JPH05108155A - Method for controlling attitude getting beneath wagon for unmanned wagon tracter - Google Patents

Method for controlling attitude getting beneath wagon for unmanned wagon tracter

Info

Publication number
JPH05108155A
JPH05108155A JP3270766A JP27076691A JPH05108155A JP H05108155 A JPH05108155 A JP H05108155A JP 3270766 A JP3270766 A JP 3270766A JP 27076691 A JP27076691 A JP 27076691A JP H05108155 A JPH05108155 A JP H05108155A
Authority
JP
Japan
Prior art keywords
wagon
vehicle
unmanned
attitude
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3270766A
Other languages
Japanese (ja)
Other versions
JP3143802B2 (en
Inventor
Junpei Kanazawa
順平 金沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Electric Co Ltd
Original Assignee
Shinko Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Electric Co Ltd filed Critical Shinko Electric Co Ltd
Priority to JP03270766A priority Critical patent/JP3143802B2/en
Publication of JPH05108155A publication Critical patent/JPH05108155A/en
Application granted granted Critical
Publication of JP3143802B2 publication Critical patent/JP3143802B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a method for controlling the attitude getting beneath the wagon for the unmanned wagon tractor capable of allowing the attitude of the unmanned tractor to follow up the attitude of the wagon which is located at an arrangement position and eliminating the need for a fixing facility on a traveling path such as a wagon guide without restraining the attitude of the wagon. CONSTITUTION:An unmanned tractor 20 is provided with a radio type right range finding sensor 30R and a radio type left range finding sensor 30L measuring the right and left distances in the direction of a vehicle width between the tractor and a wagon 101 and detects the deviated width of the distance in the right and left vehicles and the deviated angle of a vehicle attitude by inputting in sampling the output of both the measurement sensors. When the deviated amount exceeds an allowable value, a guiding control is switched over to a programmed control, a required correction operation angle is calculated and a staring control is executed while utilizing the calculation value as an aimed control value.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、手押し台車(以下、ワ
ゴン車という)の下にもぐり込んで当該ワゴン車を牽引
する無人牽引車のもぐり込み姿勢制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for controlling a retracting posture of an unmanned towing vehicle which is pulled under a hand cart (hereinafter referred to as a wagon vehicle) and tow the wagon vehicle.

【0002】[0002]

【従来の技術】図3〜図5は工場における部品配達や病
院における配膳等に使用されるワゴン車の1例を示した
もので、この種のワゴン車10は4個の自由輪11を有
し、図6に示すように、その底板12には、工場や病院
の走行路面FLに向かって開口するピン受け孔14を有
する連結部13が設けられている。15は把持部であ
る。
2. Description of the Related Art FIGS. 3 to 5 show an example of a wagon vehicle used for parts delivery in factories, serving in hospitals, etc. A wagon vehicle 10 of this type has four free wheels 11. As shown in FIG. 6, the bottom plate 12 is provided with a connecting portion 13 having a pin receiving hole 14 that opens toward the traveling road surface FL of the factory or hospital. Reference numeral 15 is a gripping portion.

【0003】20は車高の低い無人牽引車であって、前
後に操舵軸を持つ駆動輪21を有し、工場や病院の床に
張られた誘導線(磁気テープや光学テープ等)22を検
出するためのガイドセンサー23、このガイドセンサ2
3の出力や走行路面FL上の各種制御用のマークを読み
取るマークセンサ(図示せず)の出力を取り込んで操舵
・駆動輪21の操舵角や回転速度を制御する制御装置2
4を搭載し、指令入力に基づき所定のプログラムを実行
して目的地から目的地への走行・停止を繰り返す。無人
牽引車20には、図6に示すように、車体カバーの天板
25から鉛直向きに突出可能に突出しピン26とこの突
出しピン26とラック・ピニオン係合して所定距離だけ
上下駆動するピン駆動部27を有している。28は光学
式の位置センサであって、無人牽引車20が突出しピン
26がピン受け孔14に上下に対向する位置まで走行す
ると、ワゴン車10の底板12外面に貼着してある光反
射板(図示せず)に対向して信号を発生する。
Reference numeral 20 denotes an unmanned towing vehicle having a low vehicle height, having drive wheels 21 having front and rear steering shafts, and a guide wire (magnetic tape, optical tape, etc.) 22 stretched on the floor of a factory or hospital. Guide sensor 23 for detecting, this guide sensor 2
The control device 2 for controlling the steering angle and the rotation speed of the steering / driving wheels 21 by taking in the output of the control sensor 3 and the output of a mark sensor (not shown) that reads various control marks on the traveling road surface FL.
4 is installed, a predetermined program is executed based on a command input, and traveling / stopping from destination to destination is repeated. As shown in FIG. 6, the unmanned towing vehicle 20 includes a protruding pin 26 capable of vertically protruding from a top plate 25 of a vehicle body cover, a pin for engaging with the protruding pin 26 and a rack and pinion, and vertically driving a predetermined distance. It has a drive unit 27. Reference numeral 28 denotes an optical position sensor, and when the unmanned towing vehicle 20 projects and the pin 26 travels up and down to face the pin receiving hole 14, the light reflecting plate adhered to the outer surface of the bottom plate 12 of the wagon vehicle 10. A signal is generated opposite to (not shown).

