultrasonic detection tool for blade root of back arc surface of compressor moving blade
CN114740084A (en) Detection method and system for steel surface coating
JP2005300363A (en) Ultrasonic flaw detecting system and ultrasonic flaw detecting test method
CN109738446B (en) Nondestructive testing device and testing method thereof
CN103968754B (en) A kind of automatic laser surveys chi instrument
JP2511020B2 (en) Pipe defect inspection device
JPH1151906A (en) Corrosion diagnostic device
CN206876642U (en) A kind of high column Non-Destructive Testing frame of stability
JPH1068716A (en) Manual ultrasonic flaw detection skill training device
CN111650283B (en) Method for positioning residual stress peak value based on acoustic emission technology
JP2002340762A (en) Screening system
JPH0746081B2 (en) Non-destructive inspection device
CN105548371A (en) Test block for ultrasonic non-destructive testing of electrical contact of low-voltage electric appliance as well as combination and application thereof
CN115950338A (en) Device and method for measuring depth of corrosion pit and evaluating corrosion grade of sample

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees