JP2511020B2 - Pipe defect inspection device - Google Patents

Pipe defect inspection device

Info

Publication number
JP2511020B2
JP2511020B2 JP62059036A JP5903687A JP2511020B2 JP 2511020 B2 JP2511020 B2 JP 2511020B2 JP 62059036 A JP62059036 A JP 62059036A JP 5903687 A JP5903687 A JP 5903687A JP 2511020 B2 JP2511020 B2 JP 2511020B2
Authority
JP
Japan
Prior art keywords
pipe
potential difference
terminals
measuring
crack
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62059036A
Other languages
Japanese (ja)
Other versions
JPS63225162A (en
Inventor
眞琴 林
正広 大高
和夫 高久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62059036A priority Critical patent/JP2511020B2/en
Publication of JPS63225162A publication Critical patent/JPS63225162A/en
Application granted granted Critical
Publication of JP2511020B2 publication Critical patent/JP2511020B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は金属構造部材に発生した亀裂の形状を検出す
る亀裂検出技術に係り、特に配管内面の表面亀裂の形状
を精度よく検出するのに好適な装置に関するものであ
る。
Description: TECHNICAL FIELD The present invention relates to a crack detection technique for detecting the shape of a crack that has occurred in a metal structural member, and particularly for accurately detecting the shape of a surface crack on the inner surface of a pipe. It relates to a suitable device.

〔従来の技術〕[Conventional technology]

従来の亀裂検出方法としては超音波探傷法がある。超
音波探傷法にも種々あり、端部ピークエコー法,開口合
成法,ホログラフイ法などがある。これらの方法はそれ
ぞれ特徴を有しているが、亀裂の検出で特に重要な亀裂
先端からのエコーが得られないことがあり、その場合亀
裂の形状を判定できないという問題があり、特に進行性
の亀裂(例えば疲労亀裂)については亀裂の生長状態を
把握できないという欠点を有していた。
As a conventional crack detection method, there is an ultrasonic flaw detection method. There are various ultrasonic flaw detection methods, including the edge peak echo method, aperture synthesis method, and holography method. Although each of these methods has its own features, it may not be possible to obtain an echo from the crack tip, which is particularly important for crack detection, in which case there is the problem that the shape of the crack cannot be determined, and in particular, the progressive Regarding cracks (for example, fatigue cracks), there is a drawback that the growth state of cracks cannot be grasped.

また、本発明に関連したポテンシヤル法による亀裂形
状検出については、アドバンシズ イン クラツク グ
ロース メジヤメント(1981年)第159頁から第174頁
(Advances in Crack Growth Measurement,(1981)pp.
159−174)において論じられている。この文献によれば
平板状試験片の中央に入れた表面亀裂に沿つて電位差分
布を測定し、電位差分布と表面亀裂形状との対応を調べ
ているが、測定装置は測定端子で平板状試験片の表面を
走査できるだけであるし、電位差分布からの亀裂形状検
出も定性的なものに留まつている。
Further, regarding the crack shape detection by the potential method related to the present invention, Advances in Crack Growth Measurement (1981) pp. 159 to 174 (Advances in Crack Growth Measurement, (1981) pp.
159-174). According to this document, the potential difference distribution is measured along the surface crack placed in the center of the flat plate-shaped test piece, and the correspondence between the potential difference distribution and the surface crack shape is investigated, but the measuring device is a flat plate-shaped test piece at the measuring terminal. The surface can be scanned, and the crack shape detection from the potential difference distribution remains qualitative.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

上記従来技術は、超音波法の場合亀裂先端近傍からの
反射エコーが得られないという物理的な問題があり、ポ
テンシヤル法の場合亀裂周辺に生じる特異な電場の乱れ
を正確に把握していなかつたために、亀裂形状を精度良
く検出できないという問題があつた。本発明の目的は配
管内面に生じた表面亀裂の形状をポテンシヤル法により
検出するために給電端子および測定端子を配管内面に沿
つて走査、特に垂直な配管や曲げ管も走行可能として電
位差分布を測定し、測定された電位差分布を独自の方法
により解析することにより亀裂形状を判定できる装置を
提供することにある。
The above-mentioned conventional technique has a physical problem that a reflection echo from the vicinity of the crack tip cannot be obtained in the case of the ultrasonic method, and in the case of the potential method, it is not possible to accurately grasp the turbulence of the peculiar electric field generated around the crack. In addition, there is a problem that the crack shape cannot be detected accurately. The object of the present invention is to scan the power supply terminal and the measuring terminal along the inner surface of the pipe in order to detect the shape of the surface crack generated on the inner surface of the pipe by the potential method, and especially to measure the potential difference distribution by allowing vertical pipes and bent pipes to run. However, it is another object of the present invention to provide an apparatus capable of determining a crack shape by analyzing the measured potential difference distribution by an original method.

〔問題点を解決するための手段〕[Means for solving problems]

構造部材に発生した表面亀裂を直流ポテンシヤル法で
検出することを検討した結果、亀裂周辺で測定された電
位差分布と亀裂部材のFEMによる電場解析との対応によ
り、あるいは予め解析された標準的な亀裂部材のFEMに
よる電場解析結果を基にした簡易的表面亀裂形状判定法
により表面亀裂形状をかなり精度良く判定できるように
なつた。従つて、配管内面の表面亀裂周辺の電位差分布
を測定できる装置を創作することにより上記目的は達成
することが可能となる。しかしながら、実機配管におい
ては垂直管や曲げ管があり、これらを通過可能な走査装
置の考案が必要であり、また、亀裂は配管の軸方向だけ
でなく、周方向にも発生し、場合によつては両方向に対
して傾いて発生することもあり、両方向の電位差分布を
同時に測定できる測定ヘツドの創作が必要である。そこ
で、自力で配管内面に固定でき、軸方向にも移動可能な
機構を創作すると共に、給電端子と測定端子の配置を工
夫して軸方向、周方向の電位差分布を同時に測定可能な
測定ヘツドを創作することにより、上記目的を達成する
ことが可能となつた。
As a result of investigating the detection of surface cracks occurring in structural members by the DC potentiometric method, the potential difference distribution measured around the cracks and the electric field analysis by the FEM of the cracked member corresponded, or a standard crack that was analyzed in advance. The surface crack shape can be judged with high accuracy by a simple surface crack shape judgment method based on the electric field analysis result of the member by FEM. Therefore, the above object can be achieved by creating an apparatus capable of measuring the potential difference distribution around the surface crack on the inner surface of the pipe. However, there are vertical pipes and bent pipes in actual equipment, and it is necessary to devise a scanning device that can pass through these pipes, and cracks occur not only in the axial direction of the pipe but also in the circumferential direction. Since it may occur with an inclination in both directions, it is necessary to create a measurement head capable of simultaneously measuring the potential difference distribution in both directions. Therefore, we created a mechanism that can be fixed to the inner surface of the pipe by itself and movable in the axial direction as well, and devised the arrangement of the power supply terminal and the measurement terminal to provide a measurement head that can simultaneously measure the potential difference distribution in the axial and circumferential directions. By creating it, it was possible to achieve the above purpose.

〔作用〕[Action]

上記のように構成された本発明の要旨は、配管の内壁
面を1点で一方向に走査するのではなく、少なくとも周
方向と軸方向(被検査物である配管の周方向と軸心方向
の意)に走査して、2次元的な欠陥像を得ることにあ
る。これにより、配管表面の亀裂を高精度で判定でき
る。
The gist of the present invention configured as described above is not to scan the inner wall surface of the pipe in one direction at one point, but at least in the circumferential direction and the axial direction (the circumferential direction and the axial center direction of the pipe to be inspected). Scanning) to obtain a two-dimensional defect image. Thereby, the crack on the surface of the pipe can be determined with high accuracy.

〔実施例〕〔Example〕

以下、本発明の一実施例を説明する。第1図は、本発
明の一実施例である配管欠陥検査装置の左側面図、第2
図は同じく配管欠陥検査装置の後正面図、第3図は上記
と異なる実施例の外観図である。(第1図参照)配管欠
陥検査装置の本体は前部駆動部30と後部駆動部40に分か
れており、軸方向駆動用空気シリンダ20と大型ベローズ
の自在継手33により接続されている。前部駆動部30と後
部駆動部40は、それぞれ、前部,後部の2個のブロツク
31,31′,と41,41′に分割されている。前部駆動部の2
個のブロツク31,31′は薄肉円筒部材32で接続され、後
部駆動部の2個のブロツク41,41′は後述の測定ヘツド
走査部の案内面を兼ねた中心軸42で接続されている。そ
れぞれのブロツクには第2図に示すように、4個の複動
型の空気シリンダ18,22が半径方向に向かつて90゜毎に
取り付けてある。(第2図においては空気シリンダ22が
4個現われている)。空気シリンダ18,22の軸端には摩
擦係数の大きい硬質ゴム34をはめ込んだ脚33が取り付け
てある。
An embodiment of the present invention will be described below. FIG. 1 is a left side view of a pipe defect inspection apparatus which is an embodiment of the present invention, and FIG.
Similarly, FIG. 3 is a rear front view of the pipe defect inspection apparatus, and FIG. 3 is an external view of an embodiment different from the above. (See FIG. 1) The main body of the pipe defect inspection apparatus is divided into a front drive section 30 and a rear drive section 40, which are connected to an axial drive air cylinder 20 and a large bellows universal joint 33. The front drive unit 30 and the rear drive unit 40 respectively include two blocks, a front block and a rear block.
It is divided into 31,31 ', and 41,41'. 2 front drive
The individual blocks 31, 31 'are connected by a thin-walled cylindrical member 32, and the two blocks 41, 41' of the rear drive unit are connected by a central shaft 42 which also serves as a guide surface of a measuring head scanning unit described later. As shown in FIG. 2, each block is provided with four double-acting air cylinders 18 and 22 in radial directions at 90 ° intervals. (Four air cylinders 22 are shown in FIG. 2). Legs 33 in which hard rubber 34 having a large friction coefficient is fitted are attached to the shaft ends of the air cylinders 18 and 22.

後部駆動部40には測定ヘツド60を走査するために測定
ヘツド走査部43が設けてあり(第1図)、中空円筒状の
中心軸42を案内面として軸方向に移動可能である。ここ
で中心軸42は半円弧状の溝が掘つてある直線ガイドであ
り、測定ヘツド走査部43には直線軸受44,44′が取り付
けてあるので、非常に小さい駆動力でも軸方向に移動可
能である。測定ヘツド走査部43の一端にはボールねじ軸
受45とボールねじ46とが設けてある。ボールねじ46は後
部駆動部40の後部ブロツク41′に設けた軸受を通して、
その一端にウオーム受歯車47が取り付けてある。後部ブ
ロツク41′に取り付た測定ヘツド軸方向駆動用DCサーボ
モータ8の減速機の軸先端にはウオーム元歯車48が前述
のウオーム受歯車47と噛み合うように取り付けてある。
The rear drive unit 40 is provided with a measurement head scanning unit 43 for scanning the measurement head 60 (FIG. 1), and is movable in the axial direction with the hollow cylindrical central shaft 42 as a guide surface. Here, the central shaft 42 is a linear guide with a semi-circular groove formed therein, and linear bearings 44 and 44 'are attached to the measurement head scanning unit 43, so it is possible to move in the axial direction even with a very small driving force. Is. A ball screw bearing 45 and a ball screw 46 are provided at one end of the measurement head scanning unit 43. The ball screw 46 passes through a bearing provided on the rear block 41 ′ of the rear drive unit 40,
A worm receiving gear 47 is attached to one end thereof. A worm original gear 48 is attached to the shaft tip of the reduction gear of the DC servo motor 8 for driving the measurement head axial direction attached to the rear block 41 'so as to mesh with the worm receiving gear 47.

測定へツド走査部43の周方向の回転は中心軸42と直線
軸受44,44′との噛み合い、および軸方向駆動用のボー
ルねじ45,46により抑えてあるが、強度的に弱いため
に、測定ヘツド走査部43の一端に直線軸受50と、後部ブ
ロツク41′に軸49を設けることによりガタが生じないよ
うにしてある。
The rotation of the measurement head scanning unit 43 in the circumferential direction is suppressed by the engagement between the central shaft 42 and the linear bearings 44, 44 ', and the ball screws 45, 46 for driving the axial direction. A linear bearing 50 is provided at one end of the measurement head scanning unit 43, and a shaft 49 is provided at the rear block 41 'to prevent backlash.

測定ヘツド走査部43には歯車52を有する周方向回転部
51が軸受を介して設けてあり、測定ヘツド走査部43に取
り付けた測定ヘツド周方向駆動用DCサーボモータ12によ
り周方向に駆動可能となつている。周方向回転部51には
測定ヘツド駆動用空気シリンダ16が設けてあり、その軸
端には電気不導体材料製の測定ヘツド60が取り付けてあ
る。
The measurement head scanning unit 43 has a circumferential rotating unit having a gear 52.
51 is provided via a bearing, and can be driven in the circumferential direction by the measurement head circumferential direction driving DC servomotor 12 attached to the measurement head scanning unit 43. The circumferential rotating part 51 is provided with a measuring head driving air cylinder 16, and a measuring head 60 made of an electrically non-conductive material is attached to the shaft end thereof.

なお、測定ヘツド60の後部駆動部40の内部における軸
方向位置を検出するためにエンコーダ10が、また、第1
図には示していないが、測定ヘツドの暴走防止用のリミ
ツトスイツチ11(第3図)が測定ヘツド走査部43に2
個、リミツトスイツチ駆動用のL字形のレバーが後部ブ
ロツク41′に取り付けてある。また、測定ヘツド60の周
方向位置検出に関しても原点位置確認用としてのリミツ
トスイツチ15(図示せず、第4図において後述する)
と、回転角度検出用のエンコーダ14(第4図について後
述)が設けてある。第2図において空気シリンダ22両横
に設けてあるものは配管欠陥検査装置の本体のセンタリ
ングを行うためのガイドである。部材75の内部は円柱状
の中空となつており、その側壁を案内面としてシリンダ
22の軸方向に移動可能な部材76が装入してある。部材76
の先端には先端が回転するボールプランジヤー77が取り
付けてあり、後端には上記の部材76を押し出すためのコ
イルばねが装入されている。該コイルばねのばね定数を
適当に設定しておけば検査装置本体の中心をパイプPの
中心とほぼ一致させることができる。この場合ボールプ
ランジヤー77の先端はパイプPの内面に押し当てられ放
しとなるが、ボールは回転するので摩擦抵抗もなく滑ら
かに移動できる。
It should be noted that in order to detect the axial position inside the rear drive 40 of the measuring head 60, the encoder 10 also
Although not shown in the figure, a limit switch 11 (FIG. 3) for preventing runaway of the measurement head is provided in the measurement head scanning unit 43.
An L-shaped lever for driving the limit switch is attached to the rear block 41 '. Further, the limit switch 15 (not shown, which will be described later in FIG. 4) for confirming the origin position is also used for detecting the circumferential position of the measuring head 60.
And an encoder 14 for detecting the rotation angle (which will be described later with reference to FIG. 4). In FIG. 2, provided on both sides of the air cylinder 22 are guides for centering the main body of the pipe defect inspection apparatus. The inside of the member 75 has a hollow cylindrical shape, and its side wall serves as a guide surface for the cylinder.
There are 22 axially movable members 76 inserted. Member 76
A ball plunger 77 having a rotating front end is attached to the front end thereof, and a coil spring for pushing out the member 76 is inserted into the rear end thereof. If the spring constant of the coil spring is set appropriately, the center of the inspection device main body can be made substantially coincident with the center of the pipe P. In this case, the tip of the ball plunger 77 is pressed against the inner surface of the pipe P and is released, but since the ball rotates, it can move smoothly without frictional resistance.

第2図のようなセンタリングガイドはパイプ内面が比
較的滑らかな場合には摩擦抵抗が少ないため駆動力が少
なくて済むが、例えば形状の良くない溶接部の場合、ボ
ールの直径が小さいため溶接金属(ビード)を越えられ
ないこともあり得る。第3図はそのような凹凸が多少大
きい場合でも越えられるようにボールプランジヤーの代
りにソリ状の脚78を用いた実施例である。該脚78の両端
がソリ状に跳ね上がつた形状となつているため、ソリの
跳ね上がり高さよりも低い突起物であれば乗り越えて行
くことができる。このとき脚が回転してはならないの
で、部材76の側面に縦溝を掘り、部材75の側面からピン
を該溝に差し込んで回動を係止しておけば良い。
The centering guide as shown in FIG. 2 requires less driving force because the frictional resistance is less when the inner surface of the pipe is relatively smooth. For example, in the case of a poorly shaped weld, the diameter of the ball is small and the weld metal is small. It may not be possible to exceed the (bead). FIG. 3 shows an embodiment in which a warp-shaped leg 78 is used in place of the ball plunger so that even if such unevenness is somewhat large, it can be overcome. Since both ends of the leg 78 are shaped like sleds, the protrusions that are lower than the rising height of the sled can be overcome. At this time, since the legs must not rotate, a vertical groove may be dug in the side surface of the member 76, and a pin may be inserted into the groove from the side surface of the member 75 to lock the rotation.

本配管欠陥検査装置の軸方向位置は移動量から検出可
能であるが、パイプと脚との間にすべりが生じたり、移
動途中で装置がダウンしたりした場合に位置が分からな
くなる恐れがある。そこで、第2図に示すように後部駆
動部40の後部ブロツク41′の後側の表面に空気シリンダ
24を取り付け、その軸端にAE発振素子26を設けた。位置
を検出したい場合には音響発振素子26をパイプ内面に押
し付けて音響(AE)を発振させ、ある一定間隔で部材に
取り付けた2個のAE発振素子をパイプ外面に押し付け
て、発受振時間差および受振時間差から配管欠陥検査装
置の軸方向位置を検出するものである。
The axial position of the pipe defect inspection device can be detected from the amount of movement, but there is a risk that the position will not be known if slippage occurs between the pipe and the leg, or if the device goes down during movement. Therefore, as shown in FIG. 2, an air cylinder is formed on the rear surface of the rear block 41 'of the rear drive unit 40.
24 was attached, and an AE oscillator 26 was provided at the end of the shaft. To detect the position, the acoustic oscillation element 26 is pressed against the inner surface of the pipe to oscillate sound (AE), and the two AE oscillation elements attached to the member at a certain interval are pressed against the outer surface of the pipe to determine the time difference between the vibration The axial position of the pipe defect inspection device is detected from the difference in vibration receiving time.

第4図に配管検査装置の制御・駆動・測定システムの
系統図を示す。1はデータやプログラムを記憶させるた
めのハードデイスク等の外部記憶装置を内蔵するコンピ
ユータである。コンピユータ1はインタフエース4やGP
−IBインタフエース5を介して各種駆動装置や電磁弁、
計測機器を制御したり、測定値を取り込んで処理し、結
果を出力する。第1図に示したように配管検査装置はDC
サーボモータや空気シリンダによつて駆動される。配管
検査装置全体は前部駆動用シリンダ18,軸方向駆動用シ
リンダ20,後部駆動用シリンダ22によつて軸方向に駆動
されるが、これらの空気シリンダはそれぞれ電磁弁19,2
1,23を通じて圧縮空気源27に接続され、電磁弁19,21,23
はインタフエース4を介してコンピユータ1により制御
される。同様に、測定ヘツド駆動用シリンダ16と配管検
査装置の位置検出用AEセンサー用シリンダは電磁弁17,2
5を通じて圧縮空気源27に接続され、電磁弁17,25はイン
タフエース4を介してコンピユータ1により制御され
る。測定ヘツド60を駆動する測定ヘツド軸方向駆動用DC
サーボモータ8,測定ヘツド周方向駆動用DCサーボモータ
12はそれぞれDCモータ駆動装置9,13から電源を供給さ
れ、駆動するための信号はインタフエース4を介してコ
ンピユータ1から出力される。
Fig. 4 shows a system diagram of the control, drive, and measurement system of the pipe inspection device. Reference numeral 1 is a computer incorporating an external storage device such as a hard disk for storing data and programs. Computer 1 is Interface 4 or GP
-Various drive devices and solenoid valves via the IB interface 5,
It controls measuring instruments, captures measured values, processes them, and outputs the results. As shown in Fig. 1, the piping inspection device is DC
It is driven by a servomotor or an air cylinder. The entire pipe inspection device is axially driven by a front drive cylinder 18, an axial drive cylinder 20, and a rear drive cylinder 22. These air cylinders are solenoid valves 19 and 2, respectively.
Connected to the compressed air source 27 through 1,23, solenoid valve 19,21,23
Are controlled by the computer 1 via the interface 4. Similarly, the cylinder for the measurement head drive 16 and the cylinder for the AE sensor for position detection of the pipe inspection device are solenoid valves 17,2.
The solenoid valves 17 and 25 are connected to the compressed air source 27 through 5 and controlled by the computer 1 via the interface 4. DC for driving the measurement head 60 in the axial direction
Servo motor 8, DC servo motor for measuring head circumferential drive
Power is supplied from DC motor drive devices 9 and 13, respectively, and a signal for driving 12 is output from the computer 1 via the interface 4.

供給電極性と同数設けられた直流電源2からの直流電
流はコンピュータにより制御される電流局正変換装置3
により一定時間毎にその極性が切り換えられて各給電端
子65に供給される。多数の測定端子67(第5図について
後述)の間の電位差はマルチプレクサー7により測定す
る測定端子を切り換えられて、微小電位差計6に接続さ
れて測定される。測定された電位差はGP−IBインタフエ
ース5を介してコンピユータ1に転送される。コンピユ
ータ1は後述の方法によりパイプの軸方向,周方向の電
位差分布から亀裂の寸法を判定する。ここで、電位差測
定端子を切り換えるマルチプレクサー7および微小電位
差計6はインタフエース4或いはGP−IBインタフエース
5を介してコンピユータ1により制御されるものであ
る。
The direct current from the direct current power source 2 provided in the same number as the supply electrode property is controlled by the computer.
Thus, the polarity is switched at regular time intervals and is supplied to each power supply terminal 65. The potential difference between a large number of measurement terminals 67 (described later with reference to FIG. 5) is measured by connecting to the minute potentiometer 6 by switching the measurement terminals to be measured by the multiplexer 7. The measured potential difference is transferred to the computer 1 via the GP-IB interface 5. The computer 1 determines the size of the crack from the potential difference distribution in the axial and circumferential directions of the pipe by the method described later. Here, the multiplexer 7 and the minute potentiometer 6 for switching the potential difference measurement terminals are controlled by the computer 1 via the interface 4 or the GP-IB interface 5.

第5図から第9図には第1図に示した測定ヘツド60近
傍の構造および端子形状の一例を示す。前述したよう
に、測定ヘツド走査部43の周方向回転部51に設けた測定
ヘツド駆動用空気シリンダ16の軸端に電気不導体製の限
定ヘツド60が取り付けてある。但し、この状態では限定
ヘツドが空気シリンダ16の軸を中心に自由に回転する。
そこで、第5図に示すように周方向回転部51において空
気シリンダの周方向の両隣に円筒状の部材61を2個設
け、その内側に直線ガイド62を装入することにより半径
方向には自由に動けるが、エアシリンダ16の軸心回りに
は回転できない構造とした。
5 to 9 show an example of the structure and terminal shape in the vicinity of the measuring head 60 shown in FIG. As described above, the electrical head limited head 60 is attached to the shaft end of the measurement head driving air cylinder 16 provided in the circumferential rotation portion 51 of the measurement head scanning portion 43. However, in this state, the limited head freely rotates about the axis of the air cylinder 16.
Therefore, as shown in FIG. 5, two cylindrical members 61 are provided on both sides in the circumferential direction of the air cylinder in the circumferential rotation unit 51, and the linear guides 62 are inserted inside the cylindrical members 61, whereby the radial direction is freely set. The structure is such that it can move around, but cannot rotate around the axis of the air cylinder 16.

測定ヘツド60の内部構造を第6図に示した。基本的に
は直流電流供給用の2個の給電端子65,65′を両端に配
置し、その中央付近に電位差測定用の測定端子67,67′
を一列に配置する。円柱状の端子65,65′,67,67′の中
間には段差を設けて座金状のバネ座を入れ、測定ヘツド
60とバネ座との間にコイルばね70を圧縮介装して、端子
を測定ヘツドから押し出すようにする。電位差測定に当
たつて端子の押し付け力が弱いと測定端子67,67′と被
測定材料との間に接触抵抗が生じ、被測定材料そのもの
の電位差を精度良く測定できない。このため、充分な押
し付け力を確保するためにばね定数が大体100g/mm以上
のコイルばねを使用することが望ましい。
The internal structure of the measuring head 60 is shown in FIG. Basically, two power supply terminals 65, 65 'for DC current supply are arranged at both ends, and measuring terminals 67, 67' for measuring the potential difference are located near the center of the terminals.
Are arranged in a line. A step is provided in the middle of the cylindrical terminals 65, 65 ', 67, 67' to insert a washer-shaped spring seat, and the measurement head
A coil spring 70 is compression-inserted between 60 and the spring seat to push the terminal out of the measuring head. When the pressing force of the terminals is weak in measuring the potential difference, contact resistance occurs between the measuring terminals 67 and 67 'and the material to be measured, and the potential difference of the material to be measured itself cannot be accurately measured. For this reason, it is desirable to use a coil spring having a spring constant of approximately 100 g / mm or more in order to secure a sufficient pressing force.

第7図には端子の形状を示す。通常、端子の形状とし
ては円柱状とし、先端は円錐状で、後端はリード線を固
定するためにねじが切つてある。ただし、前述したよう
に押し付け力を与えるコイルばねを支持するためのバネ
座を受ける段差を設けてある。第7図の形状の端子を第
6図のように直線上に並べても良いが、測定端子間距離
がどうしても長くなる。そこで、第8図(正面図)、第
9図(側面図)に示したように、測定端子の円錐状先端
を曲げると共に、円柱状部分の一部を削つて平坦面を設
ける。(第6図参照)測定ヘツド60には円柱状部分をガ
イドする案内面68と共に、前記平坦面をガイドする案内
面69を設けることにより、測定端子67が第6図で上下方
向には自由に移動するが、回転できないようにする。こ
のような構造にすると測定端子の円柱状部分の間隔が10
mm程度であつても、測定端子の先端の間隔は2mm程度に
することも可能である。このように測定端子間距離を短
くする理由は後述する表面亀裂形状の検出精度を向上さ
せるためである。
FIG. 7 shows the shape of the terminal. Usually, the shape of the terminal is cylindrical, the tip is conical, and the rear end is threaded to fix the lead wire. However, as described above, a step is provided to receive the spring seat for supporting the coil spring that applies the pressing force. The terminals having the shape shown in FIG. 7 may be arranged on a straight line as shown in FIG. 6, but the distance between the measuring terminals is inevitably long. Therefore, as shown in FIG. 8 (front view) and FIG. 9 (side view), the conical tip of the measuring terminal is bent, and a part of the columnar portion is shaved to provide a flat surface. (See FIG. 6) The measuring head 60 is provided with a guide surface 68 for guiding the cylindrical portion and a guide surface 69 for guiding the flat surface, so that the measuring terminal 67 can freely move in the vertical direction in FIG. Move, but not rotate. With this structure, the spacing between the cylindrical parts of the measuring terminals is 10
Even if it is about mm, the distance between the tips of the measuring terminals can be about 2 mm. The reason why the distance between the measuring terminals is shortened is to improve the detection accuracy of the surface crack shape described later.

第10図には測定ヘツド60における端子配列の一例を示
す。測定ヘツドの両端に給電端子65,65′を複数組配置
し、その中央に測定端子67,67′を複数組配置する。第1
0図の例では給電端子対は5組,測定端子対は4組とな
つているが、それぞれ何組でも良い。給電端子65,65′
を複数組配置するのは電場を均一にするためである。
FIG. 10 shows an example of the terminal arrangement in the measurement head 60. Plural sets of power supply terminals 65 and 65 'are arranged at both ends of the measurement head, and plural sets of measurement terminals 67 and 67' are arranged at the center thereof. First
In the example of FIG. 0, the number of power supply terminal pairs is 5 and the number of measurement terminal pairs is 4, but any number may be used. Power supply terminal 65, 65 '
The reason for arranging a plurality of sets is to make the electric field uniform.

従つて、測定端子67,67′は電場の均一なところに
(詳しくは、被検物に欠陥が無いときに均一な電場を生
じる部分に対向せしめて)配置することが必要であり、
少なくとも給電端子対の内側に配置しなければならな
い。第6図では4組の測定端子対67,67′は5組の対向
する給電端子対65,65′の中央に配置してある。
Therefore, it is necessary to arrange the measuring terminals 67, 67 'at a uniform location of the electric field (specifically, facing the portion that produces a uniform electric field when the test object is not defective).
It must be located at least inside the pair of power supply terminals. In FIG. 6, the four pairs of measuring terminals 67 and 67 'are arranged at the center of the five pairs of opposing feeding terminals 65 and 65'.