【0004】ワゴン車10は、走行路面FL上の予め定
められた配車位置へ人手により置かれる。無人牽引車2
0は、所定の配車位置に停められているワゴン車10の
下まで自動走行してワゴン車10の下にもぐり込み、位
置センサ28が出力すると、一旦、停止し、突出しピン
26を上昇させて、図6に示すように、ワゴン車10の
連結部13のピン受け孔14内へ突出させ、この連結動
作が終わると、次の目的地へ向かって走行を開始し、ワ
ゴン車10を牽引する。
The wagon vehicle 10 is manually placed at a predetermined vehicle allocation position on the traveling road surface FL. Unmanned towing vehicle 2
0 automatically travels to the bottom of the wagon vehicle 10 parked at a predetermined vehicle allocation position and slips under the wagon vehicle 10. When the position sensor 28 outputs, the vehicle temporarily stops and the protruding pin 26 is raised. 6, as shown in FIG. 6, the wagon vehicle 10 is made to project into the pin receiving hole 14 of the connecting portion 13 of the wagon vehicle 10, and when this connecting operation is completed, traveling to the next destination is started and the wagon vehicle 10 is towed. ..

【0005】[0005]

【発明が解決しようとする課題】ワゴン車10は、人手
により、予め定められている配車位置に停められるもの
である上、前記のように全車輪が自由輪11であるた
め、正しい姿勢で、精度良く停めることが難しい。例え
ば、突出しピン26の外径d2 が30mm、ピン受け孔
14の内径d1 が40mmである場合、無人牽引車20
の進行方向の停止精度がプラスマイナス5mmである
と、横方向に許容されるずれ(横ずれ)は0mmしかな
く、停止精度がプラスマイナス0mmの場合は、横方向
に許容されるずれ(横ずれ)プラスマイナス5mmとな
る。すなわち、図7と図8から理解されるように、無人
牽引車の進行方向の停止誤差が大きくなる程、横方向に
許容されるずれ余裕は小さくなり、実際には、このよう
な数値の精度でワゴン車10を停めることは難しいの
で、ワゴン車10と無人牽引車20を、常に自動的にピ
ン連結させることは不可能である。
The wagon vehicle 10 is manually stopped at a predetermined vehicle allocation position and, as described above, all the wheels are free wheels 11, so that the vehicle is in a correct posture. It is difficult to stop accurately. For example, when the outer diameter d 2 of the protruding pin 26 is 30 mm and the inner diameter d 1 of the pin receiving hole 14 is 40 mm, the unmanned towing vehicle 20
If the stopping accuracy in the advancing direction is ± 5 mm, the lateral deviation (lateral deviation) is only 0 mm, and if the stopping accuracy is ± 0 mm, the lateral deviation (lateral deviation) is plus. It will be -5 mm. That is, as understood from FIG. 7 and FIG. 8, the larger the stop error in the traveling direction of the unmanned towing vehicle, the smaller the deviation margin that is allowed in the lateral direction. Since it is difficult to stop the wagon vehicle 10 with, it is impossible to always automatically and automatically pin-connect the wagon vehicle 10 and the unmanned towing vehicle 20.

【0006】このため、配車位置に機械的なガイド(所
定間隔で平行するバー)を設けてワゴン車10の姿勢を
規制する考え方があるが、ガイドが人の通行の邪魔にな
る他、ガイドとワゴン車とを接触させないために、両者
間に狭い間隙を取る必要があり、ワゴン車の車幅精度の
バラツキをおさえなくてはならないので、ワゴン車が高
価になるといった問題が発生する。
For this reason, there is a concept that a mechanical guide (bars parallel to each other at predetermined intervals) is provided at the vehicle dispatching position to regulate the posture of the wagon vehicle 10. However, the guide not only interferes with the passage of people but also serves as a guide. In order to avoid contact with the wagon vehicle, it is necessary to make a narrow gap between them, and variations in the vehicle width accuracy of the wagon vehicle must be suppressed, which causes a problem that the wagon vehicle becomes expensive.

【0007】本発明はこの問題を解消するためになされ
たもので、ワゴン車の姿勢を規制するのではなく、無人
牽引車のもぐり込み姿勢を配車位置にあるワゴン車の姿
勢に追従させ、ワゴン車用ガイド等の走行路上の固定設
備を不要にすることができるワゴン車用無人牽引車のも
ぐり込み姿勢制御方法を提供することを目的とする。
The present invention has been made in order to solve this problem. Instead of restricting the attitude of the wagon vehicle, the unmanned tow vehicle's retracting attitude is made to follow the attitude of the wagon vehicle in the dispatch position, and the wagon An object of the present invention is to provide a method for controlling the retracting posture of an unmanned tow vehicle for a wagon that can eliminate the need for fixed equipment such as a vehicle guide on the traveling path.

【0008】[0008]

【課題を解決するための手段】本考案は上記目的を達成
するため、請求項1では、無人牽引車が、ワゴン車との
車幅方向の左右車間距離を測定するための無線式右測距
センサと左測距センサを有し、両測距センサの出力をサ
ンプリング入力して左右車間距離のずれ幅および車体姿
勢のずれ角度を検出し、このずれ量が許容値を超えた場
合には、誘導制御からプログラム制御に切換えて、所要
修正操舵角を演算し、この演算値を制御目標値としてス
テアリング制御を行う構成とした。
In order to achieve the above object, the present invention provides a wireless right distance measuring system according to claim 1, wherein an unmanned towing vehicle measures a distance between left and right vehicles in a vehicle width direction with a wagon vehicle. It has a sensor and a left distance measuring sensor, and outputs the outputs of both distance measuring sensors by sampling to detect the deviation width of the distance between the left and right vehicles and the deviation angle of the vehicle body posture, and when this deviation amount exceeds the allowable value, The guidance control is switched to the program control, the required corrected steering angle is calculated, and the steering control is performed using the calculated value as the control target value.

【0009】請求項2では、左右車間距離のずれ幅が許
容値を超えた横ずれ時は、前後輪の操舵角を同一にして
斜行させるようにした。
According to the second aspect of the invention, when the lateral deviation between the left and right vehicle distances exceeds the allowable value, the front and rear wheels are made to have the same steering angle and slanted.

【0010】請求項3では、車体姿勢のずれ角度が許容
値を超えた時は、単位時間の経過毎に所要修正操舵角を
演算して修正動作を繰り返す構成とした。
According to a third aspect of the present invention, when the deviation angle of the vehicle body posture exceeds the allowable value, the required correction steering angle is calculated every unit time and the correction operation is repeated.

【0011】請求項4では、ワゴン車の左右側部は、両
測距センサからの音波もしくし光波を反射可能な側板で
覆われている構成とした。
According to a fourth aspect of the present invention, the left and right side portions of the wagon are covered with side plates capable of reflecting sound waves or light waves from both distance measuring sensors.

【0012】[0012]

【作用】本考案では、無人牽引車は、配車位置にあるワ
ゴン車へのもぐり込みを開始すると、当該ワゴン車の姿
勢に追従するように姿勢を変えつつ走行するから、ワゴ
ン車の姿勢を拘束する場合と異なって、前記したガイド
等は不要になる。
In the present invention, when the unmanned towing vehicle starts to sneak into the wagon vehicle at the dispatch position, it runs while changing its posture so as to follow the posture of the wagon vehicle. Therefore, the posture of the wagon vehicle is restrained. Unlike the above case, the guide and the like described above are unnecessary.

【0013】[0013]

【実施例】以下、本発明の1実施例を図面を参照して説
明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.

【0014】図1において、30Rと30Lは右測距セ
ンサと左測距センサであって、それぞれ無人牽引車20
の車体前部の右側及び左側(突出しピン26を挟んで)
に設けられている。両測距センサ30R,30Lは無線
式の測距センサーであって、その出力はディジタル変換
されて制御装置24の演算処理部CPUにサンプリング
入力される。なお、両測距センサ30R、30Lは超音
波式あるいは光電式の測距センサであって、本実施例の
ワゴン車10の左右側板のうち、測距センサ30R、3
0Lに対向する部分は、両測距センサ30R、30Lか
らの音波もしくは光を反射可能な材質のもので形成され
ている。
In FIG. 1, reference numerals 30R and 30L denote a right distance measuring sensor and a left distance measuring sensor, respectively.
Right side and left side of the front part of the vehicle (with the protruding pin 26 in between)
It is provided in. Both distance measuring sensors 30R and 30L are wireless distance measuring sensors, and their outputs are digitally converted and sampled and input to the arithmetic processing unit CPU of the control device 24. Both distance measuring sensors 30R, 30L are ultrasonic type or photoelectric type distance measuring sensors, and the distance measuring sensors 30R, 3R are included in the left and right side plates of the wagon vehicle 10 of this embodiment.
The portion facing 0L is formed of a material capable of reflecting sound waves or light from both distance measuring sensors 30R and 30L.

【0015】無人牽引車20がワゴン車10へのもぐり
込みを開始すると、右測距センサ30Rがワゴン車10
の車体右側部までの車間距離Rを測定して出力し、左測
距センサ30Lがワゴン車10の車体左側部までの車間
距離Lを測定して出力する。制御装置24の演算処理部
CPUは右測距センサ30Rの測定値Rをサンブリング
入力し(サンプリング値をR1 とする)、右測距センサ
30Lの測定値Lをサンブリング入力し(サンプリング
値をL1 とする)、横ずれ両ΔW1 =R1 −L1 を演算
する。続いて、無人牽引車20が単位時間を走行した時
に(この間の走行距離は一定値aとする)右測距センサ
30Rの測定値R2 、右測距センサ30Lの測定値L2
を入力して横ずれ両ΔW2 =R2 −L2 を演算する。演
算処理部CPUは、 (A)ΔW1 、ΔW2 が予め設定した許容範囲内にある
か否かを判定し、 (B)ΔW1 、ΔW2 が共に許容範囲内にある場合に
は、ワゴン車10が、図1に示すように、その中心線O
1が誘導線22上にある姿勢で停止しているものと判定
して、無人牽引車20を上記もぐり込み開始時の姿勢の
ままで走行させる。 (C)ΔW1 、ΔW2 のいずれか一方が上記許容範囲を
超えている場合にはワゴン車10が誘導線22からずれ
ているので、無人牽引車20の制御を誘導制御からプロ
グラム制御に切り換える。
When the unmanned towing vehicle 20 starts to go into the wagon vehicle 10, the right distance measuring sensor 30R is moved to the wagon vehicle 10.
The inter-vehicle distance R to the right side of the vehicle body is measured and output, and the left distance measuring sensor 30L measures and outputs the inter-vehicle distance L to the left side of the vehicle body of the wagon vehicle 10. The arithmetic processing unit CPU of the control device 24 inputs the measured value R of the right distance measuring sensor 30R by sumbling (the sampling value is R 1 ) and the measured value L of the right distance measuring sensor 30L by sumbling (the sampling value). Is set to L 1 ) and both lateral deviations ΔW 1 = R 1 −L 1 are calculated. Subsequently, when the unmanned towing vehicle 20 travels for a unit time (the traveling distance during this time is a constant value a), the measured value R 2 of the right distance measuring sensor 30R and the measured value L 2 of the right distance measuring sensor 30L.
Is input and both lateral deviations ΔW 2 = R 2 −L 2 are calculated. The arithmetic processing unit CPU (A) determines whether or not ΔW 1 and ΔW 2 are within a preset allowable range. (B) When both ΔW 1 and ΔW 2 are within the allowable range, the wagon is As shown in FIG. 1, the car 10 has its center line O
It is determined that the vehicle 1 is in a posture in which it is on the guide line 22, and the unmanned towing vehicle 20 is caused to travel in the posture at the time of starting the diving. (C) When either ΔW 1 or ΔW 2 exceeds the allowable range, the wagon vehicle 10 is out of alignment with the guide wire 22, so the control of the unmanned tow vehicle 20 is switched from the guide control to the program control. .

