JPH0573139A - Controller for self-traveling truck - Google Patents

Controller for self-traveling truck

Info

Publication number
JPH0573139A
JPH0573139A JP3257113A JP25711391A JPH0573139A JP H0573139 A JPH0573139 A JP H0573139A JP 3257113 A JP3257113 A JP 3257113A JP 25711391 A JP25711391 A JP 25711391A JP H0573139 A JPH0573139 A JP H0573139A
Authority
JP
Japan
Prior art keywords
self
detection
resolution
control device
propelled carriage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3257113A
Other languages
Japanese (ja)
Inventor
Noriyuki Dairoku
範行 大録
Naoki Takehara
直樹 竹原
Tadashi Yamada
正 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP3257113A priority Critical patent/JPH0573139A/en
Publication of JPH0573139A publication Critical patent/JPH0573139A/en
Pending legal-status Critical Current

Links

Landscapes

  • Steering Controls (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

PURPOSE:To obtain the device for enabling safe and secure travel smoothly with a little secular change and vibrations inexpensively by complementing the lack of spatial resolution for a detection system with the hourly resolution of a control system not to be affected by the dirt of a floor, etc. CONSTITUTION:This device is equipped with the inexpensive low-resolution detection system arranging detectors at inequal intervals, reader holding lateral acceleration and lateral speed previously optimized to the resolution of the detection system, and control system to control a driving system held by the reader. Namely, detectors 1 are installed toward a floor 4 on the four sides of a car body 2, the car body 2 is equipped with three wheels 3, the floor 4 is equipped with a guide tape 5, and the position is detected by the detectors 1 provided forward and backward to the advancing direction of the car body 2. Then, the induced control of the truck is executed along the guide tape 5 provided on the floor 4. Thus, even when the inexpensive and low-resolution detection system is used, the truck can be smoothly and safely controlled.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、主に搬送物の運搬を行
う自走台車特に半導体製造等の振動を嫌う精密品等の搬
送に使用する自走台車に好適な、滑らかで振動の少ない
安全確実な走行制御を、安価な低分解能の検出装置を用
い実現できる自走台車の制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is suitable for a self-propelled carriage that mainly conveys a conveyed object, particularly a self-propelled carriage that is used for conveying a precision product or the like which is sensitive to vibration such as semiconductor manufacturing. The present invention relates to a control device for a self-propelled carriage that can realize safe and reliable traveling control using an inexpensive low-resolution detection device.

【0002】[0002]

【従来の技術】従来の装置は、例えば特公昭54−32
117号公報記載のように誘導テープに直交する線上に
多数個の受光素子を配置し、隣接受光素子が同時にオン
した場合は中間の値を取ることで空間分解能を高めたも
の、特開昭53−100581号公報記載のように誘導
テープの端部付近に2個の受光素子を設置し、左右の受
光素子の信号強度の差をアナログ量で評価し、合わせて
光量の補正評価を行ない空間分解能を高めたもの、特開
昭63−118810号公報記載のように複数個の受光
素子の受光量をアナログで加重加算評価することで空間
分解能を高めたもの、さらに特開昭59−32009号
公報に記載のように1次元撮像素子などの空間分解能の
極めて高い検出素子を用いたものがあった。
2. Description of the Related Art A conventional apparatus is, for example, Japanese Patent Publication No. 54-32.
As described in Japanese Patent Publication No. 117, a large number of light receiving elements are arranged on a line orthogonal to the guide tape, and when adjacent light receiving elements are simultaneously turned on, an intermediate value is taken to improve the spatial resolution. As described in Japanese Laid-Open Patent Publication No. -100581, two light receiving elements are installed near the end of the guiding tape, and the difference in signal intensity between the left and right light receiving elements is evaluated by an analog amount. Of which the spatial resolution is improved by analog-weighted addition evaluation of the light receiving amounts of a plurality of light receiving elements as described in JP-A-63-118810, and JP-A-59-32009. There is a device using a detection element having an extremely high spatial resolution such as a one-dimensional image pickup element as described in (1).

【0003】[0003]

【発明が解決しようとする課題】前記、第1の従来技術
の場合は、単なる受光素子の配列に比べ分解能を高めた
が、基本的にオンオフ制御のため滑らかな運転はできな
かった。第2の従来技術の場合はアナログ量である受光
量を用いて空間分解能を高めはしたが、受光量の評価の
みでは反射テープの汚れが左右で違う場合や、床面に模
様が有る場合かえって制御の誤差が発生し、また素子の
受光範囲を広く出来ないため脱線しやすい。第3の従来
技術は、第2の従来技術に比べて多数の受光素子の受光
量を用いて受光範囲を広めているが、受光量の評価をし
ないため、反射テープ・床の色の変化に対する誤差が大
きくなる。第4の従来技術の場合は、分解能が極めて高
いため振動の発生を避けられるが、高価な1次元撮像素
子及び専用の高周波駆動回路を用い、大形の結像レンズ
系もしくは専用の光学系を必要とするため、高価で大き
な設置スペースも必要であった。特に移動体では内部体
積の制限が厳しく、設置スペースの縮小は大きな意味を
持つ。
In the case of the first prior art described above, the resolution was increased as compared with a simple arrangement of light receiving elements, but basically the on / off control could not perform a smooth operation. In the case of the second conventional technique, the spatial resolution was increased by using the received light amount which is an analog amount. However, if only the evaluation of the received light amount is used, the dirt on the reflection tape is different between left and right, or there is a pattern on the floor. Control error occurs and the light receiving range of the element cannot be widened, so derailment is easy. In the third conventional technique, the light receiving range is widened by using the light receiving amount of a large number of light receiving elements as compared with the second conventional technique, but since the light receiving amount is not evaluated, the change in the color of the reflective tape / floor is prevented. The error increases. In the case of the fourth conventional technique, the generation of vibration can be avoided because the resolution is extremely high, but a large-sized imaging lens system or a dedicated optical system is used by using an expensive one-dimensional image sensor and a dedicated high frequency drive circuit. Since it was necessary, it was expensive and required a large installation space. Especially for mobiles, the internal volume is severely limited, and the reduction of installation space is significant.

【0004】本発明の目的は、上記従来技術の欠点を補
い、安価で設置スペースも少なくて済み、許容範囲内の
床面及び誘導テープの反射率の変化ならば制御系に影響
せず、かつ経年変化の少ない、滑らかで振動の少なく安
全確実な走行をする自走台車の制御装置を提供すること
にある。
The object of the present invention is to make up for the drawbacks of the prior art described above, it is inexpensive and requires a small installation space, and does not affect the control system if the reflectance of the floor surface and the guiding tape is within the allowable range, and An object of the present invention is to provide a control device for a self-propelled carriage that travels smoothly with less secular change, with less vibration.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に、本発明では検出系の空間分解能の不足を、床面の汚
れ等の影響を受けない制御系の時間分解能によって補っ
た。
In order to achieve the above object, in the present invention, the lack of the spatial resolution of the detection system is compensated by the time resolution of the control system which is not affected by dirt on the floor.

【0006】安価で設置スペースが少なくて済むように
するため、単体の受光素子を複数用いることで、1次元
撮像素子を用いた場合に比較し、光学系、駆動回路を単
純・小型化した。
In order to reduce the cost and to save the installation space, the optical system and the drive circuit are simplified and downsized by using a plurality of single light receiving elements as compared with the case of using the one-dimensional image pickup element.

【0007】床面の色彩の変化、反射誘導テープ及び床
面のわずかな汚れによって操舵量が変化する事態を避
け、さらにアナログ検出系特有の調整、経時変化に伴う
再調整を避けるために、受光素子の受光量をアナログ的
に評価せず、オンオフで評価した。
In order to avoid a situation in which the steering amount changes due to a change in the color of the floor surface, a slight reflection on the reflection-inducing tape and the floor surface, and to avoid adjustments peculiar to the analog detection system and readjustment due to aging, The amount of light received by the device was evaluated on and off without analog evaluation.

【0008】滑らかで、振動の少ない制御を実現するた
めには、検出系自体の空間分解能を徒に高めることな
く、状態量の区間通過時間から台車の求心移動速度を定
めることで実現した。計時装置は、安価で、安定したも
のが使用できるため、受光素子の光量を評価する場合に
比べ外乱によって変動することが少ない。
In order to realize smooth and less vibration control, the centripetal movement speed of the bogie is determined from the section passage time of the state quantity without increasing the spatial resolution of the detection system itself. Since the time measuring device is inexpensive and can be used stably, it is less likely to change due to disturbance as compared with the case of evaluating the light amount of the light receiving element.

【0009】安全確実な制御を実現するために、直接、
信号値の時間積分を速度補正項に用いず、定加速度をも
って区間目標速度に近づける構成とした。信号値の時間
積分を速度補正項としないので、曲線の走行路にたいす
る区間通過時間の変動に対しても、求心速度が発散して
しまうおそれがない。
In order to realize safe and reliable control, directly
The time integration of the signal value is not used in the speed correction term, and the section target speed is approached with a constant acceleration. Since the time integration of the signal value is not used as the speed correction term, there is no fear that the centripetal speed will diverge even when the section transit time of the curved traveling path changes.

【0010】[0010]

【作用】単体の受光素子を複数用いることで、低分解能
のデジタル検出装置となすことで、安価で、設置スペー
スが少なくて済む。さらに受光素子の受光量をアナログ
的に評価せず、オンオフで評価することで、床面の色彩
の変化、反射誘導テープ及び床面のわずかな汚れによっ
て操舵量が変化する事態が避けられ、アナログ系特有の
調整に伴う困難、経時変化に伴う再調整の必要性が軽減
される。
By using a plurality of single light-receiving elements, a low-resolution digital detection device is formed, which is inexpensive and requires a small installation space. In addition, the light receiving amount of the light receiving element is not evaluated in an analog manner, but is evaluated on and off, thereby avoiding the situation where the steering amount is changed due to a change in the color of the floor surface, a slight dirt on the reflection guide tape and the floor surface. The difficulties associated with system-specific adjustment and the need for readjustment due to changes over time are reduced.

【0011】複数個の検出分解能区間における各々の求
心目標速度を、全区間の中心に近づくほど漸減する値に
定めることで、全区間の中心付近では確実に台車の移動
方向が中心に向い、かつ中心区間を通りぬけるオーバー
シュートを招くことなく静止でき、かつ制御不能領域に
台車が突入することを避けられる。
By setting the centripetal target velocities in the plurality of detection resolution sections to values that gradually decrease toward the center of all sections, the moving direction of the carriage is surely directed to the center near the center of all sections, and It is possible to stop without causing an overshoot that passes through the central section, and it is possible to prevent the bogie from entering the uncontrollable area.

【0012】前記各々の検出分解能区間における加速度
を、その外側に隣接する検出分解能区間の求心目標速度
から、その検出分解能区間を通過する時間内において、
前記した求心目標速度に減速しうる加速度に定めること
で、急加速、急減速に伴う振動の発生を防止しながら、
検出分解能区間内で確実に加減速が可能である。
The acceleration in each of the detection resolution sections is calculated from the centripetal target velocity of the detection resolution section adjacent to the outer side of the acceleration within the time when the acceleration passes through the detection resolution section.
By determining the acceleration that can be decelerated to the above-mentioned centripetal target speed, while preventing the occurrence of vibration due to sudden acceleration and sudden deceleration,
Acceleration / deceleration can be reliably performed within the detection resolution section.

【0013】また、複数個の検出系分解能区間の幅を、
全区間の中心に近づくほど狭く設定することで、制御可
能なセンシング領域を狭めることなく全区間の中心付近
の検出系分解能を高め、デジタル制御に制御に不可避な
最小分解能領域での蛇行量を軽減できる。同時に、最外
区間における加速度を一定にし外側の区間の幅を広くし
たことで、最悪条件における最大加速度が極端に大きな
値を示すことがなく、アクチュエータのパワーを必要以
上に大きくする必要が無くなった。
Further, the widths of a plurality of detection system resolution intervals are
By narrowing the setting as it gets closer to the center of all sections, the detection system resolution near the center of all sections is increased without narrowing the controllable sensing area, and the amount of meandering in the minimum resolution area inevitable for digital control is reduced. it can. At the same time, by making the acceleration in the outermost section constant and widening the width of the outer section, the maximum acceleration in the worst condition does not show an extremely large value, and it is not necessary to increase the power of the actuator more than necessary. ..

【0014】前記検出装置を直線上に配置した複数のオ
ンオフ検出系から構成し、反射率・反射角度分布もしく
は色彩が周囲と異なったテープを床又は天井面に貼り付
け、これを誘導テープとし、前記検出装置によりその位
置を検出し制御する自走台車を構成することにより、前
記制御装置及び制御方法の利点を生かす自走台車を実現
することができる。
The detection device is composed of a plurality of on / off detection systems arranged on a straight line, and a tape having a reflectance / reflection angle distribution or a color different from the surroundings is attached to a floor or ceiling surface, which is used as a guide tape. By configuring a self-propelled carriage that detects and controls its position by the detection device, it is possible to realize a self-propelled carriage that makes the most of the advantages of the control device and the control method.

【0015】さらに、前記オンオフ検出系の設置間隔
を、特に最内検出区間において、誘導テープの定位置と
同一の中心線上の左右に、前記誘導テープの幅よりわず
かに狭く配置したことで、最内区間のオンオフ検出系の
間隔を大きく取ることができるため、前記した検出系分
解能区間の幅を、全区間の中心に近づくほど狭く設定す
ることが容易となった。
Further, the installation interval of the on / off detection system is set to be slightly narrower than the width of the guide tape on the left and right on the same center line as the fixed position of the guide tape, particularly in the innermost detection section. Since it is possible to set a large interval between the on-off detection systems in the inner section, it becomes easy to set the width of the above-mentioned detection system resolution section to be narrower toward the center of all sections.

【0016】これとは別に、最内検出区間周辺で、前記
オンオフ検出系の設置間隔を、誘導テープの定位置の中
心線上及び中心線をはさみ左右に前記誘導テープの幅の
1/2よりわずかに広く配置したことによっても同様の
利点を実現することができる。
Separately from this, in the vicinity of the innermost detection section, the installation intervals of the on / off detection system are set to be slightly smaller than 1/2 of the width of the guiding tape on the center line of the fixed position of the guiding tape and on the left and right sides sandwiching the center line. The same advantage can be realized by arranging widely.

【0017】さらに、前記検出装置を台車の前後に備え
ることで、前進後退を容易にし、さらに、検出分解能区
間を台車の横ずれy、角度ずれθ、の2成分に分け制御
することで演算装置を容易にし、これと全方向に走行可
能な走行機構を併用することで、従来の操舵式の自走台
車にありがちなオーバーシュートの繰返しが避けられ
る。
Further, by equipping the front and rear of the bogie with the detection device, forward and backward movements are facilitated, and further, the detection resolution section is divided into two components of lateral deviation y and angular deviation θ of the bogie to control the arithmetic unit. By making this easy and using a traveling mechanism capable of traveling in all directions, it is possible to avoid the repeated overshooting that is typical of conventional steering type self-propelled carriages.

【0018】その上で、前記演算装置にその時の台車進
行速度vを入力し、v・sinθからなる横ずれの変化
速度を補正することで、横ずれy、角度ずれθの干渉が
避けられる。とくに全方向に走行可能な走行機構を使用
することで、台車の方向と走行方向を別途定められるた
め、この補正を独立に行なうことが可能である。
Then, by inputting the vehicle traveling speed v at that time to the arithmetic unit and correcting the changing speed of the lateral deviation composed of v · sin θ, the interference of the lateral deviation y and the angular deviation θ can be avoided. In particular, by using a traveling mechanism capable of traveling in all directions, the direction of the carriage and the traveling direction can be determined separately, so this correction can be performed independently.

【0019】上記の制御演算は比較的簡単であるので、
前記演算装置を加算回路、積算回路等からなるアナログ
ハードウェア演算回路から構成することで、制御系を含
めた応答速度を向上することができる。一方、検出装置
が特に低分解能の場合は、あまり演算速度を要求されな
いため、前記演算装置を中央演算装置、固定記憶装置、
可変記憶装置、デジタル/アナログ変換装置等からなる
ハードウェアと、記憶装置に納められたソフトウェアか
ら構成することで、アナログハードウェア演算回路特有
の微調整を不要とし再現性を高めることができる。
Since the above control calculation is relatively simple,
By configuring the arithmetic unit from an analog hardware arithmetic circuit including an adder circuit and an integrating circuit, the response speed including the control system can be improved. On the other hand, when the detection device has a particularly low resolution, it does not require a high calculation speed, so that the calculation device is a central calculation device, a fixed storage device,
By comprising the hardware such as the variable storage device and the digital / analog conversion device and the software stored in the storage device, it is possible to improve the reproducibility by eliminating the need for fine adjustment peculiar to the analog hardware arithmetic circuit.

【0020】[0020]

【実施例】以下、本発明の一実施例を図面を用いて説明
する。図1は本発明の検出装置等の配置を示す平面図で
ある。検出装置1は車体2の4方に床面4を向いて設置
されている。また、車体2には3ヵ所に車輪3が設けら
れている。ここで、床面4には誘導テープ5が設けられ
ており、その位置が、車体2の進行方向にたいして前方
と後方の検出装置1によって検出される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a plan view showing the arrangement of the detection device and the like of the present invention. The detection device 1 is installed on four sides of the vehicle body 2 facing the floor surface 4. Further, the vehicle body 2 is provided with wheels 3 at three locations. Here, a guiding tape 5 is provided on the floor surface 4, and the position of the guiding tape 5 is detected by the front and rear detection devices 1 in the traveling direction of the vehicle body 2.

【0021】なお、本実施例中で使用している車輪3
は、設置面に複数複列のローラを配して横方向の接地抵
抗をなくし、各車輪の回転数のベクトル合成によって、
x,y,θの3自由度を独立に車体2に発生させるもの
である。
The wheels 3 used in this embodiment are
Is a multi-row roller on the installation surface to eliminate the ground resistance in the lateral direction, and by the vector composition of the rotation speed of each wheel,
The three degrees of freedom of x, y, and θ are independently generated in the vehicle body 2.

【0022】図2に検出装置1と床面4、誘導テープ5
の正しく走行している場合の位置関係を示している。床
面4には幅50mmの誘導テープ5を貼り付けてある。こ
れに対して、検出装置1は30mm間隔になるようにスペ
ーサ102を介して固定された3個の検出系101aか
ら101cにより構成される。検出系101aから10
1cは発光ダイオード、レンズ、フォトトランジスタ、
増幅回路から構成されており、2値化された出力信号1
03aから103cが取りだされる。
FIG. 2 shows the detector 1, the floor 4, and the guide tape 5.
Shows the positional relationship when the vehicle is traveling correctly. A guide tape 5 having a width of 50 mm is attached to the floor surface 4. On the other hand, the detection device 1 is composed of three detection systems 101a to 101c fixed via spacers 102 at intervals of 30 mm. Detection systems 101a-10
1c is a light emitting diode, a lens, a phototransistor,
It is composed of an amplifier circuit, and the binarized output signal 1
03a to 103c are taken out.

【0023】ここで、誘導テープ5は微細なビーズを含
んでいるため反射光の空間分布特性が特殊で、反射光が
入射光の光軸に近い範囲に分布する特性を有している。
このため、図3に示したように、入射角及び反射角を斜
めに取ることで、一般の床面とは見掛け上の反射率を大
きく変えることができる。一般の面は乱反射面と鏡面反
射面の中間の反射光空間分布特性を有し、斜めの入射光
に対する元へ戻る反射光の率は低い。
Here, since the guiding tape 5 contains fine beads, the spatial distribution characteristic of the reflected light is special, and the reflected light is distributed in the range close to the optical axis of the incident light.
Therefore, as shown in FIG. 3, the apparent reflectance can be largely changed from that of a general floor surface by obliquely taking the incident angle and the reflection angle. A general surface has a spatial distribution characteristic of reflected light in the middle of a diffuse reflection surface and a specular reflection surface, and the ratio of reflected light returning to the original to oblique incident light is low.