パイプ内面で発生する亀裂としては周方向亀裂が多
い。従つて、第10図に示した測定ヘツド60の測定ヘツド
走査部43への取り付け方としては第1図に示したように
給電端子65,65′と測定端子67,67′とが被検物である管
の軸方向に並ぶような配置として取り付ければ良い。と
ころが稀に軸方向にも亀裂が発生する。周方向、軸方向
の両方向の亀裂を検出しようとすれば、例えば先に周方
向亀裂を検出した後、一旦検査装置をパイプの外に取り
出して測定ヘツドの向きを90゜変えて、改めて軸方向亀
裂を検出しなければならない。この方法では検査時間が
長くなる。周方向、軸方向のき裂を同時に検出したい場
合には第11図に示すような構造の測定ヘツドを用いると
良い。周方向亀裂検出用の給電端子65,65′と測定端子6
7,67′との配置は第10図と同じであるが、軸方向亀裂検
出用に、上記の他に給電端子対72,72′を、前記周方向
亀裂検出用の給電端子65,65′と直交するように測定ヘ
ツド60の周方向に対向せしめて設ける。この場合の測定
端子は周方向亀裂検出用の測定端子を兼用するものと
し、67−2と37−3、および67′−2と67′−3の端子
を用いて周方向電位差分布を測定するものとする。
There are many circumferential cracks on the inner surface of the pipe. Therefore, as a method of attaching the measuring head 60 shown in FIG. 10 to the measuring head scanning unit 43, as shown in FIG. 1, the power supply terminals 65 and 65 'and the measuring terminals 67 and 67' are to be inspected. The pipes may be attached so as to be aligned in the axial direction of the pipe. However, rarely cracks also occur in the axial direction. When trying to detect cracks in both the circumferential and axial directions, for example, after first detecting the circumferential cracks, take out the inspection device once from the pipe and change the direction of the measurement head by 90 °, Cracks must be detected. This method increases the inspection time. When it is desired to detect cracks in the circumferential direction and the axial direction at the same time, it is preferable to use a measuring head having a structure as shown in FIG. Feeding terminals 65, 65 'and measuring terminal 6 for detecting circumferential cracks
The arrangement with 7,67 ′ is the same as that in FIG. 10, but in addition to the above, for the axial crack detection, a pair of feeding terminals 72,72 ′, and the feeding terminals 65,65 ′ for the circumferential crack detection are provided. The measurement head 60 is provided so as to face the circumferential direction of the measurement head 60 so as to be orthogonal to. In this case, the measurement terminal also serves as the measurement terminal for detecting circumferential cracks, and the circumferential potential difference distribution is measured using terminals 67-2 and 37-3, and 67'-2 and 67'-3. I shall.

第12図には第11図には前記と異なる実施例の測定ヘツ
ドを示す。測定ヘツド60の四隅には第11図と同じように
軸方向給電端子65,65′と周方向給電端子72,72′とを設
ける。上記両給電端子対の内側には軸方向電位差分布測
定用測定端子67,67′と周方向電位差分布測定用の測定
端子74,74′とをそれぞれ軸方向間隔と周方向間隔とが
等しくなるように配置する。電位差測定に当つては対称
範囲全体の周方向電位差分布を測定してから、もう一度
全体の軸方向電位差分布を測定する方法と、周方向電位
差分布と軸方向電位差分布を同時に測定する方法と2通
りの方法がある。
FIG. 12 shows a measurement head of an embodiment different from the above in FIG. At the four corners of the measuring head 60, axial feeding terminals 65, 65 'and circumferential feeding terminals 72, 72' are provided as in FIG. Inside the pair of power supply terminals, the measuring terminals 67 and 67 'for measuring the axial potential difference distribution and the measuring terminals 74 and 74' for measuring the circumferential potential difference distribution are arranged so that the axial distance and the circumferential distance are equal. To place. In measuring the potential difference, there are two methods, one is to measure the circumferential potential difference distribution in the entire symmetric range and then again to measure the whole axial potential difference distribution, and the other is to measure the circumferential potential difference distribution and the axial potential difference distribution simultaneously. There is a method.

軸方向給電端子65,65′と周方向給電端子72,72′とを
設けて、軸方向と周方向との2方向に電流を流すのは以
下の理由による。今、亀裂がパイプの軸方向に入つてい
る場合、軸方向に電流を流しても電場は軸方向であるの
で電場は亀裂によつて乱されることがないので、測定さ
れる電位差分布は亀裂がない場合と全く同じとなり、亀
裂はないと判定されてしまうことになる。ところが、そ
のようなパイプの軸方向の亀裂に対して周方向に電流を
流すと、周方向電場は亀裂によつて大きく乱されるため
不規則な電位差分布が生じ、その電位差分布の乱れ方か
ら亀裂の大きさを判定することができる。同様に、パイ
プの周方向の亀裂に対して軸方向に電流を流すと、軸方
向電場は亀裂によつて大きく乱されるため不規則な電位
差分布が生じ、その電位差分布の乱れ方から亀裂の大き
さを判定することができる。もし、亀裂がパイプの軸方
向、および周方向の両方向に対して傾いて発生した場合
にはそれぞれの方向から電流を流して測定された電位差
分布からその傾きを含めて亀裂の形状を判定することが
可能である。
The reason for providing the axial power feeding terminals 65, 65 'and the circumferential power feeding terminals 72, 72' and flowing the current in two directions of the axial direction and the circumferential direction is as follows. Now, if the crack is in the axial direction of the pipe, the electric field is not disturbed by the crack because the electric field is in the axial direction even if a current is passed in the axial direction, so the measured potential difference distribution is It is exactly the same as when there is no, and it is judged that there is no crack. However, when an electric current is applied to the axial crack of such a pipe in the circumferential direction, the circumferential electric field is greatly disturbed by the crack, resulting in an irregular potential difference distribution. The size of the crack can be determined. Similarly, when an electric current is applied axially to a crack in the circumferential direction of the pipe, the axial electric field is greatly disturbed by the crack, resulting in an irregular potential difference distribution. The size can be determined. If a crack is generated with an inclination in both the axial direction and the circumferential direction of the pipe, determine the shape of the crack from the potential difference distribution measured by applying current from each direction and including the inclination. Is possible.

第13図には測定ヘツの別の実施例を示す。測定ヘツド
60の四隅には第11図と同じように軸方向給電端子65,6
5′と周方向給電端子72,72′とを設ける。上記両給電端
子対の内側には測定端子67をそれぞれ軸方向間隔と周方
向間隔とが等しくなるようにマトリクス状に配置する。
第13図の例では軸方向と周方向とにそれぞれ4個ずつ測
定端子を配置したので、測定ヘツド60を測定ヘツド駆動
用空気シリンダ16によりパイプ内面に一度押し付けたと
き、軸方向電位差分布測定の場合軸方向に3箇所,周方
向に4箇所の合計12箇所の電位差分布を測定でき、測定
時間を大幅に短縮することができる。
FIG. 13 shows another embodiment of the measuring head. Measuring head
In the four corners of 60, as in Fig. 11, axial feed terminals 65, 6
5'and the circumferential direction power supply terminals 72, 72 'are provided. Inside the pair of power supply terminals, the measurement terminals 67 are arranged in a matrix so that the intervals in the axial direction and the intervals in the circumferential direction are equal.
In the example of FIG. 13, four measuring terminals are arranged in the axial direction and four measuring terminals in the circumferential direction. Therefore, when the measuring head 60 is pressed against the inner surface of the pipe once by the measuring head driving air cylinder 16, the measurement of the axial potential difference distribution is performed. In this case, the potential difference distribution can be measured at a total of 12 locations, 3 locations in the axial direction and 4 locations in the circumferential direction, and the measurement time can be greatly shortened.

次に、パイプの検査方法について述べる。第14図にパ
イプの欠陥形状検出の全体のフローチヤートを示す。検
査を開始すると、始めに測定範囲を設定する。軸方向の
座標をz,周方向の座標をθとすると、軸方向の測定開始
点をz1,測定終了点z2,軸方向のそれをθ1とし、測
定ピツチをそれぞれΔz,Δθと設定する。配管検査装置
はまず測定開始点(z1)へ移動してから電位差分
布の測定を開始する。始めに、測定範囲全体の電位差分
布を粗いピツチで測定する。測定された電位差分布から
亀裂のない測定開始点付近の電位差を基準電位差V0とし
て電位差比V/V0の分布を求める。第15図に軸方向に電流
を流して軸方向の電位差を測定してから得られた電位差
比V/V0の分布の模式図を示す。本図では紙面の横がパイ
プの軸方向、縦が周方向としてある。亀裂の周辺では電
場が乱されるため電位差比が大きくなる。亀裂差比V/V0
が大きいところは周方向に長く伸びているので、亀裂は
周方向亀裂である。そこで、電位差比が最も大きいとこ
ろを検出して、例えば電位差比V/V0が1.02よりも大きい
ところに亀裂があると判定する。次に、亀裂の周辺だけ
軸方向,周方向ともに細かいピツチで電位差分布を測定
する。例えば第15図では の範囲は全て電位差比V・V0が1.02よりも大きいので、
この領域を含むように測定する。但し、基準電位差V0
必要であるので、 の範囲よりもある程度広い領域を測定する。第16図に亀
裂周辺の電位差比分布の模式図を示す。周方向亀裂の場
合、測定された電位差分布の軸方向の分布において最大
の電位差となつたところに亀裂が存在すると判定され、
同時にそれらの最大の電位差の周方向の分布を亀裂に沿
つての電位差分布と判定する。その電位差分布を用いて
後述の簡易表面亀裂形状決定法により亀裂形状を判定
し、亀裂形状のコンピユータ1(第4図)のCRT画面
(図示せず)に表示する。測定結果の出力は亀裂形状の
ハードコピーや亀裂寸法(座標,電位差,電位差比,き
裂深さなど)のプリンタ出力である。
Next, a pipe inspection method will be described. Figure 14 shows the overall flow chart for detecting the defect shape of a pipe. When the inspection is started, the measurement range is set first. Assuming that the coordinate in the axial direction is z and the coordinate in the circumferential direction is θ, the measurement start point in the axial direction is z 1 , the measurement end point z 2 , the axial measurement points are θ 1 and θ 2 , and the measurement pitches are Δz, Set as Δθ. The pipe inspection device first moves to the measurement starting point (z 1 , θ 1 ) and then starts measuring the potential difference distribution. First, the potential difference distribution over the entire measurement range is measured with a coarse pitch. From the measured potential difference distribution, the potential difference near the measurement start point with no crack is set as the reference potential difference V 0 , and the distribution of the potential difference ratio V / V 0 is obtained. FIG. 15 shows a schematic diagram of the distribution of the potential difference ratio V / V 0 obtained by measuring the potential difference in the axial direction by passing a current in the axial direction. In this figure, the horizontal direction of the paper is the axial direction of the pipe, and the vertical direction is the circumferential direction. Since the electric field is disturbed around the crack, the potential difference ratio becomes large. Crack difference ratio V / V 0
The crack is a circumferential crack because the area where is large extends long in the circumferential direction. Therefore, the place where the potential difference ratio is the largest is detected, and it is determined that there is a crack where the potential difference ratio V / V 0 is larger than 1.02, for example. Next, the potential difference distribution is measured with fine pitches in both the axial and circumferential directions only around the crack. For example, in Figure 15, Since the potential difference ratio V · V 0 is larger than 1.02 in all ranges,
Measure to include this area. However, since the reference potential difference V 0 is necessary, Measure a region that is somewhat wider than the range. Figure 16 shows a schematic diagram of the potential difference ratio distribution around the crack. In the case of circumferential cracks, it is determined that there is a crack at the point where the maximum potential difference in the axial distribution of the measured potential difference distribution,
At the same time, the distribution of the maximum potential difference in the circumferential direction is determined as the potential difference distribution along the crack. The potential difference distribution is used to determine the crack shape by a simple surface crack shape determination method described later, and the crack shape is displayed on the CRT screen (not shown) of the crack shape computer 1 (FIG. 4). The output of the measurement results is a hard copy of the crack shape or a printer output of the crack dimensions (coordinates, potential difference, potential difference ratio, crack depth, etc.).