【0016】(1)ΔW1 =ΔW2 であると、例えば、
図2の(A)に示すように、ワゴン車10が、その中心
線O1が誘導線22に対してΔW1 =ΔW2 だけ横ずれ
しているものと判定して、無人牽引車20の前後輪を共
に角度θK だけ操舵するとともに所要走行距離SK と所
要走行速度VK を演算し、図2の(B)に示すように、
無人牽引車20を斜行させる。
(1) If ΔW 1 = ΔW 2 , then, for example,
As shown in FIG. 2A, the wagon vehicle 10 determines that its center line O1 is laterally offset from the guide line 22 by ΔW 1 = ΔW 2, and determines the front and rear wheels of the unmanned towing vehicle 20. And the required traveling distance S K and the required traveling speed V K are both steered by the angle θ K , and as shown in FIG.
The unmanned towing vehicle 20 is slanted.

【0017】(2)ΔR=R2 −R1 、ΔL=L2 −L
1 が0でない場合には、例えば、図2の(C)に示すよ
うに、ワゴン車10が誘導線22に対して回転している
と判定して、ずれ角θ1を演算し、 無人牽引車20の前後輪を共に角度θ1 だけ操舵して単
位時間だけ走行させたのち(この間の走行距離をa2
する)、右測距センサ30Rの測定値R3 、左測距セン
サ30Lの測定値L3 を入力し、再び、 を演算して、無人牽引車20の前後輪を共に角度θ1
け操舵して単位時間だけ走行させる。この動作をRn
n 、θn=0になるまで繰り返す。
(2) ΔR = R 2 −R 1 , ΔL = L 2 −L
When 1 is not 0, for example, as shown in FIG. 2C, it is determined that the wagon vehicle 10 is rotating with respect to the guide wire 22, and the shift angle θ 1 is calculated, After the front and rear wheels of the unmanned tow vehicle 20 are both steered by an angle θ 1 and run for a unit time (the running distance is a 2 ), the measured value R 3 of the right distance measuring sensor 30R and the left distance measuring sensor Enter the measured value L 3 of 30 L and again Is calculated and both the front and rear wheels of the unmanned tow vehicle 20 are steered by an angle θ 1 to run for a unit time. This operation is R n =
Repeat until L n , θ n = 0.

【0018】このように、本実施例では、無人牽引車2
0がワゴン車10へのもぐり込みを開始すると、ワゴン
車10の誘導線22に対する姿勢のずれが検出され、無
人牽引車20の姿勢が誘導線22に対してワゴン車10
と同じずれになるように制御されるので、無人牽引車2
0を、その中心線をワゴン車10の中心線O1に一致さ
せて配車位置に停止させることができ、横ずれ量を前記
した許容範囲に容易に収めることが可能となる。
Thus, in this embodiment, the unmanned towing vehicle 2 is used.
When 0 starts slipping into the wagon vehicle 10, a deviation of the attitude of the wagon vehicle 10 with respect to the guide wire 22 is detected, and the attitude of the unmanned towing vehicle 20 is detected with respect to the guide wire 22.
Because it is controlled so that it is the same as
It is possible to stop 0 at the vehicle allocation position with its center line aligned with the center line O1 of the wagon vehicle 10, and it is possible to easily keep the lateral deviation amount within the above-mentioned allowable range.

【0019】[0019]

【発明の効果】本発明は以上説明した通り、もぐり込み
開始後、ワゴン車の誘導線に対する姿勢のずれ量を無人
牽引車側で非接触方式により測定し、この測定データを
用いて無人牽引車の姿勢をワゴン車の姿勢に追従させる
ので、通行の邪魔になる前記したガイド等の機械的手段
を用いなくて済み、ワゴン車の製作精度を緩和すること
ができるので、その分、製作費が安価になる。
As described above, according to the present invention, the amount of deviation of the posture of the wagon vehicle with respect to the guide wire is measured on the unmanned towing vehicle side by the non-contact method after the start of the skimming, and the unmanned towing vehicle is used by using the measurement data. Since the posture of the wagon is made to follow the posture of the wagon car, it is not necessary to use mechanical means such as the above-mentioned guides that obstruct the passage of traffic, and the manufacturing accuracy of the wagon car can be relaxed, so the production cost is correspondingly reduced. It will be cheaper.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を示す一部破断平面図である。FIG. 1 is a partially cutaway plan view showing an embodiment of the present invention.