【0024】先に示した、誘導テープ5の幅50mmと、
検出系101aから101cの間隔30mmの関係から、
車体2の横ずれ量yと出力信号103aから103cの
関係は以下の通りである。車体2が誘導テープ5に5mm
未満の誤差で正対しているときは、出力信号103aか
ら103cは順にオフ、オン、オフである。横ずれyが
5mm以上25mm未満の場合の出力信号103aから10
3cは順にオフ、オン、オンである。さらに、横ずれy
が25mm以上55mm未満の場合の出力信号103aから
103cは順にオフ、オフ、オンである。この関係は逆
方向にずれが発生し、横ずれyの値が負になっても出力
信号103aと出力信号103cが入れ替わるのみで同
様である。
The width of the guide tape 5 shown above is 50 mm,
From the relationship of 30 mm distance between the detection systems 101a to 101c,
The relationship between the lateral displacement amount y of the vehicle body 2 and the output signals 103a to 103c is as follows. The body 2 is 5 mm on the guide tape 5.
When facing each other with an error of less than, the output signals 103a to 103c are sequentially off, on, and off. Output signal 103a to 10 when the lateral displacement y is 5 mm or more and less than 25 mm
3c is off, on, and on in that order. Furthermore, the lateral shift y
Is between 25 mm and less than 55 mm, the output signals 103a to 103c are OFF, OFF, and ON in that order. This relationship is the same except that the output signal 103a and the output signal 103c are exchanged even when the deviation occurs in the opposite direction and the value of the lateral deviation y becomes negative.

【0025】この関係を、検出装置1の読みYを、検出
分解能区間の中心値で代表させ、グラフ化したものが図
4である。この図から分かるように、検出分解能区間の
幅は、中心部の区間ほど狭く、外側の区間ほど広くなっ
ている。ここで、各々の検出分解能区間について、求心
目標速度、加速度を表にまとめたものが図13である。
この加速度は外側の区間の目標速度で現在の区間に入っ
てきた速度を、現在の区間を通過する時間で現在の区間
の目標速度に減速しきる値に決めている。最内区間の場
合は、区間の中心で丁度止めきる値に取っている。本実
施例では、中心部分の検出分解能区間を狭くしているた
め、平均分解能が低いにも関わらず制御の収束位置の誤
差を少なくでき、さらに、内側の区間の加速度を小さく
しているため、脱線の恐れが少ないにも関わらず、制御
の収束位置付近での加速度を小さくできた。
FIG. 4 is a graph showing this relationship by representing the reading Y of the detection device 1 by the central value of the detection resolution section. As can be seen from this figure, the width of the detection resolution section is narrower in the central section and wider in the outer section. Here, FIG. 13 shows a table of the centripetal target velocities and accelerations for each detection resolution section.
This acceleration is set to a value such that the speed that has entered the current section at the target speed of the outer section can be decelerated to the target speed of the current section in the time that passes through the current section. In the case of the innermost section, the value is set so that it can be stopped exactly at the center of the section. In the present embodiment, since the detection resolution section in the central portion is narrowed, the error in the convergence position of control can be reduced despite the low average resolution, and further the acceleration in the inner section is reduced, Although the risk of derailment is low, the acceleration near the control convergence position could be reduced.

【0026】上記の横ずれ方向の制御の方法についてフ
ローチャートにしたものが図5である。現在の横方向の
移動速度Vyは、前回の出力結果を使用できるものとす
る。次に現在の検出装置1の読みYによって、求心目標
速度、加速度を定める。ここで横方向の移動速度Vyが
求心目標速度でなければ、定められた加速度で加減速を
行ない求心目標速度に近づける。
FIG. 5 is a flowchart showing the method of controlling the lateral deviation direction. The current output speed Vy in the horizontal direction can use the previous output result. Next, the centripetal target velocity and acceleration are determined by the current reading Y of the detection device 1. Here, if the lateral movement speed Vy is not the centripetal target speed, acceleration / deceleration is performed at a predetermined acceleration to bring it closer to the centripetal target speed.

【0027】以上の方法に依り、幾つかの地点から横方
向の移動速度Vy=0で制御を開始した場合の、直線走
行時の収束状況を図6に示す。同様に10mmの地点か
ら幾つかの横方向の移動速度Vyで制御を開始した場合
の直線走行時の収束状況を図7に示す。これらの図から
分かるように、速度の急変は発生せず、振動を引き起こ
さず滑らかな制御が実現できている。さらに中心の区間
に入ったとき、ある程度の横方向への速度を有していれ
ば区間の中心付近で停止できるので、次に加速度を発生
させるまでの時間が長く取れる。これは従来のオンオフ
制御では実現できなかった機能である。
FIG. 6 shows the state of convergence during straight running when the control is started at several points at the lateral moving speed Vy = 0 according to the above method. Similarly, FIG. 7 shows a convergence state during straight running when control is started from a point of 10 mm at several lateral movement speeds Vy. As can be seen from these figures, a sudden change in speed does not occur, and smooth control can be realized without causing vibration. Further, when the vehicle enters the central section, if it has a certain lateral speed, it can be stopped near the center of the section, so that it takes a long time until the next acceleration is generated. This is a function that cannot be realized by the conventional on / off control.

【0028】ここまでで、誘導テープ5に対する追従走
行は一応可能となるが、図8に示すように、車体2全体
が誘導テープ5に対し角度ずれθをもっている場合、角
度ずれθを補正する項が必要である。角度ずれθと前後
の検出装置1の読みyf,ybの関係は前後の検出装置
1の距離とアークタンジェントの関係を有する。さら
に、検出装置1が車体2に対しオフセットを持っている
場合、角度ずれθは横方向のずれYも示す。図14に本
実施例における前後の検出装置1の読みyf,ybと横
方向のずれY及び角度ずれθの関係を示す。理想的には
角度ずれθの補償も横ずれYの補償と同様に評価するこ
とが好ましい。本実施例では前後の検出装置1の間隔が
充分広いため、角度ずれθの分解能が充分高く、角速度
をVω=θ[rad/sec]としても問題が少ないの
で簡便に補償している。
Up to this point, the follow-up running with respect to the guiding tape 5 is possible, but as shown in FIG. 8, when the entire vehicle body 2 has an angle deviation θ with respect to the guiding tape 5, a term for correcting the angle deviation θ. is necessary. The relationship between the angle deviation θ and the readings yf and yb of the front and rear detection devices 1 has a relationship with the distance between the front and rear detection devices 1 and the arc tangent. Further, when the detection device 1 has an offset with respect to the vehicle body 2, the angular deviation θ also indicates the lateral deviation Y. FIG. 14 shows the relationship between the readings yf and yb of the front and rear detectors 1 and the lateral shift Y and angular shift θ in this embodiment. Ideally, it is preferable to evaluate the angle deviation θ as well as the lateral deviation Y. In the present embodiment, since the interval between the front and rear detection devices 1 is sufficiently wide, the resolution of the angle deviation θ is sufficiently high, and even if the angular velocity is Vω = θ [rad / sec], there is little problem, and therefore compensation is simply performed.

【0029】なお、本実施例では、前後方向の速度と横
方向の速度は独立に制御できる車輪3の構造であるた
め、横ずれの補正は前後方向への移動速度Vxは直接関
係しない。しかし、図6に示すように車体2全体が誘導
テープ5に対し角度ずれθをもっている場合、車体2の
座標系と床4の座標系が異なるため、前への走行速度V
xによって横方向への移動速度Vy’が発生する。この
関係は、Vy’=Vx・sinθである。この成分を打
ち消すため−Vy’の横方向の速度成分を補償する。前
進速度Vxは台車走行ダイアグラムに則った通常の加減
速制御で良い。
In the present embodiment, the longitudinal velocity and the lateral velocity are independently controlled, so that the lateral deviation correction is not directly related to the longitudinal velocity Vx. However, as shown in FIG. 6, when the entire vehicle body 2 has an angle deviation θ with respect to the guiding tape 5, the coordinate system of the vehicle body 2 and the coordinate system of the floor 4 are different, so that the traveling speed V to the front is reduced.
A moving speed Vy ′ in the lateral direction is generated by x. This relationship is Vy ′ = Vx · sin θ. To cancel this component, the lateral velocity component of -Vy 'is compensated. The forward speed Vx may be a normal acceleration / deceleration control according to the bogie traveling diagram.

【0030】以上から定められたVx,Vy,Vωから
各車輪3の回転数を決め、各車輪3を駆動するサーボモ
ータを駆動する。ここで、注目すべき点は、ここまでの
制御方法は前進速度Vxの正負に関わらない点である。
つまり、後退時にもまったく同一の制御方法で良い。さ
らに、横行時にも同様の制御で良いが、検出装置1を前
後のものから左右のものに切替ることと、角度ずれθの
評価が検出装置1の間隔に依存するため、図14と同様
のテーブルを別途用意する。
The number of rotations of each wheel 3 is determined from Vx, Vy, and Vω determined as described above, and the servo motor for driving each wheel 3 is driven. Here, the point to be noted is that the control method up to this point does not relate to the positive or negative of the forward speed Vx.
That is, the same control method may be used even when the vehicle moves backward. Further, the same control may be performed during traverse, but since the detection device 1 is switched from the front-rear one to the left-right one and the evaluation of the angular deviation θ depends on the interval of the detection device 1, the same as in FIG. Prepare a separate table.

【0031】図9に、本実施例の全体構成を示すブロッ
ク図を示す。中央演算回路601は、固定記憶回路60
2に記憶されたプログラムに従い、検出装置1からのデ
ータを入力装置604を介して読取り、固定記憶回路6
02に記憶された係数表を用いて可変記憶回路603の
上で必要な車体2の走行速度の各成分Vx,Vy,Vω
を計算し、さらにサーボモータ302に出力回路605
を介して回転数を指示する。サーボモータ302は減速
装置303を介して車輪301を駆動している。またサ
ーボモータ302には、パルス発生装置304、ブレー
キ装置305が付属しており、パルス発生回路304の
信号は、係数回路606を介して中央演算回路601か
ら参照され走行距離の計算に使用される。ブレーキ回路
304は、停車時にサーボのドリフトを防止し確実に停
止するため、サーボモータ302に回転数0を指令した
後、出力回路605を介して中央演算回路601に駆動
される。
FIG. 9 is a block diagram showing the overall structure of this embodiment. The central processing circuit 601 is a fixed storage circuit 60.
2 reads data from the detection device 1 via the input device 604 according to the program stored in the fixed storage circuit 6
02. Each coefficient Vx, Vy, Vω of the traveling speed of the vehicle body 2 required on the variable storage circuit 603 using the coefficient table stored in 02.
And output circuit 605 to the servo motor 302.
Specify the rotation speed via. The servo motor 302 drives the wheels 301 via the speed reducer 303. A pulse generator 304 and a brake device 305 are attached to the servomotor 302, and the signal of the pulse generator 304 is referred to from the central processing circuit 601 via the coefficient circuit 606 and used for calculation of the traveling distance. .. The brake circuit 304 is driven by the central processing circuit 601 through the output circuit 605 after instructing the servo motor 302 to rotate at 0 in order to prevent the servo from drifting and to reliably stop when the vehicle is stopped.

【0032】上記実施例の自走台車に移載装置7、被搬
送物置き台8を設けたものを搬送装置として使用した製
造ラインの斜視図を図10に示す。本実施例によれば、
横行が振動の少ない自走台車が安価に得られるため、各
種の製造装置9aから9cを並べたラインが容易に構築
できる。
FIG. 10 shows a perspective view of a manufacturing line in which the self-propelled carriage of the above embodiment provided with the transfer device 7 and the object-carrying base 8 is used as a carrier device. According to this embodiment,
Since a self-propelled carriage having less traversing vibration can be obtained at low cost, a line in which various manufacturing apparatuses 9a to 9c are arranged can be easily constructed.

【0033】以上、本発明の一実施例について述べた
が、上記以外の構成で実施することも可能である。
Although one embodiment of the present invention has been described above, the present invention can be implemented with a configuration other than the above.

【0034】前記実施例では車輪に特殊な構造のものを
使用したが、通常の車輪を用い操舵輪の方向を変えるこ
とで操舵する場合でも、横方向の加速度を操舵角に読み
換えることで実施できる。
Although the wheels having a special structure are used in the above-described embodiment, even when steering is performed by changing the direction of the steered wheels using the normal wheels, the lateral acceleration is read as the steering angle. it can.

【0035】前記実施例では、誘導テープに特殊な光学
特性のものを使用したが、床面の状態により通常の白色
テープ、金属テープ等を用いることもできる。この場合
は検出系101aから101cの床面に対する角度を直
角にするか、照明装置と検出素子を床の法線を含む面に
対し面対称に配置する。また、照明装置、誘導テープに
色付きのものを用いた場合、検出素子の前面に色フィル
タを設けることで外乱光の影響を少なくすることもでき
る。この場合安価な誘導テープを使用できるので、コス
ト低減の効果がある。
In the above embodiment, the guide tape having special optical characteristics was used, but a normal white tape, a metal tape or the like may be used depending on the condition of the floor surface. In this case, the angles of the detection systems 101a to 101c with respect to the floor surface are set to a right angle, or the illuminating device and the detection element are arranged symmetrically with respect to the plane including the normal line of the floor. Further, when the illuminating device and the colored tape are used, the influence of ambient light can be reduced by providing a color filter in front of the detection element. In this case, since an inexpensive guide tape can be used, there is an effect of cost reduction.