以下、第14図のフローチヤートの詳細について記す。
始めに配管検査装置の移動方法を第17図のフローチヤー
トで示す。第4図で示したように前部駆動部のシリン
ダ,軸方向駆動用シリンダ,後部駆動部のシリンダは全
て電磁弁を介してコンピユータ1で制御されている。こ
こで、空気シリンダが伸びている状態をON、縮んでいる
状態をOFFと表すことにする。初期状態としては前部お
よび後部シリンダはON、軸方向駆動用シリンダはOFFと
する。軸方向の移動範囲を設定すると、例えば前進の場
合、前部シリンダをOFF、軸方向駆動用シリンダON、前
部シリンダONで前部駆動部30を後部駆動部40に対して軸
方向駆動用シリンダのストローク分だけ前進させること
ができる。次に、後部シリンダをOFF、軸方向駆動用シ
リンダOFF、後部シリンダONとすれば後部駆動部40は前
部駆動部30に対して元の位置に戻る。結果として配管検
査装置全体が軸方向駆動用シリンダのストローク分だけ
前進したことになる。これを繰返して設定位置まで移動
する。後退したい場合には今の手順を逆にすれば良いの
で、第17図の左側に示したようにすれば後退することが
できる。
The details of the flow chart in FIG. 14 will be described below.
First, the flow chart of Fig. 17 shows how to move the pipe inspection device. As shown in FIG. 4, the front drive cylinder, the axial drive cylinder, and the rear drive cylinder are all controlled by the computer 1 via solenoid valves. Here, the state in which the air cylinder is extended is represented as ON, and the state in which it is contracted is represented as OFF. In the initial state, the front and rear cylinders are ON, and the axial drive cylinders are OFF. When the axial movement range is set, for example, in the case of forward movement, the front cylinder is turned off, the axial drive cylinder is turned on, the front cylinder is turned on, and the front drive unit 30 is moved relative to the rear drive unit 40. It is possible to move forward by the stroke. Next, when the rear cylinder is turned off, the axial drive cylinder is turned off, and the rear cylinder is turned on, the rear drive unit 40 returns to the original position with respect to the front drive unit 30. As a result, the entire pipe inspection device has advanced by the stroke of the axial drive cylinder. Repeat this to move to the set position. If you want to move backward, you can reverse the procedure, so you can move backward as shown on the left side of FIG.

第10図のような周方向亀裂検出用の測定ヘツドを使つ
た場合の電位差分布測定のフローチヤートを第18図に示
す。測定範囲設定後、測定開始点(θ1,z2)へ移動す
と、測定ヘツド駆動用シリンダ16をONにして給電端子6
5,測定端子67をパイプ内面に押し付ける。4チヤンネル
分の電位差をマルチプレクサ7(第4図)により測定す
る端子を切り換えて、微小電位差計6で測定する。測定
された電位差はGP−IBインタフエース5を介してコンピ
ユータ1に記録されるが、このとき測定値に測定位置の
座標を振り当てて記録する。次にシリンダ16をOFFにし
て測定ピツチΔθだけ周方向に回転させて、再び測定す
る。これを繰返して周方向の電位差分布を測定するが、
4組の測定端子対を使つて測定するので、周方向ピツチ
Δθに測定回数nに1を加えた数値を掛けた値が端子対
の周方向の間隔Θを越えた場合には一挙にΔΘ=Θ×4
だけ回転させる。周方向の測定範囲θまで測定し終え
ると、測定ヘツド走査部43を軸方向駆動用DCサーボモー
タ8により軸方向にΔzだけ移動させる。次に、周方向
は逆廻りに測定し、周方向の測定範囲θまで測定し終
えると、測定ヘツド走査部43を軸方向にΔzだけ移動さ
せて、再び元の方向で測定する。このようにθ−z面に
展開して、いわゆる矩形走査により全体の電位差分布を
測定する。無論、測定範囲が測定ヘツド走査部の軸方向
移動範囲を越えるような場合には配管検査装置全体を軸
方向に移動させて電位差分布を測定する。
FIG. 18 shows a flow chart for measuring the potential difference distribution when a measuring head for detecting circumferential cracks as shown in FIG. 10 is used. After setting the measurement range, move to the measurement start point (θ 1 , z 2 ) and turn on the measurement head drive cylinder 16 to turn on the power supply terminal 6
5, Press the measuring terminal 67 against the inner surface of the pipe. The terminal for measuring the potential difference of four channels by the multiplexer 7 (FIG. 4) is switched and measured by the micro potentiometer 6. The measured potential difference is recorded in the computer 1 via the GP-IB interface 5, and at this time, the coordinates of the measurement position are assigned to the measured value and recorded. Next, the cylinder 16 is turned off, the measurement pitch Δθ is rotated in the circumferential direction, and the measurement is performed again. Repeat this to measure the potential difference distribution in the circumferential direction,
Since the measurement is performed using four pairs of measuring terminals, if the value obtained by multiplying the circumferential pitch Δθ by a value obtained by adding 1 to the number of times of measurement n exceeds the circumferential distance Θ between the terminal pairs, ΔΘ = Θ × 4
Just rotate. When the measurement up to the measurement range θ 2 in the circumferential direction is completed, the measurement head scanning unit 43 is moved by Δz in the axial direction by the axial direction driving DC servo motor 8. Next, the circumferential direction is measured in the reverse direction, and when the measurement is completed up to the circumferential measurement range θ 1 , the measurement head scanning unit 43 is moved by Δz in the axial direction, and the measurement is performed again in the original direction. As described above, the potential difference distribution on the entire θ-z plane is measured by so-called rectangular scanning. Of course, when the measurement range exceeds the axial movement range of the measurement head scanning unit, the entire pipe inspection device is moved in the axial direction to measure the potential difference distribution.

上述の電位差測定においては被測定試料(パイプ)に
多少の温度差分布があると、測定端子と被測定試料の間
に熱起電力が生じ、それが測定された電位差の中に平均
的な電位差として含まれることになる。従つて、被測定
試料そのものの電位差を測定するためには熱起電力を何
らかの方法で取り除かねばならない。1つの方法は電流
を流して測定した電位差から電流を切つて測定した電位
差を差し引くものである。いま1つの方法は直流電流の
極性を間欠的に切り換えて電位差の振幅を測定するもの
である。後者の方が測定される電位差の絶対値が大きい
ので、それだけ測定精度が向上する。また、電流を切る
方法では電流を流した後に電流が安定するまでに時間が
かかるという欠点があるが、電流の極性を切り換える方
法では瞬時に電流が安定するという利点がある。この電
流の極性を切り換えるための装置が電流極性変換装置3
(第4図)である。
In the above-mentioned potential difference measurement, if there is some temperature difference distribution in the sample to be measured (pipe), a thermoelectromotive force is generated between the measuring terminal and the sample to be measured, which is the average potential difference among the measured potential differences. Will be included as Therefore, in order to measure the potential difference of the measured sample itself, the thermoelectromotive force must be removed by some method. One method is to subtract the potential difference measured by cutting off the current from the potential difference measured by passing a current. Another method is to intermittently switch the polarity of the direct current and measure the amplitude of the potential difference. Since the latter has a larger absolute value of the measured potential difference, the measurement accuracy is improved accordingly. Further, the method of cutting off the current has a drawback that it takes time until the current stabilizes after the current has flowed, but the method of switching the polarity of the current has an advantage that the current stabilizes instantly. The device for switching the polarity of this current is the current polarity conversion device 3
(Fig. 4).

亀裂に沿つた電位差分布からの亀裂形状決定方法を以
下に示す。表面亀裂形状決定方法のフローチヤートを第
19図に示す。予め、汎用大型計算機により各種アスペク
ト比、例えば、a/c=1.0,0.5,0.25,0.1の亀裂について
電場を解析し、亀裂面に垂直な方向の表面の電位差分布
をコンピユータ1の内部記憶装置、または外部記憶装置
に記憶させておく。記憶させる電位差分布の一例として
アスペクト比a/c=0.5の各亀裂深さに対する電位差分布
を第20図に示す。本図は板厚t=20mmの平板の中央にき
裂がある場合についてFEMにより電場を解析して得られ
たものである。板厚tで基準化した亀裂の深さa/tは亀
裂中央の最深点で0,0.125,0.25,0.375,0.5,0.652および
0,75である。亀裂がない(a/t=0)の場合には電位差
は給電端子からの距離zに比例する。一方、亀裂がある
場合には亀裂の近傍で電位差が大きくなつている。これ
らの電位差分布はn次近似してコンピユータ1(第4
図)に記憶させておく。亀裂形状決定に当たつては最初
に測定された亀裂周辺の電位差分布から表面亀裂長さ2c
*と最大電位差比V/V0 maxを求める。一例として第21図
にステンレス鋼12B管の内面に疲労により導入した亀裂
周辺での電位差分布を示す。亀裂がないところでは電位
差はほぼ一定であり、その平均を求めると、基準電位差
としてV0=37,25μVが得られる。亀裂のあるところで
は電位差は大きくなつており、この部分の電位差分布を
n次近似する。第21図では4次近似した結果得られた曲
線が示してある。この4次近似曲線と基準電位差V0との
交点から表面における亀裂長さ2cを求めると、2c=22.5
mmが得られる。近似曲線からき裂の最深点に対応する最
大の電位差比V/V0 maxを決定する。第21図の場合にはVm
ax=38.0であるのでV/V0 max=38.0/0/24.75=1.535が
得られた。次に、第20図に示した電位差分布から各種ア
スペクト比a/cの亀裂に対する電位差比V/V0と亀裂深さa
/tとの関係を作成するために電位差比V/V0とアスペクト
比a/cの関係を作成する。この場合、FEMによる電場解析
では板厚t=20mmの平板について解析しているので、測
定端子間距離dに対応した測定位置d*における電位差
比V/V0とアスペクト比a/cとの関係を作成しなければな
らない。従つて、比測定部材の板厚t*で補正されたd
*=d×20/t*の位置の各亀裂深さに対する電位差を求
めて電位差比V/V0のアスペクト比a/cの関係を第22図の
ように作成する。電位差比V/V0とアスペクト比a/cとの
関係は各亀裂深さa/t毎にn次近似してコンピユータ1
(第4図)の記憶装置に記憶させる。次に、電位差比V/
V0とアスペクト比a/cとの関係を用いてアスペクト比a/c
=0.5に対する電位差比V/V0と亀裂深さa/tとの関係のマ
スターカーブを第23図のように作成する。この場合にも
電位差V/V0と亀裂深さa/tとの関係はn次近似、例え
ば、5次近似する。このマスターカーブに電位差分布を
4次近似して得られた最大電位差比V/V0 maxを代入して
亀裂深さa*を求める。次いで、板厚補正した表面亀裂
長さ2c*(=2c×20/t)により亀裂のアスペクト比a*
/c*を求め、マスターカーブのアスペクト比a/cと比較
する。両者が一致していなければ、改めて電位差比V/V0
とアスペクト比a/cとの関係を用いてアスペクト比a/c=
a*/c*に対する電位差比V/V0と亀裂深さa/tとの関係
のマスターカーブを作成し、最大電位差比V/V0 maxを代
入して亀裂深さa*を求める。この作業を両者が一致す
るまで、例えば、a/cとa*/c*との差が0.01以下とな
るまで繰り返す。両者が一致したときのアスペクト比に
対する電位差比V/V0と亀裂深さa/tとの関係のマスター
カーブに各測定位置における電位差比を代入することに
より亀裂全体の形状を決定するものである。この場合電
位差比は各測定位置における電位差比を代入しても良い
し、n次近似した電位差分布を代入しても良い。
The method for determining the crack shape from the potential difference distribution along the crack is shown below. The flow chart of the surface crack shape determination method
Shown in Figure 19. In advance, a general-purpose large-scale computer was used to analyze the electric field for cracks with various aspect ratios, for example, a / c = 1.0,0.5,0.25,0.1, and the potential difference distribution on the surface in the direction perpendicular to the crack surface was stored in the internal storage device of the computer 1. Alternatively, it is stored in an external storage device. As an example of the stored potential difference distribution, Fig. 20 shows the potential difference distribution for each crack depth with an aspect ratio a / c = 0.5. This figure was obtained by analyzing the electric field by FEM for the case where there is a crack in the center of a flat plate with plate thickness t = 20 mm. The crack depth a / t normalized by the plate thickness t is 0,0.125,0.25,0.375,0.5,0.652 at the deepest point in the center of the crack and
It is 0,75. When there is no crack (a / t = 0), the potential difference is proportional to the distance z from the feeding terminal. On the other hand, when there is a crack, the potential difference increases near the crack. These potential difference distributions are approximated to the nth order by the computer 1 (4th
(Fig.). In determining the crack shape, the surface crack length 2c was determined from the potential difference distribution around the crack measured first.
* And maximum potential difference ratio V / V 0 max are calculated. As an example, Fig. 21 shows the potential difference distribution around the crack introduced into the inner surface of the stainless steel 12B pipe by fatigue. The potential difference is almost constant where there is no crack, and when the average is obtained, V 0 = 37,25 μV is obtained as the reference potential difference. The potential difference increases at the cracked portion, and the potential difference distribution in this portion is approximated to the nth order. FIG. 21 shows a curve obtained as a result of the fourth-order approximation. When the crack length 2c on the surface is obtained from the intersection of this fourth-order approximation curve and the reference potential difference V 0 , 2c = 22.5
mm is obtained. From the approximate curve, the maximum potential difference ratio V / V 0 max corresponding to the deepest point of the crack is determined. Vm in the case of FIG. 21
Since ax = 38.0, V / V 0 max = 38.0 / 0 / 24.75 = 1.535 was obtained. Next, from the potential difference distribution shown in FIG. 20, the potential difference ratio V / V 0 and the crack depth a for cracks of various aspect ratios a / c are shown.
In order to create the relationship with / t, the relationship between the potential difference ratio V / V 0 and the aspect ratio a / c is created. In this case, since the electric field analysis by FEM analyzes a flat plate with a plate thickness t = 20 mm, the relationship between the potential difference ratio V / V 0 and the aspect ratio a / c at the measurement position d * corresponding to the distance d between the measurement terminals is analyzed. Must be created. Therefore, d corrected by the plate thickness t * of the ratio measuring member
The potential difference is calculated for each crack depth at the position of * = d × 20 / t *, and the relationship of the aspect ratio a / c of the potential difference ratio V / V 0 is created as shown in FIG. The relationship between the potential difference ratio V / V 0 and the aspect ratio a / c is calculated by n-th order approximation for each crack depth a / t.
It is stored in the storage device (FIG. 4). Next, the potential difference ratio V /
Using the relationship between V 0 and the aspect ratio a / c, the aspect ratio a / c
A master curve of the relationship between the potential difference ratio V / V 0 for 0.5 and the crack depth a / t is created as shown in Fig. 23. Also in this case, the relationship between the potential difference V / V 0 and the crack depth a / t is approximated to the nth order, for example, the fifth order. The crack depth a * is obtained by substituting the maximum potential difference ratio V / V 0 max obtained by fourth-order approximation of the potential difference distribution into this master curve. Then, the aspect ratio a * of the crack is calculated by the surface crack length 2c * (= 2c × 20 / t) with the thickness corrected.
Find / c * and compare with the aspect ratio a / c of the master curve. If they do not match, the potential difference ratio V / V 0
Aspect ratio a / c =
A master curve of the relationship between the potential difference ratio V / V 0 for a * / c * and the crack depth a / t is created, and the maximum potential difference ratio V / V 0 max is substituted to obtain the crack depth a *. This operation is repeated until they agree with each other, for example, until the difference between a / c and a * / c * becomes 0.01 or less. The shape of the entire crack is determined by substituting the potential difference ratio at each measurement position into the master curve of the relationship between the potential difference ratio V / V 0 to the aspect ratio and the crack depth a / t when the two match. . In this case, as the potential difference ratio, the potential difference ratio at each measurement position may be substituted, or the potential difference distribution approximated to the nth order may be substituted.

第21図に示した疲労亀裂周辺の電位差分布について具
体的に計算した結果を次に示す。ステンレス鋼管の板厚
はt*=15.8mmであり、測定端子間距離はd=5mmであ
るので、d*=d×20/t*=5×20/15.8=6.3mmの位置
における各アスペクト比の各亀裂深さに対する電位差を
求める。但し、亀裂が測定端子の中央に来るようにして
電位差を測定しているので、z=d*/2=3.15mmの位置
の電位差を求め、第22図のような電位差比V/V0とアスペ
クト比a/cとの関係を作成する。これらの関係を用いて
第23図に示すようにアスペクト比a/c=0.5に対する電位
差比V/V0と亀裂深さa/tとの関係のマスターカーブを作
成する。このカーブに最大電位差比V/V0 max=1.535を
代入すると、a*/t=0.2665となりa*=5.31mmが得ら
れる。表面亀裂長さ2c*=22.5mmを板厚補正すると2c=
22.5×20/15.8=28.48mmとなり、亀裂のアスペクト比
は、a*/c*=5.31/14.28=0.37となる。そこで、次に
a/c=0.37に対するマスターカーブを作成して亀裂深さ
を求めると、a*=4.97mmが得られ、a*/c*=0.348
となる。再び、a/c=0.34に対するマスターカーブを作
成して亀裂深さを求めると、a*=4.92mmが得られ、a
*/c*=0.344となり、アスペクト比がほぼ一致した。
これは手計算による結果であるが、コンピユータ1によ
り計算した場合はa/c=3.348に対するマスターカーブを
作成してa*=4.94mm,a/c=0.345が得られ、アスペク
ト比はほとんど一致した。このようにして求めた表面亀
裂形状と破断後の破面のビーチマークとの対応を第24図
に示す。第21図で分かるように電位差測定間隔が粗かつ
たために、表面の亀裂先端近傍でやや亀裂が浅目になつ
ているが、そこを除けば非常に良く一致している。従つ
て、もしもつと細かいピツチで電位差分布を測定できれ
ば、更に精度良くなる。
The concrete calculation results of the potential difference distribution around the fatigue crack shown in Fig. 21 are shown below. Since the plate thickness of the stainless steel tube is t * = 15.8mm and the distance between the measuring terminals is d = 5mm, each aspect ratio at the position of d * = d × 20 / t * = 5 × 20 / 15.8 = 6.3mm The electric potential difference for each crack depth is calculated. However, since the potential difference is measured so that the crack is located at the center of the measuring terminal, the potential difference at the position of z = d * / 2 = 3.15 mm is obtained, and the potential difference ratio V / V 0 as shown in Fig. 22 is obtained. Create a relationship with the aspect ratio a / c. Using these relationships, a master curve of the relationship between the potential difference ratio V / V 0 for the aspect ratio a / c = 0.5 and the crack depth a / t is created as shown in FIG. Substituting the maximum potential difference ratio V / V 0 max = 1.535 into this curve, a * / t = 0.266 and a * = 5.31 mm is obtained. Surface crack length 2c * = 22.5mm when plate thickness is corrected to 2c =
22.5 × 20 / 15.8 = 28.48 mm, and the crack aspect ratio is a * / c * = 5.31 / 14.28 = 0.37. So next
When a master curve for a / c = 0.37 is created and the crack depth is obtained, a * = 4.97 mm is obtained, and a * / c * = 0.348
Becomes Once again, when a master curve for a / c = 0.34 is created and the crack depth is obtained, a * = 4.92 mm is obtained.
* / C * = 0.344, and the aspect ratios were almost the same.
This is the result of manual calculation, but when calculated by computer 1, the master curve for a / c = 3.348 was created and a * = 4.94mm, a / c = 0.345 were obtained, and the aspect ratios were almost the same. . The correspondence between the surface crack shape thus obtained and the beach mark on the fracture surface after fracture is shown in FIG. As shown in FIG. 21, the cracks are slightly shallow near the crack tip on the surface due to the coarse potential difference measurement interval, but they are very well in agreement except for that. Therefore, if the potential difference distribution can be measured with fine pitches, it will be more accurate.

ただし、上述の方法では亀裂が軸方向に対して垂直あ
るいは平行にある場合に適用できるものであつて、傾い
ている亀裂に対してはそのまま適用できない。第25図
に、亀裂が軸方向および周方向に対して傾いている場合
の亀裂位置の判定方法を示す。第25図は軸方向の電位差
分布である。図で灰色で塗つてあるところは軸方向にお
ける電位差が最大のところである。亀裂の位置としては
各測定ブロツクの中央にあることになるから、黒点を結
んだ実線のようになると判定される。このような場合、
第25図に示すように、亀裂位置を表す黒点の座標点を最
小自乗法により直線近似して軸方向に対する角度を求め
ると共に、両端座標から亀裂長さ2c*を求める。この
時、亀裂の方向と電場方向とのなす角度をΘとすると、
電位差比V/V0′は亀裂が電場に対して直角にあるときの
電位差比V/V0よりも小さくなり、第一次近似としてはV/
V0′=V/V0・cosΘとなる。従つて、上述の方法で亀裂
形状を求める場合には測定された電位差比V/V0′をΘで
補正してV/V0=V/V0′/cosΘにより評価することが必要
である。ただし、Θが45゜を越えると精度が悪くなるの
で、Θが45゜よりも小さい方の電場についての測定値を
使つて判定する方が良い。
However, the above-mentioned method can be applied to the case where the crack is perpendicular or parallel to the axial direction, and cannot be applied to the inclined crack as it is. FIG. 25 shows a method of determining the crack position when the crack is inclined with respect to the axial direction and the circumferential direction. FIG. 25 shows the potential difference distribution in the axial direction. The shaded area in the figure shows the maximum potential difference in the axial direction. Since the position of the crack is located at the center of each measurement block, it is determined that it becomes like a solid line connecting black dots. In such a case,
As shown in FIG. 25, the black point coordinate points representing the crack position are linearly approximated by the method of least squares to determine the angle with respect to the axial direction, and the crack length 2c * is determined from the coordinates at both ends. At this time, if the angle between the crack direction and the electric field direction is Θ,
The potential difference ratio V / V 0 ′ becomes smaller than the potential difference ratio V / V 0 when the crack is at right angles to the electric field.
V 0 ′ = V / V 0 · cos Θ. Therefore, when the crack shape is obtained by the above method, it is necessary to correct the measured potential difference ratio V / V 0 ′ with Θ and evaluate it with V / V 0 = V / V 0 ′ / cos Θ. . However, if Θ exceeds 45 °, the accuracy will deteriorate, so it is better to use the measured value for the electric field where Θ is smaller than 45 °.

〔発明の効果〕〔The invention's effect〕

以上述べたように本発明の配管欠陥検査装置によれ
ば、水平なパイプだけでなく、垂直なパイプや曲りパイ
プを移動できると共に、装置内に設けた直流ポテンシヤ
ル法による測定ヘツドの軸方向給電端子と周方向給電端
子、および軸方向と周方向に共に等間隔でマトリクス状
に、あるいは十字形配置した測定端子により、パイプの
軸方向と周方向の両方向の電位差分布を測定することに
より亀裂の位置および形状の検出がでできるので、パイ
プの健全性を精度良く検査することが可能である。
As described above, according to the pipe defect inspection apparatus of the present invention, not only horizontal pipes but also vertical pipes and bent pipes can be moved, and the axial feed terminals of the measurement head by the DC potentiometric method provided in the device can be moved. Position of the crack by measuring the potential difference distribution in both the axial direction and the circumferential direction of the pipe with the measurement terminals arranged in a matrix or in a cross shape at equal intervals in both the axial direction and the circumferential direction and at the axial direction and the circumferential direction. Since the shape and shape of the pipe can be detected, it is possible to accurately inspect the soundness of the pipe.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明に係る配管欠陥検査装置の一実施例を示
し、一部を切断して描いた側面図である。 第2図は上記実施例の後方正面図である。 第3図は上記と異なる実施例の部分的斜視図である。 第4図は、第1図に示した実施例のシステム系統図であ
る。 第5図乃至第13図は測定ヘツドの構造を示す説明図、第
14図は欠陥検査全体のフローチヤート、第15図と第16図
は測定された電位差比分布の模式図、第17図は配管欠陥
検査装置の軸方向駆動のフローチヤート、第18図は電位
差分布測定のフローチヤート、第19図は亀裂形状の判定
方法のフローチヤート、第20図はFEMで得られた板材の
表面における電位差分布の一例、を示す図表、第21図は
ステンレスパイプの亀裂周辺で測定された電位差分布図
表、第22図は電位差比とアスペクト比との関係を示す図
表、第23図は電位差比と亀裂深さとの関係を示す図表、
第24図は実際の亀裂形状と判定された亀裂形状との比較
を示す為の説明図、第25図は亀裂位置の判定方法を示す
説明図である。 1……コンピユータ、2……直流電源、3……電流極性
変換装置、4,5インタフエース、6……微小電位差計、
7……マルチプレクサー、8……測定ヘツド軸方向,駆
動用DCサーボモータ、12……測定ヘツド周方向駆動用DC
サーボモータ、16……測定ヘツド駆動用シリンダ、18…
…前部駆動用シリンダ、20……軸方向駆動用シリンダ、
22……後部駆動用シリンダ、26……位置検出用AEセン
サ、27……圧縮空気源、30……前部駆動部、33……自在
継手、40……後部駆動部、43……測定ヘツド走査部、46
……軸方向駆動用ボールねじ、51……周方向回転部、60
……測定ヘツド、65……軸方向給電端子、67,74……測
定端子、72……周方向給電端子、78……センタリング用
脚。
FIG. 1 is a side view showing an embodiment of a pipe defect inspection apparatus according to the present invention, with a part cut away. FIG. 2 is a rear front view of the above embodiment. FIG. 3 is a partial perspective view of an embodiment different from the above. FIG. 4 is a system diagram of the embodiment shown in FIG. 5 to 13 are explanatory views showing the structure of the measurement head,
Figure 14 is a flow chart of the entire defect inspection, Figures 15 and 16 are schematic diagrams of the measured potential difference ratio distribution, Figure 17 is an axial drive flow chart of the pipe defect inspection device, and Figure 18 is the potential difference distribution. Flow chart of measurement, FIG. 19 is a flow chart of the method for determining crack shape, FIG. 20 is a diagram showing an example of the potential difference distribution on the surface of the plate material obtained by FEM, and FIG. 21 is around the crack of the stainless pipe. The measured potential difference distribution chart, FIG. 22 is a chart showing the relationship between the potential difference ratio and the aspect ratio, FIG. 23 is a chart showing the relationship between the potential difference ratio and the crack depth,
FIG. 24 is an explanatory diagram showing a comparison between the actual crack shape and the determined crack shape, and FIG. 25 is an explanatory view showing a crack position determining method. 1 ... Computer, 2 ... DC power supply, 3 ... Current polarity converter, 4,5 interface, 6 ... Small potentiometer,
7 ... Multiplexer, 8 ... Measurement head axis direction, DC servo motor for driving, 12 ... Measurement head circumferential direction DC
Servo motor, 16 ... Cylinder for driving measurement head, 18 ...
… Front drive cylinder, 20 …… Axial drive cylinder,
22 …… rear drive cylinder, 26 …… position detection AE sensor, 27 …… compressed air source, 30 …… front drive, 33 …… universal joint, 40 …… rear drive, 43 …… measurement head Scanning unit, 46
...... Axial drive ball screw, 51 …… Circular rotation part, 60
…… Measuring head, 65 …… Axial power supply terminal, 67,74 …… Measurement terminal, 72 …… Circular power supply terminal, 78 …… Centering leg.

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】配管内に挿入して用いられる、自走機能を
有する配管欠陥の検査装置であって、前部機構と後部機
構とを自在継ぎ手及び伸縮機構で連結した構造を有し、
かつ、前記の前部機構及び後部機構はそれぞれ配管の半
径方向に伸縮制御される少なくとも3個の脚をするもの
であって、 (a)配管の内面に対向せしめて使用される測定ヘッド
と、 (b)上記測定ヘッドが配管内面に対向している面に、
該配管の周方向に対向,離間せしめて配置した複数の給
電端子対と、 (c)上記給電端子対の中央部付近に、配管の周方向に
対向,隣接せしめた測定端子対と、 (d)前記の測定ヘッドを配管内面に向けて押圧する手
段と、 (e)前記測定ヘッドが配管内面に対向している面に、
該配管の軸心方向に対向,離間せしめて配置した複数の
給電端子対と、 (f)上記軸心方向に対向している給電端子対の中央部
付近に、配管の軸心方向に対向,隣接せしめた測定端子
対と、 (g)前記の測定ヘッドを配管の軸心方向に走査する手
段と、 (h)前記の測定ヘッドを配管の周方向に走査する手段
と、 (i)前記給電端子に直流電源を導通せしめる手段であ
って、複数の給電端子対と同数の直流電源を備える手段
と、 (j)前記測定端子を微小電位差計に導通せしめる手段
と、 (k)上記微小電位差計の出力信号をコンピュータにイ
ンプットする手段とを設けたことを特徴とする配管欠陥
装置。
1. A pipe defect inspection device having a self-propelled function, which is inserted into a pipe for use, and has a structure in which a front mechanism and a rear mechanism are connected by a universal joint and a telescopic mechanism.
Further, the front mechanism and the rear mechanism each have at least three legs that are controlled to expand and contract in the radial direction of the pipe, and (a) a measuring head used facing the inner surface of the pipe, (B) On the surface of the measuring head facing the inner surface of the pipe,
A plurality of pairs of power supply terminals arranged facing each other in the circumferential direction of the pipe and spaced apart from each other; (c) a pair of measurement terminals facing and adjacent to each other in the circumferential direction of the pipe in the vicinity of the central portion of the pair of power supply terminals; ) A means for pressing the measuring head toward the inner surface of the pipe, and (e) a surface on which the measuring head faces the inner surface of the pipe,
A plurality of pairs of power supply terminals opposed to each other in the axial direction of the pipe, spaced apart from each other; (f) opposed to each other in the axial direction of the pipe in the vicinity of the center of the pair of power supply terminals opposed to each other in the axial direction; Adjoining measuring terminal pairs, (g) means for scanning the measuring head in the axial direction of the pipe, (h) means for scanning the measuring head in the circumferential direction of the pipe, (i) the power supply Means for electrically connecting a DC power supply to the terminals, the means having the same number of DC power supplies as a plurality of power supply terminal pairs, (j) a means for electrically connecting the measurement terminals to a micro potentiometer, and (k) the micro potentiometer And a means for inputting the output signal of the above into a computer.
【請求項2】特許請求の範囲第1項において、前記の周
方向に対向せしめた測定端子対はこれを複数対とすると
共に、前記の周方向に対向せしめた給電端子対は上記周
方向に対向せしめた複数対の測定端子対の数より1対多
くし、かつ、給電端子の対向線の中間に測定端子の対向
線を位置せしめたことを特徴とする配管欠陥検査装置。
2. The measuring terminal pair according to claim 1, wherein the pair of measuring terminals opposed to each other in the circumferential direction are plural pairs, and the pair of feeding terminals opposed to each other in the circumferential direction are arranged in the circumferential direction. 1. A pipe defect inspection apparatus characterized in that the number of pairs of measuring terminals facing each other is increased by one pair, and the opposing line of the measuring terminal is located in the middle of the opposing line of the power feeding terminal.
【請求項3】特許請求の範囲第1項または第2項におい
て、前記の軸心向に対向せしめた測定端子対はこれを複
数対とすると共に、前記の軸心方向に対向せしめた給電
端子対は上記軸心方向に対向せしめた複数対の測定端子
対の数より1対多くし、かつ、給電端子の対向線の中間
に測定端子の対向線を位置せしめたことを特徴とする配
管欠陥検査装置。
3. The power supply terminal as set forth in claim 1 or 2, wherein the pair of measurement terminals opposed to each other in the axial direction is a plurality of pairs, and the measurement terminals are opposed to each other in the axial direction. The number of pairs is one more than the number of pairs of measuring terminals opposed to each other in the axial direction, and the opposing line of the measuring terminal is located in the middle of the opposing line of the feeding terminal. Inspection device.
【請求項4】特許請求の範囲第1項乃至第3項のいずれ
かにおいて、前記の測定端子対は、円柱状の本体部の先
端に、上記円柱の断面と同寸の底面を有する斜円錐を一
体に連接した形状をなし、かつ、上記円柱状本体部の少
なくとも一部は、その中心線と平行な面でカットされた
案内面を設けたものとし、上記案内面に摺触する案内部
材により軸心方向に摺動自在に、軸心回りの回動を係止
されたものであることを特徴とする配管欠陥検査装置。
4. The oblique cone according to any one of claims 1 to 3, wherein the pair of measuring terminals has a bottom surface of the same size as the cross section of the cylinder at the tip of a cylindrical main body. And a guide member that is slidably contacted with the guide surface, wherein at least a part of the cylindrical main body is provided with a guide surface that is cut in a plane parallel to the center line. A pipe defect inspection device characterized in that it is slidable in the axial direction by means of which the rotation around the axial center is locked.
JP62059036A 1987-03-16 1987-03-16 Pipe defect inspection device Expired - Lifetime JP2511020B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62059036A JP2511020B2 (en) 1987-03-16 1987-03-16 Pipe defect inspection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62059036A JP2511020B2 (en) 1987-03-16 1987-03-16 Pipe defect inspection device

Publications (2)

Publication Number Publication Date
JPS63225162A JPS63225162A (en) 1988-09-20
JP2511020B2 true JP2511020B2 (en) 1996-06-26

Family

ID=13101665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62059036A Expired - Lifetime JP2511020B2 (en) 1987-03-16 1987-03-16 Pipe defect inspection device

Country Status (1)

Country Link
JP (1) JP2511020B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007057448A (en) * 2005-08-26 2007-03-08 Hitachi Ltd Flaw monitoring device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09152412A (en) * 1995-11-30 1997-06-10 Toshiba Corp Micropotential difference measuring apparatus
JP4752065B2 (en) * 2006-05-10 2011-08-17 国立大学法人東北大学 Nondestructive inspection equipment using inductive AC potential
JP4822545B2 (en) * 2007-03-27 2011-11-24 電子磁気工業株式会社 Nugget diameter measuring method and nugget diameter measuring apparatus
CN108510856B (en) * 2018-06-17 2023-11-24 承德石油高等专科学校 Drum-type potentiometer teaching aid for physical experiment and application method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3111814A1 (en) * 1981-03-25 1982-10-07 Kraftwerk Union AG, 4330 Mülheim SELF-DRIVING TUBE MANIPULATOR FOR REMOTE CONTROLLED TRANSPORTATION OF TEST EQUIPMENT AND TOOLS LENGTH'S SPECIFIC FEED TRACKS, PREFERRED FOR NUCLEAR POWER PLANTS
JPS623654A (en) * 1985-06-29 1987-01-09 Nippon Kokan Kk <Nkk> Measuring instrument for crack depth in tube

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007057448A (en) * 2005-08-26 2007-03-08 Hitachi Ltd Flaw monitoring device

Also Published As

Publication number Publication date
JPS63225162A (en) 1988-09-20

Similar Documents

Publication Publication Date Title
US8250923B2 (en) Ultrasonic inspection method and ultrasonic inspection apparatus
US9551690B2 (en) Profiling tool for determining material thickness for inspection sites having complex topography
US20160320344A1 (en) Phased array system for inspection of laser welds
EP2669672B1 (en) Apparatus and method for inspecting a tube
CN109642862B (en) Integrated system and method for in-situ 3-axis scanning and detecting defects in objects under static and cyclic testing
EP0289615B1 (en) Surface defect inspection method and surface defect inspection apparatus
JP2007187593A (en) Inspection device for piping and inspection method for piping
KR101637479B1 (en) Category D welded part joints inside the pressure vessel only phased array ultrasonic inspection device and its method
EP2185893A1 (en) Method for the complete detection of the geometry of test objects by means of ultrasound
JP2511020B2 (en) Pipe defect inspection device
KR20100076636A (en) Multi channel ultrasonic welding inspection system and control method
Casula et al. Control of complex components with smart flexible phased arrays
CN112415094A (en) Special ultrasonic detection tool and method for blade root of back arc surface of compressor moving blade
JPS63191007A (en) Method of screw inspection and measurement
US11933766B2 (en) Material profiling for improved sizing accuracy
CN109738446B (en) Nondestructive testing device and testing method thereof
CN212989253U (en) Special ruler for drawing marking line before phased array detection
WO2019091029A1 (en) Phased array ultrasonic testing method for weld seam of housing welded by using aluminum alloy
Leutenegger Detection of defects in cylindrical structures using a time reverse numerical simulation method
JPH076936B2 (en) Defect inspection method
RU114163U1 (en) DEVICE FOR ULTRASONIC CONTROL OF RING WELDED CONNECTIONS BY MANUAL LONGITUDINAL-CROSS-SCAN
JPH0574021B2 (en)
JP2005188930A (en) Rail flaw detection auxiliary tool
Maes et al. On the Use of Advanced UT Phased Array Methodology and Equipment
Poltersdorf et al. Easy to go and innovative validation process using the spot weld inspection system PHAsis and related software