【図2】上記実施例の動作を説明するための無人牽引車
とワゴン車の関係を示す模式図である。
FIG. 2 is a schematic diagram showing the relationship between an unmanned towing vehicle and a wagon for explaining the operation of the above embodiment.

【図3】従来のワゴン車と無人牽引車の側面図である。FIG. 3 is a side view of a conventional wagon vehicle and an unmanned towing vehicle.

【図4】従来のワゴン車と無人牽引車の平面図である。FIG. 4 is a plan view of a conventional wagon vehicle and an unmanned towing vehicle.

【図5】従来のワゴン車と無人牽引車の正面図である。FIG. 5 is a front view of a conventional wagon vehicle and an unmanned towing vehicle.

【図6】従来のワゴン車と無人牽引車のピン連結機構を
示す図である。
FIG. 6 is a view showing a pin connecting mechanism of a conventional wagon vehicle and an unmanned towing vehicle.

【図7】ワゴン車と無人牽引車の停止精度を説明するた
めの図である。
FIG. 7 is a diagram for explaining stop accuracy of a wagon vehicle and an unmanned towing vehicle.

【図8】無人牽引車の進行方向停止精度とワゴン車に対
する横方向余裕との関係を説明するための図である。
FIG. 8 is a diagram for explaining the relationship between the traveling direction stop accuracy of the unmanned towing vehicle and the lateral allowance with respect to the wagon vehicle.

【符号の説明】[Explanation of symbols]

10 ワゴン車 11 自由輪 12 底板 13 ピン連結部 14 ピン受け孔 20 無人牽引車 21 操舵・駆動輪 22 誘導線 23 ガイドセンサ 24 制御装置 25 車体カバーの天板 26 突出しピン 27 ピン駆動部 30R、30L 測距センサ 10 Wagon vehicle 11 Free wheel 12 Bottom plate 13 Pin connection part 14 Pin receiving hole 20 Unmanned towing vehicle 21 Steering / driving wheel 22 Guide wire 23 Guide sensor 24 Control device 25 Body cover top plate 26 Projection pin 27 Pin drive part 30R, 30L Ranging sensor

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 誘導制御により、停止しているワゴン車
の下にもぐり込んで当該ワゴン車とピン連結したのちワ
ゴン車わ牽引する無人牽引車において、 この無人牽引車は、上記ワゴン車との車幅方向の左右車
間距離を測定するための無線式右測距センサと左測距セ
ンサを有し、両測距センサの出力をサンプリング入力し
て左右車間距離のずれ幅および車体姿勢のずれ角度を検
出し、このずれ量が許容値を超えた場合には、上記誘導
制御からプログラム制御に切換えて、所要修正操舵角を
演算し、この演算値を制御目標値としてステアリング制
御を行うことを特徴とするワゴン車用無人牽引車のもぐ
り込み姿勢制御方法。
1. An unmanned towing vehicle that is guided by a guidance control so that it can be pulled under a stopped wagon vehicle and is pin-connected to the wagon vehicle, and then tow the wagon vehicle. It has a wireless right distance sensor and a left distance sensor for measuring the distance between left and right vehicles in the width direction.The output of both distance sensors is sampled and input to determine the deviation width of the left and right vehicle distance and the deviation angle of the vehicle body posture. When the deviation amount is detected and exceeds the allowable value, the guide control is switched to the program control to calculate a required corrected steering angle, and the steering control is performed using the calculated value as a control target value. A method for controlling the attitude of an unmanned towing vehicle for a wagon.
【請求項2】 左右車間距離のずれ幅が許容値を超えた
横ずれ時は、前後輪の操舵角を同一にして斜行させるこ
とを特徴とする請求項1記載のワゴン車用無人牽引車の
もぐり込み姿勢制御方法。
2. The unmanned towing vehicle for a wagon according to claim 1, wherein, when the lateral deviation between the left and right vehicle distances exceeds a permissible value, the front and rear wheels are made to have the same steering angle and are slanted. Crawling posture control method.
【請求項3】 車体姿勢のずれ角度が許容値を超えた時
は、単位時間の経過毎に所要修正操舵角を演算して修正
動作を繰り返すことを特徴とする請求項1記載のワゴン
車用無人牽引車のもぐり込み姿勢制御方法。
3. The wagon vehicle according to claim 1, wherein when the deviation angle of the vehicle body posture exceeds an allowable value, a required correction steering angle is calculated every time a unit time elapses and the correction operation is repeated. Attitude control method for unmanned tow vehicles.
【請求項4】 ワゴン車の左右側部は、両測距センサか
らの音波もしくし光波を反射可能な側板で覆われている
ことを特徴とする請求項1〜3のいずれかに記載のワゴ
ン車用無人牽引車のもぐり込み姿勢制御方法。
4. The wagon according to claim 1, wherein the left and right side portions of the wagon vehicle are covered with side plates capable of reflecting sound waves or light waves from both distance measuring sensors. Attitude control method for unmanned tow vehicles.
JP03270766A 1991-10-18 1991-10-18 Posture control method for unmanned towing vehicle for wagon vehicles Expired - Fee Related JP3143802B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03270766A JP3143802B2 (en) 1991-10-18 1991-10-18 Posture control method for unmanned towing vehicle for wagon vehicles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03270766A JP3143802B2 (en) 1991-10-18 1991-10-18 Posture control method for unmanned towing vehicle for wagon vehicles