【0036】また、検出装置として、うず電流センサ・
静電容量式センサの如き近接物の物性を検出するセンサ
を用いることもできる。うず電流センサの場合、床面に
金属板を設置し誘導目標とする。この場合、床面と誘導
目標の導電率の違いが検出できるので、これを分別しセ
ンサのオンオフとして検出すればよい。この場合光学的
センサと比べ床面の汚れの影響を受けにくいという利点
がある。
Further, an eddy current sensor,
It is also possible to use a sensor that detects the physical properties of a proximity object such as a capacitance sensor. In the case of an eddy current sensor, install a metal plate on the floor and use it as an induction target. In this case, the difference in conductivity between the floor surface and the guide target can be detected, and this can be separated and detected as ON / OFF of the sensor. In this case, there is an advantage that it is less likely to be affected by dirt on the floor surface as compared with the optical sensor.

【0037】さらに、床面の形状を変化させることで誘
導目標とすることも可能である。つまり、検出装置を超
音波センサ・うず電流式センサ・静電容量式センサ等の
距離センサを使用して構成し、床面の一定以上の凹凸を
検出する。床面と誘導目標の物性が大きく変えられない
場合、例えば床面が金属製グレーチング等の穴開き材の
場合に有効である。穴開き材の場合、誘導目標は床面か
ら突起した形状とし、穴の影響を受けないようにする。
Furthermore, it is also possible to set a guide target by changing the shape of the floor surface. That is, the detection device is configured by using a distance sensor such as an ultrasonic sensor, an eddy current sensor, or an electrostatic capacitance sensor, and detects a certain level of unevenness on the floor surface. This is effective when the physical properties of the floor surface and the guidance target cannot be largely changed, for example, when the floor surface is a perforated material such as metal grating. In the case of perforated materials, the guide target should have a shape protruding from the floor so that it is not affected by the holes.

【0038】同様に、床面が非鉄金属製グレーチングの
場合、検出装置をホール素子・コイル等の電磁界検出素
子とし、誘導目標を磁気テープ・ゴム磁石等の帯磁した
ものまたは高周波を印加した電線で構成しても実施でき
る。この場合、床面に大きな凹凸を設けず、汚染・摩耗
の影響も受けにくいという利点がある。
Similarly, when the floor surface is made of non-ferrous metal, the detecting device is an electromagnetic field detecting element such as a hall element or a coil, and the induction target is a magnetic tape or a rubber magnet or the like or a wire to which a high frequency is applied. It can also be implemented by configuring. In this case, there is an advantage that the floor surface is not provided with large unevenness and is not easily affected by contamination and abrasion.

【0039】また、第1の実施例では誘導テープ5の幅
を50mm、検出系101aから101cのピッチを3
0mmとしたが、この他の構成も可能である。例えば、
検出系が偶数個の場合、最内検出系101のピッチを誘
導テープ5より僅かに狭い42mmとし、外側の検出系
101のピッチを96mmとした検出装置を図11に示
す。この場合検出系101aから101dまでの出力信
号103aから103dの値は、順に、横ずれ4mmま
ではオフ/オン/オン/オフ、4mmから23mmまで
はオフ/オフ/オン/オフ、23mmから46mmまで
はオフ/オフ/オン/オン、46mmから73mmまで
はオフ/オフ/オフ/オンになる。この関係はずれの方
向が逆の場合も逆順で成り立つ。以上の関係をグラフに
まとめ図12に示す。この検出系101の配置でも位置
分解能は内側の区間ほど細かくなっている。この実施例
では外側の区間を多くとっているので、検出の分解能を
劣化させずに検出範囲を拡げられる利点がある。
In the first embodiment, the width of the guiding tape 5 is 50 mm and the pitch between the detection systems 101a to 101c is 3 mm.
Although it is set to 0 mm, other configurations are also possible. For example,
When the number of detection systems is an even number, FIG. 11 shows a detection device in which the pitch of the innermost detection system 101 is 42 mm, which is slightly narrower than that of the guiding tape 5, and the pitch of the outer detection system 101 is 96 mm. In this case, the values of the output signals 103a to 103d from the detection systems 101a to 101d are, in order, off / on / on / off up to a lateral displacement of 4 mm, off / off / on / off from 4 mm to 23 mm, and from 23 mm to 46 mm. OFF / OFF / ON / ON, OFF / OFF / OFF / ON from 46mm to 73mm. This relationship holds in reverse order even when the direction of deviation is opposite. The above relationship is summarized in a graph and shown in FIG. Even in the arrangement of the detection system 101, the position resolution is finer in the inner section. In this embodiment, since the outer section is large, there is an advantage that the detection range can be expanded without deteriorating the detection resolution.

【0040】[0040]

【発明の効果】本発明に依れば、安価で小形の低分解能
の検出装置を使用しても、半導体製造工程におけるウェ
ハの如き振動を嫌う物の搬送に使用しえる、滑らかで振
動の少ない、かつ経年変化が少ない安全確実な制御の自
走台車を実現できる。
According to the present invention, even if an inexpensive, small-sized, low-resolution detector is used, it can be used to convey an object such as a wafer that is not susceptible to vibration in the semiconductor manufacturing process, and it is smooth and has little vibration. In addition, it is possible to realize a self-propelled bogie with safe and reliable control with little change over time.

【図面の簡単な説明】[Brief description of drawings]

【図1】検出装置等の配置を示す平面図である。FIG. 1 is a plan view showing an arrangement of a detection device and the like.

【図2】検出装置等の配置を示す立面図である。FIG. 2 is an elevational view showing the arrangement of a detection device and the like.

【図3】検出装置等の配置を示す側面図である。FIG. 3 is a side view showing the arrangement of detection devices and the like.

【図4】台車の横ずれと検出装置の読みの関係を示すグ
ラフである。
FIG. 4 is a graph showing the relationship between the lateral displacement of the carriage and the reading of the detection device.

【図5】横ずれ方向の制御の方法を示すフローチャート
である。
FIG. 5 is a flowchart showing a method of controlling a lateral deviation direction.

【図6】直線走行における制御の収束状況しめすグラフ
である。
FIG. 6 is a graph showing the convergence of control in straight running.

【図7】図6と別な条件における制御の収束状況しめす
グラフである。
FIG. 7 is a graph showing a control convergence state under conditions different from those in FIG.

【図8】車体が誘導テープに対し角度ずれをもつ場合を
示す平面図である。
FIG. 8 is a plan view showing a case where the vehicle body has an angle deviation with respect to the guiding tape.

【図9】全体構成を示すブロック図である。FIG. 9 is a block diagram showing an overall configuration.

【図10】本発明を使用した製造ラインの斜視図であ
る。
FIG. 10 is a perspective view of a manufacturing line using the present invention.

【図11】別の配置の検出装置を示す立面図である。FIG. 11 is an elevational view showing another arrangement of the detection device.

【図12】台車の横ずれと別の配置の検出装置の読みの
関係を示すグラフである。
FIG. 12 is a graph showing the relationship between the lateral displacement of the carriage and the reading of the detection device in another arrangement.

【図13】検出分解能区間の求心目標速度・加速度を示
す表図である。
FIG. 13 is a table showing a centripetal target velocity / acceleration in a detection resolution section.

【図14】前後の検出装置の読みと横方向のずれ・角度
ずれの関係を示す表図である。
FIG. 14 is a table showing the relationship between readings by the front and rear detection devices and lateral deviation / angle deviation.

【符号の説明】[Explanation of symbols]

1 検出装置 2 車体 3 車輪 4 床 5 誘導テープ 6 制御装置 7 移載装置 8 披搬送物 9 製造装置 DESCRIPTION OF SYMBOLS 1 Detection device 2 Vehicle body 3 Wheel 4 Floor 5 Guidance tape 6 Control device 7 Transfer device 8 Transferred goods 9 Manufacturing device

Claims (14)

【特許請求の範囲】[Claims] 【請求項1】 オンオフ式の検出手段を複数個配列した
低分解能のデジタル式検出装置を用いて、追従制御を行
なう自走台車の制御装置において、 複数個の検出分解能区間における各々の求心目標速度
を、全区間の中心に近づくほど漸減する値に定め、前記
各々の検出分解能区間における加速度を、その外側に隣
接する検出分解能区間の求心目標速度から、その検出分
解能区間を通過する時間内において、前記求心目標速度
に減速しうる加速度に定め、前記速度及び加速度を演算
する演算装置と、この演算装置による演算結果の出力装
置とを備えたことを特徴とする自走台車の制御装置。
1. A self-propelled carriage control device for performing follow-up control using a low-resolution digital detection device in which a plurality of on-off detection means are arranged, wherein each centripetal target velocity in a plurality of detection resolution sections. Is set to a value that gradually decreases toward the center of the entire section, and the acceleration in each of the detection resolution sections, from the centripetal target velocity of the detection resolution section adjacent to the outer side, within the time that passes through the detection resolution section, A control device for a self-propelled carriage, comprising: a calculation device that calculates an acceleration that can be decelerated to the centripetal target speed, and that calculates the speed and the acceleration; and an output device that outputs a calculation result by the calculation device.
【請求項2】 請求項1記載において、複数個の求心系
分解能区間の幅を、全区間の中心に近づくほど狭く設定
することで、制御可能なセンシング領域を狭めることな
く、全区間の中心付近の検出系分解能を高め、かつ外側
の区間における加速度を必要以上に大きくすることなく
設定したことを特徴とする自走台車の制御装置。
2. The method according to claim 1, wherein the widths of the plurality of centripetal system resolution sections are set to be narrower toward the center of all sections, so that the controllable sensing area is not narrowed and the vicinity of the center of all sections is set. The control device for a self-propelled carriage, characterized in that the detection system resolution is increased and the acceleration in the outer section is set without increasing more than necessary.
【請求項3】 請求項1もしくは請求項2記載におい
て、検出系分解能区間における加速度の値を、全区間の
中心に近づくほど小さく設定することで、正常な中心付
近での過大な加速振動の発生を招くことなく、外側の区
間における加速度を充分に大きく設定したことを特徴と
する自走台車の制御装置。
3. The acceleration value in the detection system resolution section according to claim 1 or 2, wherein the acceleration value in the detection system resolution section is set to be smaller toward the center of all sections, so that excessive acceleration vibration is generated near the normal center. A control device for a self-propelled carriage, characterized in that the acceleration in the outer section is set to a sufficiently large value without inviting.
【請求項4】 請求項1ないし請求項3記載において、
前記検出装置を直線上に配置した複数の光学的検出手段
から構成し、反射率・反射角度分布もしくは色彩が周囲
と異なったテープを床又は天井面に貼り付けた誘導テー
プの位置を、前記検出装置により検出することにより、
誘導走行を行なうことを特徴とする自走台車の制御装
置。
4. The method according to claim 1, wherein
The detecting device is composed of a plurality of optical detecting means arranged on a straight line, and the position of the guiding tape in which a tape whose reflectance / reflection angle distribution or color is different from the surroundings is attached to the floor or ceiling surface is detected. By detecting with the device,
A control device for a self-propelled carriage that is characterized by performing guided travel.
【請求項5】 請求項1ないし請求項3記載において、
前記検出装置を直線上に配置した複数のうず電流式等の
材質の違いを検出する検出手段から構成し、床面に金属
の薄板状の誘導テープを設け、この誘導テープの材質と
床面の材質の違いをもとに前記検出装置によりその位置
を検出することにより、誘導走行を行なうことを特徴と
する自走台車の制御装置。
5. The method according to any one of claims 1 to 3,
The detecting device is composed of a plurality of detecting means for detecting a difference in material such as eddy current type arranged on a straight line, and a thin metal guide tape is provided on the floor, and the material of the guide tape and the floor A control device for a self-propelled carriage, characterized in that guide traveling is performed by detecting the position of the detection device based on a difference in material.
【請求項6】 請求項1ないし請求項3記載において、
前記検出装置を直線上に配置した複数の距離検出手段か
ら構成し、床面に板状の突起物を誘導目標として設け、
この誘導目標と床面との距離の違いをもとに前記検出装
置によってその位置を検出することにより、誘導走行を
行なうことを特徴とする自走台車の制御装置。
6. The method according to any one of claims 1 to 3,
The detection device is composed of a plurality of distance detection means arranged on a straight line, a plate-shaped projection is provided on the floor as a guide target,
A control device for a self-propelled carriage, characterized in that the position of the guide target is detected by the detecting device based on the difference in distance between the guide target and the floor surface to perform guide travel.
【請求項7】 請求項1ないし請求項3記載において、
前記検出装置を直線上に配置した複数の、ホール素子、
コイル等の電磁気検出手段から構成し、床面に磁気テー
プ、ゴム磁石等の帯磁した帯状の誘導テープまたは高周
波を印加した誘導線を設け、この誘導テープ又は誘導線
の位置を前記検出装置によって検出することにより、誘
導走行を行なうことを特徴とする自走台車の制御装置。
7. The method according to any one of claims 1 to 3,
A plurality of Hall devices, in which the detection device is arranged on a straight line,
It is composed of an electromagnetic detecting means such as a coil, and a magnetic tape, a magnetized strip-shaped induction tape such as a rubber magnet or an induction wire to which a high frequency is applied is provided on the floor surface, and the position of this induction tape or the induction wire is detected by the detection device. A control device for a self-propelled carriage, characterized by performing guided traveling by doing so.
【請求項8】 請求項1ないし請求項7記載において、
前記検出手段の中心付近の設置間隔を、誘導テープの定
位置と同一の中心線上の左右に前記誘導テープの幅より
わずかに狭く配置したことを特徴とする自走台車の制御
装置。
8. The method according to claim 1, wherein
A control device for a self-propelled carriage, characterized in that an installation interval near the center of the detecting means is arranged on the left and right on the same center line as the fixed position of the guide tape, slightly narrower than the width of the guide tape.
【請求項9】 請求項1ないし請求項7記載において、
前記検出手段の設置間隔を、誘導テープの定位置の中心
線上及び中心線をはさみ左右に前記誘導テープの幅の1
/2よりわずかに広く配置したことを特徴とする自走台
車の制御装置。
9. The method according to claim 1, wherein
The detecting means is installed at an interval of 1 cm of the width of the guide tape on the center line of the guide tape at a fixed position and on the left and right sides of the center line.
A control device for a self-propelled carriage characterized by being placed slightly wider than / 2.
【請求項10】 請求項1ないし請求項9記載におい
て、前記検出装置を、台車の前後に備え、検出分解能区
間を台車の横ずれy、角度ずれθ、の2成分に分け制御
する演算装置と、全方向に走行可能な走行機構を設けた
ことを特徴とする自走台車の制御装置。
10. The arithmetic device according to claim 1, wherein the detection device is provided in front of and behind a bogie, and a detection resolution section is divided into two components of lateral deviation y and angular deviation θ of the bogie, and a control device. A control device for a self-propelled carriage having a traveling mechanism capable of traveling in all directions.
【請求項11】 請求項10記載において、前記演算装
置にその時の台車進行速度vを入力し、v・sinθか
らなる横ずれの変化速度を補正したことを特徴とする自
走台車の制御装置。
11. The control apparatus for a self-propelled vehicle according to claim 10, wherein the vehicle traveling speed v at that time is input to the arithmetic unit to correct a lateral deviation change rate of v · sin θ.
【請求項12】 請求項1ないし請求項11記載におい
て、前記演算装置を加算回路、積算回路等からなるハー
ドウェア演算回路で構成したことを特徴とする自走台車
の制御装置。
12. A control device for a self-propelled carriage according to claim 1, wherein the arithmetic device is composed of a hardware arithmetic circuit including an adder circuit, an integrating circuit, and the like.
【請求項13】 請求項1ないし請求項11記載におい
て、前記演算装置を中央演算装置、固定記憶装置、可変
記憶装置、デジタル/アナログ変換装置等からなるハー
ドウェアと、記憶装置に納められたソフトウェアから構
成したことを特徴とする自走台車の制御装置。
13. The hardware according to claim 1, wherein the arithmetic unit is a hardware including a central arithmetic unit, a fixed memory device, a variable memory device, a digital / analog converter, and the like, and software stored in the memory device. A control device for a self-propelled carriage, which is configured by
【請求項14】 請求項1から請求項13における自走
台車を使用したことを特徴とする製造ライン。
14. A production line using the self-propelled carriage according to any one of claims 1 to 13.
JP3257113A 1991-09-10 1991-09-10 Controller for self-traveling truck Pending JPH0573139A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3257113A JPH0573139A (en) 1991-09-10 1991-09-10 Controller for self-traveling truck

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3257113A JPH0573139A (en) 1991-09-10 1991-09-10 Controller for self-traveling truck

Publications (1)

Publication Number Publication Date
JPH0573139A true JPH0573139A (en) 1993-03-26

Family

ID=17301917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3257113A Pending JPH0573139A (en) 1991-09-10 1991-09-10 Controller for self-traveling truck

Country Status (1)

Country Link
JP (1) JPH0573139A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003131741A (en) * 2001-06-29 2003-05-09 Mitsubishi Heavy Ind Ltd Precise guidance system for mobile object
JP2008156977A (en) * 2006-12-26 2008-07-10 Nihon Bisoh Co Ltd Trackless type gondola apparatus
CN102707721A (en) * 2012-06-03 2012-10-03 西北工业大学 Unmanned dynamic ship model with localization and obstacle avoidance functions

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003131741A (en) * 2001-06-29 2003-05-09 Mitsubishi Heavy Ind Ltd Precise guidance system for mobile object
JP2008156977A (en) * 2006-12-26 2008-07-10 Nihon Bisoh Co Ltd Trackless type gondola apparatus
CN102707721A (en) * 2012-06-03 2012-10-03 西北工业大学 Unmanned dynamic ship model with localization and obstacle avoidance functions

Similar Documents

Publication Publication Date Title
JP3266747B2 (en) Vehicle guidance and travel control device
JPH0573139A (en) Controller for self-traveling truck
JP2000148247A (en) Three-wheel steered unmanned carrier
KR100198023B1 (en) Steering angle control apparatus of a manless car
JPH01282615A (en) Position correcting system for self-travelling unmanned vehicle
JPH0276009A (en) Unmanned vehicle operating system
JP3846828B2 (en) Steering angle control device for moving body
JP2000010632A (en) Stopping position deciding device of automated guided vehicle
JPS6247711A (en) Drive controller for unmanned carrier
JPS59132009A (en) Automatic operation controller of unattended vehicle
JPS61168023A (en) Guiding device of unmanned carrier car
JPS59140520A (en) Running control system
JP2002267411A (en) Conveyance vehicle
JP2841736B2 (en) How to control unmanned vehicles
JP3144156B2 (en) Guidance control device for automatic guided vehicles
JPH0276008A (en) Automatic guidance and control equipment for moving body
JP2696823B2 (en) Driverless vehicle guidance device
JPH01137310A (en) Guiding system for unmanned carrier
JPH05108155A (en) Method for controlling attitude getting beneath wagon for unmanned wagon tracter
JPH05274031A (en) Position detector and position and attitude angle detector for unmanned carriage
JP2847673B2 (en) Body guidance method for automatic guided vehicles
JPH04257006A (en) Course out detecting method for unmanned vehicle
JPS60225208A (en) Optical guide device of unattended carriage
JPS62221707A (en) Gyro-guide type unmanned carrier
JPS6233609B2 (en)