JPS6111818A - Robot roller - Google Patents

Robot roller

Info

Publication number
JPS6111818A
JPS6111818A JP59132030A JP13203084A JPS6111818A JP S6111818 A JPS6111818 A JP S6111818A JP 59132030 A JP59132030 A JP 59132030A JP 13203084 A JP13203084 A JP 13203084A JP S6111818 A JPS6111818 A JP S6111818A
Authority
JP
Japan
Prior art keywords
roller
position correcting
point
dock
self
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59132030A
Other languages
Japanese (ja)
Inventor
Bunzo Yamada
山田 文三
Minoru Saito
実 斉藤
Nobuo Tanaka
信男 田中
Koki Wami
和美 広喜
Tatsuyuki Ochi
越智 達之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP59132030A priority Critical patent/JPS6111818A/en
Publication of JPS6111818A publication Critical patent/JPS6111818A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0227Control of position or course in two dimensions specially adapted to land vehicles using mechanical sensing means, e.g. for sensing treated area
    • G05D1/0229Control of position or course in two dimensions specially adapted to land vehicles using mechanical sensing means, e.g. for sensing treated area in combination with fixed guiding means
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0268Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means
    • G05D1/027Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means comprising intertial navigation means, e.g. azimuth detector

Abstract

PURPOSE:To make an unmanned automatic travelling truck treavel on a fixed course and to reduce labor by forming an independent steering device and a position correcting device on the automatic travelling truck. CONSTITUTION:The automatic travelling truck A is provided with a moungint board 1, a roller-shaped driving wheel 2 and a steering control wheel 3 to be steered and the independent steering device B and the position correcting device C are also mounted. The independent steerinf device B consists of gyroscope and a measuring roller for measuring a travelling distance to measure a current position from the original point of a start position and execute straight advancement or the llke on the basis of the position correcting operation of itself. The position correcting devide C consists of a sensor head 4 and a position correcting dog 6i which are planted on the mounting board 1 and right and left sensors 7L, 7R are projected from both the sides of the head 4. A clearance S is formed on the base end of each dog and an objective point P for guide is formed on the intermediate point of the clearance S. Consequenlty, the sensor head 4 passes the guiding objective point P and goes straight on, so that an error in the x direction as for the position measured by the device B can be corrected.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はテニスコートや運動グランドなどの整備のため
の締め固めローラをロボット化したロボットローラに関
する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a robot roller that is a compaction roller for maintaining tennis courts, exercise grounds, etc.

[従来の技術] テニスコートや運動グランドなどの整備のための締め固
めローラを毎日行うことは、労力の面がとが要望される
が、そのようなものは、まだ、提供されていない。
[Prior Art] Daily use of compaction rollers for maintenance of tennis courts, exercise grounds, etc. requires a lot of labor, but such a method has not yet been provided.

[発明の目的]。[Object of the invention].

従って本発明の目的は、テニスコートや運動グランドな
どの整備のための締め固めローラをロボット化したロボ
ットローラを提供するにある。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a robot roller that is a compaction roller for maintaining tennis courts, exercise grounds, and the like.

[発明の構成、作−用効果] 本発明によ゛れば、ローラ形状の走行車輪を′有し自走
するのに必要な動力源を備えた自走台車と、自走時に外
部か゛らの情報なしで自己の位置を計測することのでき
る自立航法装置と、その自立航法装置で計測された位置
の計器精度による誤差を修正する位置、修正装置とが備
えられている。
[Structure, operation and effect of the invention] According to the present invention, there is provided a self-propelled trolley having roller-shaped running wheels and a power source necessary for self-propelling, and a self-propelled trolley having roller-shaped running wheels and a power source necessary for self-propelling; It is equipped with a self-contained navigation device that can measure its own position without information, and a position correction device that corrects errors in the position measured by the self-contained navigation device due to instrument accuracy.

従って、自立航法装置と位置修正装置によりテニスコー
トなどの定められたコースを無人で走行することにより
、ローラ形状の走行車輪で締め固めローラを行うことが
でき、労力を全く削、減することができる。なお、本発
明はコンクリート仕上げ機、ゴルフ場の自動芝刈機ある
いは掃除機などにも実施することができる。
Therefore, by traveling unmanned on a predetermined course such as a tennis court using an independent navigation device and a position correction device, compaction rollers can be performed using roller-shaped running wheels, and labor can be completely reduced. can. Note that the present invention can also be implemented in concrete finishing machines, automatic lawn mowers for golf courses, vacuum cleaners, and the like.

[実施例] 以下図面を参照して本発明の詳細な説明する。[Example] The present invention will be described in detail below with reference to the drawings.

第1図においてく自走台車Aは、架台1と走行車輪′す
なわちその架台1に設けられ図示されない動力源を備え
たローラ形状の駆動輪2および操舵可能な操向輪3とよ
りなっている。
In FIG. 1, the self-propelled trolley A is made up of a pedestal 1 and running wheels', that is, a roller-shaped drive wheel 2 and a steerable steering wheel 3 provided on the pedestal 1 and equipped with a power source (not shown). .

、自立航法装置Bは、自走台車Aの架台1内部に収納さ
れた図示されないジャイロ、例えばジャイロコンパス又
は方位磁石と、走行距離を計測するメジャリングローラ
または駆動輪2の回転計とよりなってる。そして第2図
に示すように、スタート地点4を直交塵s (゛)、y
 >の原点0とし、y軸方法を走行目標方向とした場合
、走行架台Aの現在位置x、yは、 Δg=一定時間毎のメジャリグローラの読みψ:Δg走
行時のジャイロ方向 とすると、  。
The self-contained navigation device B includes a gyro (not shown), such as a gyro compass or a compass, which is housed inside the frame 1 of the self-propelled vehicle A, and a measuring roller or a tachometer for the driving wheels 2 that measures the travel distance. . Then, as shown in Figure 2, the starting point 4 is set to orthogonal dust s (゛), y
>, the origin is 0, and the y-axis direction is the traveling target direction, the current position x, y of the traveling platform A is, Δg = reading of the measuring roller at a fixed time interval ψ: Δg, the gyro direction when traveling, .

ΔX−Δりsinψ   Δy=−Δ6 cosψなの
で、 ×=ΣΔx     y=ΣΔy として計測できるようになっている。そして走行台車A
は、上記の計測結果に基づき、自らの位置の修正動作を
しながら一定距離直進あるいは斜行しう°るようなって
いる。
Since ΔX−Δrisinφ Δy=−Δ6 cosφ, it can be measured as ×=ΣΔx y=ΣΔy. And traveling trolley A
Based on the above measurement results, the robot can move straight or diagonally for a certain distance while correcting its own position.

位置修正装置Cは、第1図において、走行台車Aの架台
1に立設されたセンサヘッド4と、第3図においてテニ
スコーt−5のJ−ンドラインtなわち短辺5Sから若
干離れて短辺5sに平行に゛多数配置された位置修正用
のドック61 (但し:はa15・、°・、d −−、
”−@意味する)′!″1″な°1い6・なお、以下短
辺5S方向をX方向、長辺52方向をX方向とする。 
センサヘッド4は、両側に左センサ7Lと右センサ、7
 Rを突設しており、両センサ7L、7Rは走行台車A
がX方向に正中しているとぎ、X方向に一直線になるよ
うに配置されている。
The position correction device C is connected to the sensor head 4 installed upright on the frame 1 of the traveling trolley A in FIG. A large number of docks 61 for position correction are arranged parallel to the side 5s (however: a15., °., d --,
"-@means)'!"1"°1-6・Hereinafter, the direction of the short side 5S is the X direction, and the direction of the long side 52 is the X direction.
The sensor head 4 has a left sensor 7L and a right sensor 7 on both sides.
R is provided protrudingly, and both sensors 7L and 7R are connected to the traveling bogie A.
are arranged in a straight line in the X direction when they are centered in the X direction.

ドック61は、第4図に示すようにX方向に対し等しい
角度αをもって短辺5a側に開いたセンサ7L、7Rを
受番プ入れ得る高さの左ドック6Lと右ドック6Rとよ
りなり、それぞれのドックの基端には、センサヘッド4
の通過を許すようなりリアランスSが形成されており、
そのクリアランスSの中点に、誘導目標点Pが設けられ
ている。
As shown in FIG. 4, the dock 61 consists of a left dock 6L and a right dock 6R, which are tall enough to receive sensors 7L and 7R that are open on the short side 5a at an angle α with respect to the X direction. A sensor head 4 is installed at the base end of each dock.
A rearance S is formed to allow the passage of
A guidance target point P is provided at the midpoint of the clearance S.

そして、駆動輪2あるいは操向輪3の幅の広い方の車輪
の幅より若干狭い距離をDとした場合、第3図において
、出発点Oを長辺5Qから距111tD/2だけX方向
におき、それに対向する側に第1のドック6a、その第
1のドック6aに対向する側に第1のドック6aより距
IDだけX方向に第2のドック611.次に第1のドッ
ク6aからX方向にピッチ2Dで第3のドック5c、第
5のドック6e・・・また、第2のドック6bからX方
向にピッチ2Dで第4のドック6d・−・・が設けらむ
ている。
If D is a distance slightly narrower than the width of the wider driving wheel 2 or steering wheel 3, then in Fig. 3, the starting point O is moved from the long side 5Q by a distance of 111tD/2 in the X direction. a first dock 6a on the side opposite thereto, and a second dock 611 . Next, from the first dock 6a, a third dock 5c, a fifth dock 6e, at a pitch of 2D in the X direction, a fourth dock 6d, etc., from the second dock 6b, at a pitch of 2D in the X direction, etc.・is set up.

なお、ドック61のX方向間隔りおよび角度αは、自立
航法装置Bの精度から位置修正を必要とする距離および
角度にとるのが望ましい。そして、第4図に示すように
、センサヘッド4が例えば位置Iにあって、左センサ7
L−が左ドック6Lに接触しオンされると、走行台車A
は、右カーブし、センサヘッド4は位置■に移動し、更
に、位amに至って左右のセンナ7L、7Rが左右のド
ック6L16Rに接触しオンされると、センサヘッド4
は誘導目標点Pを通過して直進し、自立航法装[8で計
測された位置のX方向の計器精度による誤差が修正され
るようになっている。
Note that it is desirable that the distance and angle α of the docks 61 in the X direction be set to distances and angles that require position correction in view of the accuracy of the autonomous navigation device B. Then, as shown in FIG. 4, when the sensor head 4 is at position I, the left sensor 7
When L- contacts the left dock 6L and is turned on, the traveling bogie A
curves to the right, the sensor head 4 moves to position 3, and further reaches position am, when the left and right sensors 7L and 7R contact the left and right docks 6L16R and are turned on, the sensor head 4
passes through the guidance target point P and goes straight, and errors due to instrument accuracy in the X direction of the position measured by the autonomous navigation system [8] are corrected.

なお、ドックは第5図に示すような土中に埋設した鉄製
品のドック81とし、センサは走行台車Aの架台1から
吊設したセンサヘッド9に突設した左右の磁気センナ1
0m、10Rとしてもよい。
The dock is a dock 81 of iron products buried in the ground as shown in FIG.
It may be 0m or 10R.

次に作用について説明する。Next, the effect will be explained.

゛出発点Oにおいて、走行台車△はドック6aに正中さ
せられ、走行を開始し、途中一定時間毎に現在位置寸な
わち走行距11ty==ΣΔyおよび誘導目標点Pに対
するX方向の誤差°X−Σ△Xを計測し、その情報をも
とにコントローラにより自動的にステアリングを切り位
置修正しながら走行する。 ゛そして、ドック6aにお
いてX方向の計器誤差が修正され、誘導目標点Pを通過
して直進し、走行距離y−ΣΔV=Rt(第3図参照)
の地点P1において、一旦停止する。次いで走行台車A
はy方向に対し角度βで距離R′2だけ斜行後進し、°
P′2地点においてy方向に転舵してドック6bに正中
する。P”’zq点からy方向に距離R2だけ走行し、
途中ドック6bで×方向の計器誤差を修正され、地点P
2で一旦停市づる。このようにして、走行台車Aは、テ
ニスコート5の長辺に平行に往復走行を繰り返し、走行
台車Aのローラ状の駆動輪2と操向輪3により締め固め
ローラを行うのである。このとき、往復時の走行台車A
のコースのピッチは、距tWOすなわち駆動輪2と操向
輪3の幅の広い方の車輪の幅より若干狭い距離に設定さ
れているので、車輪による締め固め幅は互いにラップし
ており、従って良く締め固めローラされるのである。 
以上説明したように本考案によれば、自走台車と自立航
法装置と位置修正装置を備えるようにしたので、自立航
法装置と位置修正・装置によりテニスコートなどの定め
られたコースを無人で走行することにより、ローラ形状
の車輪で締め固めローラを行うことができ、その結果、
労力を全く削減することができる。
゛At the starting point O, the traveling trolley △ is centered on the dock 6a and starts traveling, and at regular intervals along the way, the current position size, that is, the traveling distance 11ty = = ΣΔy and the error in the X direction with respect to the guidance target point P °X - ΣΔX is measured, and based on the information, the controller automatically turns the steering wheel and moves while correcting the position.゛Then, at the dock 6a, the instrument error in the
The vehicle temporarily stops at point P1. Next, traveling trolley A
moves obliquely backward by a distance R'2 at an angle β with respect to the y direction, and
At point P'2, the vehicle is steered in the y direction and heads toward the dock 6b. Travel a distance R2 in the y direction from point P'''zz,
On the way, the instrument error in the x direction was corrected at dock 6b, and the point P
Stop at 2 for a while. In this way, the traveling trolley A repeatedly travels back and forth parallel to the long side of the tennis court 5, and the roller-like driving wheels 2 and steering wheels 3 of the traveling trolley A perform a compaction roller. At this time, traveling trolley A during reciprocation
The pitch of the course is set to a distance tWO, that is, a distance that is slightly narrower than the width of the wider of the driving wheels 2 and steering wheels 3, so the compaction widths by the wheels overlap each other, and therefore, It is well compacted and rolled.
As explained above, according to the present invention, it is equipped with a self-propelled cart, an independent navigation device, and a position correction device. By doing so, compaction rollers can be performed with roller-shaped wheels, and as a result,
Labor can be completely reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の1実施例を示す斜視図、第2図は自立
航法装置の計測説明図、第3図はこの発明のテニスコー
トへの適用説明図、第4図は位置修正装置の修正説明図
、第5図は位置修正装置の別の実施例を示す側断面図で
ある。 A・・・走行台車  B・・・自立航法装置C・・・位
置修正装置  2・・・駆動輪3・・・操向輪  61
 ・・・ドック  7L17R・・・センサ 第1図 第3図 第4図 ◇A 第5図
Fig. 1 is a perspective view showing one embodiment of the present invention, Fig. 2 is an explanatory diagram of measurement of an autonomous navigation device, Fig. 3 is an explanatory diagram of application of the invention to a tennis court, and Fig. 4 is an illustration of a position correction device. The modification explanatory diagram, FIG. 5, is a side sectional view showing another embodiment of the position correction device. A... Traveling trolley B... Independent navigation device C... Position correction device 2... Drive wheel 3... Steering wheel 61
...Dock 7L17R...Sensor Figure 1 Figure 3 Figure 4 ◇A Figure 5

Claims (1)

【特許請求の範囲】[Claims] ローラ形状の走行車輪を有し自走するのに必要な動力源
を備えた自走台車と、自走時に外部からの情報なしで自
己の位置を計測することのできる自立航法装置と、その
自立航法装置で計測された位置の累積誤差を修正する位
置修正装置とが備えられたことを特徴とするロボットロ
ーラ。
A self-propelled cart with roller-shaped running wheels and a power source necessary for self-propulsion, an autonomous navigation device that can measure its own position without external information when it is self-propelled, and its independence. A robot roller comprising: a position correction device for correcting cumulative errors in position measured by a navigation device.
JP59132030A 1984-06-28 1984-06-28 Robot roller Pending JPS6111818A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59132030A JPS6111818A (en) 1984-06-28 1984-06-28 Robot roller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59132030A JPS6111818A (en) 1984-06-28 1984-06-28 Robot roller

Publications (1)

Publication Number Publication Date
JPS6111818A true JPS6111818A (en) 1986-01-20

Family

ID=15071853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59132030A Pending JPS6111818A (en) 1984-06-28 1984-06-28 Robot roller

Country Status (1)

Country Link
JP (1) JPS6111818A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03276864A (en) * 1990-02-15 1991-12-09 Daifuku Co Ltd Conveyor equipment using carriage

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4947389A (en) * 1972-05-05 1974-05-08

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4947389A (en) * 1972-05-05 1974-05-08

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03276864A (en) * 1990-02-15 1991-12-09 Daifuku Co Ltd Conveyor equipment using carriage

Similar Documents

Publication Publication Date Title
US4600999A (en) Automatic running work vehicle
JP2007219960A (en) Position deviation detection device
US5859783A (en) Method and apparatus for measuring flatness of a floor
JPS6111818A (en) Robot roller
JP3378843B2 (en) Correction device for position and direction of automatic guided vehicle
JP2785305B2 (en) Self-propelled vacuum cleaner
JP4427360B2 (en) Method and device for guiding entry of automatic guided vehicle into pallet
JP6570237B2 (en) Self-propelled cart turning method and turning equipment
JPH07281747A (en) Traveling controller for automated guided vehicle
JPS62111306A (en) S-shaped traveling carrier car
JP2637022B2 (en) Self-propelled automatic welding equipment
JPH0443282B2 (en)
JP2934770B2 (en) Method and apparatus for measuring wheel diameter of mobile robot
JP2006004412A (en) Moving object
JPH01282615A (en) Position correcting system for self-travelling unmanned vehicle
JPS62288909A (en) Distance measuring instrument for unattended carriage
JPH05108155A (en) Method for controlling attitude getting beneath wagon for unmanned wagon tracter
JPS6126312Y2 (en)
JPS5965316A (en) Guiding method of unmanned truck
JP3630592B2 (en) Handling equipment
JPH07281740A (en) Method and device for detecting position of unmanned vehicle
JPS61245213A (en) Self-traveling robot
JPH11288313A (en) Guidance controller for moving vehicle
JPH01276213A (en) Traveling track corrector for trackless system crane
JPH0239804B2 (en)