Publications (2)

Publication Number Publication Date
JPH05108155A true JPH05108155A (en) 1993-04-30
JP3143802B2 JP3143802B2 (en) 2001-03-07

Family

ID=17490700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03270766A Expired - Fee Related JP3143802B2 (en) 1991-10-18 1991-10-18 Posture control method for unmanned towing vehicle for wagon vehicles

Country Status (1)

Country Link
JP (1) JP3143802B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009031707A1 (en) * 2007-09-06 2009-03-12 Toyota Jidosha Kabushiki Kaisha Automatic conveyor apparatus
JP2012121441A (en) * 2010-12-08 2012-06-28 Daifuku Co Ltd Wheeled platform type carrier device and operation control method of the same
CN113370894A (en) * 2021-07-21 2021-09-10 贵州詹阳动力重工有限公司 Tractor body positioning system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009031707A1 (en) * 2007-09-06 2009-03-12 Toyota Jidosha Kabushiki Kaisha Automatic conveyor apparatus
US8613339B2 (en) 2007-09-06 2013-12-24 Toyota Jidosha Kabushiki Kaisha Automatic transfer apparatus
JP2012121441A (en) * 2010-12-08 2012-06-28 Daifuku Co Ltd Wheeled platform type carrier device and operation control method of the same
CN102529987A (en) * 2010-12-08 2012-07-04 株式会社大福 Trolley type conveying device and steering control method
CN113370894A (en) * 2021-07-21 2021-09-10 贵州詹阳动力重工有限公司 Tractor body positioning system
CN113370894B (en) * 2021-07-21 2023-04-07 贵州詹阳动力重工有限公司 Tractor body positioning system

Also Published As

Publication number Publication date
JP3143802B2 (en) 2001-03-07

Similar Documents

Publication Publication Date Title
JP2007213356A (en) Automated guided facility
JPH05108155A (en) Method for controlling attitude getting beneath wagon for unmanned wagon tracter
JP3740883B2 (en) Control method of unmanned mobile cart
JP2000330635A (en) Automatic guided vehicle
JP3018658B2 (en) Posture control method for unmanned towing vehicle for wagon vehicles
JP2840943B2 (en) Mobile robot guidance device
JPH01282615A (en) Position correcting system for self-travelling unmanned vehicle
JP2676975B2 (en) Operation control device for unmanned vehicles
JPS6288006A (en) Obstacle evading device for unmanned conveyance vehicle
JPS62288909A (en) Distance measuring instrument for unattended carriage
JPH02236707A (en) Travel controller for unmanned vehicle
JP2799656B2 (en) Coil position detection device
JP2002267411A (en) Conveyance vehicle
JPH0517703U (en) Automated guided vehicle guidance device
JPH01292506A (en) Automatic carrier
JP3144156B2 (en) Guidance control device for automatic guided vehicles
JP3804142B2 (en) Unmanned vehicle steering control method
JP2909845B2 (en) Automatic guided vehicle guidance system
JPS6111818A (en) Robot roller
JPH06277735A (en) Centering device for coil carrier truck
JPH10111718A (en) Method and device for controlling travel of automated guided carrier
JPH04108206U (en) Position correction detection device for autonomous unmanned vehicles
JPS61190611A (en) Bank angle detector of unattended carriage
JPS633313A (en) Measuring device for traveled distance of unmanned carrier
JP2005330076A (en) Combined system of moving shelf and unmanned forklift

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees