JPH07281740A - Method and device for detecting position of unmanned vehicle - Google Patents

Method and device for detecting position of unmanned vehicle

Info

Publication number
JPH07281740A
JPH07281740A JP6066301A JP6630194A JPH07281740A JP H07281740 A JPH07281740 A JP H07281740A JP 6066301 A JP6066301 A JP 6066301A JP 6630194 A JP6630194 A JP 6630194A JP H07281740 A JPH07281740 A JP H07281740A
Authority
JP
Japan
Prior art keywords
traveling
unmanned
traveling body
road surface
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6066301A
Other languages
Japanese (ja)
Inventor
Hidetaka Sato
秀高 佐藤
Toshibumi Moriai
俊文 森合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niigata Engineering Co Ltd
Original Assignee
Niigata Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Niigata Engineering Co Ltd filed Critical Niigata Engineering Co Ltd
Priority to JP6066301A priority Critical patent/JPH07281740A/en
Publication of JPH07281740A publication Critical patent/JPH07281740A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

PURPOSE:To exactly detect a traveling position. CONSTITUTION:A road surface 4 is irradiated with laser light from a laser oscillator 7, and the pattern of interference stripes caused by unevenness on the road surface is caught by an image sensor 8 and outputted to an arithmetic unit 9. On the other hand, the angular velocity information of a gyro 11 is integrated with time by an integrator 12 and outputted to the arithmetic unit 9 as a traveling azimuth angle. The arithmetic unit 9 detects the moving amount of the pattern of interference stripes, gets the traveling distance information of an unmanned vehicle A and detects the position of the unmanned vehicle A by integrating the traveling azimuth angle with that traveling distance. Since the moving amount of the pattern is not affected by the slip of wheels at all, the traveling position can be exactly detected.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、生産工場や倉庫内、或
いは屋外等において物流、搬送を行う無人搬送車や、生
産工場等で作業を行う自走式ロボット等(以下、無人走
行体)の走行位置を検出する位置検出方法及びその装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an automated guided vehicle for carrying out physical distribution and transportation in a production factory, a warehouse, or outdoors, and a self-propelled robot for working in a production factory (hereinafter, unmanned traveling body). The present invention relates to a position detection method and device for detecting the traveling position of a vehicle.

【0002】[0002]

【従来の技術】無人走行体の走行方式として、誘導設備
によって無人走行体を誘導する走行方式と(特開昭61
−168024号公報)、誘導設備を必要とせず、無人
走行体を自律走行させる走行方式とがある(特開昭62
−221707号公報)。
2. Description of the Related Art As a traveling system for an unmanned traveling body, there is a traveling system in which an unmanned traveling body is guided by a guidance facility (Japanese Patent Application Laid-Open No. 61-61160).
No. 168024), there is a traveling system in which an unmanned traveling body travels autonomously without the need for induction equipment (Japanese Patent Laid-Open No. 62-62160).
No. 221707).

【0003】前者の誘導走行方式は、誘導設備として誘
電線や光学反射テープあるいは磁気テープ等を走行ルー
トに設置し、それらに沿って無人走行体を走らせるもの
で、誘電線を用いる電磁誘導式の場合は、その誘電線を
床に埋め込む必要があるため、埋設工事に手間がかかる
上、走行ルートの変更が容易ではない。またテープ式は
汚れや破損が激しいため保守が大変である。
In the former guide traveling system, an induction wire, an optical reflection tape, a magnetic tape, or the like is installed on a traveling route as an induction facility, and an unmanned traveling body is run along them, and an electromagnetic induction system using a dielectric wire is used. In this case, since it is necessary to bury the dielectric wire in the floor, the burial work is troublesome and it is not easy to change the traveling route. In addition, the tape type is extremely dirty and damaged, so maintenance is difficult.

【0004】後者の自律走行方式は、走行方位角を検出
するジャイロと、車輪の回転数を検出するロータリエン
コーダ等の回転センサとを無人走行体に設け、ジャイロ
によって検出された走行方位角を回転センサで検出され
た走行距離で図9のように積分して走行位置を割り出
し、無人走行体を自律走行させるもので、前記誘導方式
のような問題点はない。
In the latter autonomous traveling system, a gyro for detecting a traveling azimuth angle and a rotation sensor such as a rotary encoder for detecting a rotational speed of wheels are provided on an unmanned traveling body to rotate the traveling azimuth angle detected by the gyro. As shown in FIG. 9, the traveling distance detected by the sensor is integrated to determine the traveling position, and the unmanned traveling body is autonomously traveled.

【0005】なお、図9において P:無人走行体の位置 dL:微小区間走行距離 θ:無人走行体の姿勢角(走行方位角) であり、下記の積分を行って、X座標値とY座標値を割
り出す。
In FIG. 9, P is the position of the unmanned traveling body, dL is the traveling distance in a minute section, θ is the attitude angle (running azimuth angle) of the unmanned traveling body, and the following integration is performed to obtain the X coordinate value and the Y coordinate. Determine the value.

【0006】[0006]

【数1】 [Equation 1]

【0007】[0007]

【発明が解決しようとする課題】しかし、車輪の回転数
から走行距離を算出して走行位置を検出する、従来の位
置検出方法では、車輪のスリップ量が一定ではなく。路
面の状態により大きく変化するとともに、車輪の摩耗度
により車輪1回転で走行する距離が変わるため、正確に
走行位置を検出することが難しいという問題点がある。
However, in the conventional position detecting method in which the traveling distance is detected by calculating the traveling distance from the rotational speed of the wheel, the slip amount of the wheel is not constant. There is a problem that it is difficult to accurately detect the traveling position because the distance traveled by one rotation of the wheel changes depending on the degree of wear of the wheel and the distance changes greatly depending on the condition of the road surface.

【0008】本発明は、無人走行体の走行位置を正確に
検出することができる、無人走行体の位置検出方法及び
装置を提供することを目的とする。
An object of the present invention is to provide a method and apparatus for detecting the position of an unmanned traveling body, which can accurately detect the traveling position of the unmanned traveling body.

【0009】[0009]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明に係る無人走行体の位置検出方法は、レー
ザ光を路面に照射して路面の凹凸による干渉縞のパター
ンをイメージセンサでとらえ、このパターンの移動量を
検出して無人走行体の走行距離情報とするとともに、ジ
ャイロによって無人走行体の走行方位角を検出し、上記
走行距離で上記走行方位角を積分して無人走行体の位置
を検出する構成とした。無人走行体が定点に走行してき
たときに、無人走行体の位置情報を上記定点の位置に修
正することが好ましい。
In order to achieve the above object, a method for detecting the position of an unmanned vehicle according to the present invention is directed to irradiating a laser beam onto a road surface to form an interference pattern of interference fringes on an image sensor. Then, the amount of movement of this pattern is detected and used as the traveling distance information of the unmanned traveling body, and the traveling azimuth angle of the unmanned traveling body is detected by the gyro, and the traveling azimuth angle is integrated at the traveling distance to perform unmanned traveling. It is configured to detect the position of the body. When the unmanned traveling body travels to the fixed point, it is preferable to correct the position information of the unmanned traveling body to the position of the fixed point.

【0010】また、本発明に係る無人走行体の位置検出
装置は、ジャイロで検出した走行方位角を、演算装置に
より、走行距離検出部によって検出した走行距離で積分
して位置を検出する無人走行体において、上記走行距離
検出部は、路面にレーザ光を照射するレーザ発振器と、
路面の凹凸による照射レーザ光の干渉縞のパターンをと
らえて上記演算装置に出力するイメージセンサとを具備
した構成とした。
Further, the position detecting device for an unmanned traveling body according to the present invention is an unmanned traveling system in which the traveling azimuth detected by the gyro is integrated by the arithmetic device with the traveling distance detected by the traveling distance detecting section to detect the position. In the body, the mileage detection unit, a laser oscillator for irradiating the road surface with laser light,
An image sensor is provided which captures the pattern of the interference fringes of the irradiation laser light due to the unevenness of the road surface and outputs the pattern to the arithmetic unit.

【0011】[0011]

【作用】イメージセンサはレーザ光の路面の凹凸による
干渉縞のパターンをとらえ、演算装置に出力する。演算
装置は、イメージセンサの出力信号を受けて上記パター
ンの移動量を検出する。パターンの移動量は、車輪のス
リップや摩耗による車輪径変化の影響を全く受けず、常
に無人走行体の走行距離と一致する。したがって無人走
行体の走行位置が正確に検出されるようになる。
The image sensor captures the pattern of interference fringes due to the unevenness of the road surface of the laser light and outputs it to the arithmetic unit. The arithmetic unit receives the output signal of the image sensor and detects the amount of movement of the pattern. The amount of movement of the pattern is not affected by the change in the wheel diameter due to the slip or wear of the wheels, and always matches the travel distance of the unmanned traveling body. Therefore, the traveling position of the unmanned traveling body can be accurately detected.

【0012】[0012]

【実施例】図1と図2は本発明に係る無人走行体の位置
検出装置の一実施例を示す。これらの図において符号1
は無人走行体Aの車体である。車体1は4個の車輪2を
備え、各車輪2をサーボモータ3で回転させて路面4を
走行する。各車輪2はそれぞれ操向機能を持ち、4台の
サーボモータ3(図1には1台しか示されていない。)
によってそれぞれ個々に回転させられる構成となってる
が、前車輪を操向輪、後車輪を駆動輪とするなど、操向
系(図示せず)と駆動系は周知の無人走行体と同一の構
成とすることができる。操向系と駆動系(モータ3)は
走行制御装置5によって制御される。
1 and 2 show an embodiment of a position detecting device for an unmanned vehicle according to the present invention. Reference numeral 1 in these figures
Is a vehicle body of the unmanned traveling body A. The vehicle body 1 includes four wheels 2, and each wheel 2 is rotated by a servo motor 3 to travel on a road surface 4. Each wheel 2 has a steering function, and four servo motors 3 (only one is shown in FIG. 1).
The steering system (not shown) and the drive system are the same as those of the known unmanned vehicle, such as the front wheels as the steering wheels and the rear wheels as the driving wheels. Can be The steering system and the drive system (motor 3) are controlled by the traveling control device 5.

【0013】符号6は走行距離検出部である。走行距離
検出部6は、レーザ発振器7とイメージセンサ8とから
成り、車体1の中央に設けられている。レーザ発振器7
は、路面4にレーザ光を図1と図3のように照射するも
のである。
Reference numeral 6 is a mileage detector. The travel distance detection unit 6 is composed of a laser oscillator 7 and an image sensor 8 and is provided in the center of the vehicle body 1. Laser oscillator 7
Is for irradiating the road surface 4 with laser light as shown in FIGS.

【0014】ところで、レーザ光を路面4等の粗面(拡
散反射をする面)に照射すると光の干渉が起こり、例え
ば図4のような干渉縞(スペックルパターン)Sができ
る。これはレーザ光が粗面に当たるときに微妙に粗面と
の距離に差ができ、拡散光に位相差を生じるためであ
る。この干渉縞は粗面の状態によって決まり、粗面が静
止していれば干渉縞も静止し、粗面が移動すれば(路面
4の場合は相対移動)、干渉縞も移動する。
When a laser beam is applied to a rough surface (a surface for diffuse reflection) such as the road surface 4, light interference occurs, and an interference fringe (speckle pattern) S as shown in FIG. 4 is formed. This is because when the laser light hits the rough surface, there is a slight difference in the distance from the rough surface, which causes a phase difference in the diffused light. This interference fringe is determined by the state of the rough surface. If the rough surface is stationary, the interference fringe is stationary, and if the rough surface moves (relative movement in the case of the road surface 4), the interference fringe also moves.

【0015】イメージセンサ8は、路面4に対するレー
ザ光の照射によって生じた干渉縞Sをとらえ、信号を演
算装置(マイクロプロセッサ)9に出力するものであ
る。演算装置9は、イメージセンサ8の出力信号を受け
て干渉縞Sの移動量、すなわち無人走行体Aの走行距離
を測定する。たとえば、1次元で考えると、ある時刻で
の干渉縞Sが図5の(a)で、これが10msec後に
(b)に変化した場合、イメージセンサ8の分解能を4
0μmとすれば、干渉縞Sの移動量は無人走行体Aの走
行距離に完全に一致するので、演算装置9は、無人走行
体Aの走行距離を40μm、その速度を40μm/10
msecとして計測する。レーザ発振器7とイメージセ
ンサ8の路面4からの高さは、通常、5〜40mmとさ
れるが、場合によっては5mmより小さくても、また4
0mmよりも大きくてもよい。
The image sensor 8 captures the interference fringes S generated by the irradiation of the laser light on the road surface 4 and outputs a signal to the arithmetic unit (microprocessor) 9. The arithmetic unit 9 receives the output signal of the image sensor 8 and measures the amount of movement of the interference fringes S, that is, the traveling distance of the unmanned traveling body A. For example, considering one dimension, if the interference fringe S at a certain time is (a) in FIG. 5 and changes to (b) after 10 msec, the resolution of the image sensor 8 becomes 4
If the distance is 0 μm, the movement amount of the interference fringe S is completely equal to the traveling distance of the unmanned traveling body A, so the arithmetic unit 9 sets the traveling distance of the unmanned traveling body A to 40 μm and the speed thereof to 40 μm / 10.
Measure as msec. The height of the laser oscillator 7 and the image sensor 8 from the road surface 4 is usually 5 to 40 mm, but depending on the case, the height may be 4 mm or less.
It may be larger than 0 mm.

【0016】また、符号11は光ファイバジャイロであ
る。ジャイロ11は、無人走行体Aが回転運動を含む動
きをした場合、車体中心の鉛直方向を軸とした角速度を
検出し、信号を積分器12に出力する。積分器12は、
ジャイロ11の角速度情報を時間積分して角度に変換
し、無人走行体Aの走行方位角情報として演算装置9に
出力する。そして演算装置9は、積分器12により得ら
れた走行方位角情報を、前記で得られた走行距離情報で
積分演算することにより、無人走行体Aの走行位置を検
出する構成となっている。走行制御装置5、走行距離検
出部6、演算装置9、ジャイロ11、積分器12等は車
体1に搭載されている。
Reference numeral 11 is an optical fiber gyro. When the unmanned traveling body A makes a motion including a rotational motion, the gyro 11 detects an angular velocity about the vertical direction of the vehicle body center and outputs a signal to the integrator 12. The integrator 12 is
The angular velocity information of the gyro 11 is time-integrated, converted into an angle, and output to the arithmetic unit 9 as traveling azimuth angle information of the unmanned traveling body A. The arithmetic unit 9 is configured to detect the traveling position of the unmanned traveling body A by integrating the traveling azimuth information obtained by the integrator 12 with the traveling distance information obtained above. The travel control device 5, the travel distance detection unit 6, the computing device 9, the gyro 11, the integrator 12, and the like are mounted on the vehicle body 1.

【0017】上記の構成とされた本発明に係る無人走行
体の位置検出装置は、ジャイロ11で走行方位角を検出
しながら、レーザ光の路面4への照射により生じた干渉
縞Sをイメージセンサ8でとらえて走行距離を測定し、
該走行距離で走行方位角を積分して無人走行体Aの位置
を検出する。したがって、車輪2のスリップや摩耗によ
る径変化に影響されることなく、無人走行体Aの走行位
置を常に正確に検出することができる。
The position detecting apparatus for an unmanned vehicle according to the present invention having the above-mentioned structure detects the traveling azimuth angle by the gyro 11 and detects the interference fringe S generated by the irradiation of the laser beam on the road surface 4 with the image sensor. Measure the mileage by catching with 8,
The traveling azimuth angle is integrated with the traveling distance to detect the position of the unmanned traveling body A. Therefore, the traveling position of the unmanned traveling body A can always be detected accurately without being affected by the diameter change due to the slip or wear of the wheels 2.

【0018】図6は、無人走行体Aを粉体搬送車に利用
した例である。無人走行体Aは、管理用コンピュータ2
1の無線による行き先指示にしたがって、容器置場2
2、粉体計量装置23及び自動配合装置24の各ステー
ション22a,23a,24a及びホームステーション
25の間を走行し、粉体を搬送する。符号26は無人走
行体A上のメモリにある仮想走行ルート(軌道)、27
はコンベヤである。
FIG. 6 shows an example in which the unmanned traveling body A is used in a powder carrier. The unmanned traveling body A is a management computer 2
According to the wireless destination instruction of 1, container storage 2
2. The powder metering device 23 and the automatic compounding device 24 travel between the stations 22a, 23a, 24a and the home station 25 to convey the powder. Reference numeral 26 is a virtual traveling route (orbit) in the memory on the unmanned traveling body A, 27
Is a conveyor.

【0019】本発明は、前に述べたように、無人走行体
Aが特定の原点から移動した軌跡を積算しながら現在位
置を知るものであり、2種類の積分を絶えず繰り返して
いる。したがってどんなに精度の良いジャイロ11であ
っても、微小な誤差を有しており、その誤差は走行距離
が増えるに従って増大していくので、図6の場合のよう
に工場内をぐるぐると何周かまわっているうちに走行軌
道が少しずつずれて元の地点に戻れなくなってしまう。
As described above, the present invention knows the current position by accumulating the trajectory of the unmanned traveling body A moving from a specific origin, and constantly repeats two types of integration. Therefore, no matter how accurate the gyro 11 is, it has a small error, and the error increases as the mileage increases. Therefore, as in the case of FIG. While traveling around, the running track will gradually shift and it will not be possible to return to the original point.

【0020】そこで、無人走行体Aが所定のステーショ
ン22a,23a,24a,25に停止する度に、その
無人走行体Aの走行位置情報をそのステーションの位置
に修正する。
Therefore, every time the unmanned traveling body A stops at a predetermined station 22a, 23a, 24a, 25, the traveling position information of the unmanned traveling body A is corrected to the position of that station.

【0021】図7は走行方位角(姿勢)の修正制御例で
ある。この場合は、無人走行体Aに設けられたレーザ測
距器31,32と、ステーション22a,23a,24
a,25に設けられたレフレクタシート33を利用す
る。すなわち、二つのレーザ測距器31,32でレフレ
クタシート33までの距離d1,d2を測定し、d1=
d2(θ=0)となるように無人走行体Aの走行方位角
を修正する。また距離d1=d2であっても、無人走行
体Aがステーションに近付き過ぎたり、離れ過ぎたりし
ている場合には、4輪操舵で横行したり、前後進の繰返
し等によって所定の距離となるように修正する。
FIG. 7 shows an example of correction control of traveling azimuth angle (posture). In this case, the laser rangefinders 31, 32 provided on the unmanned traveling body A and the stations 22a, 23a, 24
The reflector sheet 33 provided on a and 25 is used. That is, the distances d1 and d2 to the reflector sheet 33 are measured by the two laser rangefinders 31 and 32, and d1 =
The traveling azimuth angle of the unmanned traveling body A is corrected so as to be d2 (θ = 0). Further, even if the distance d1 = d2, if the unmanned traveling body A is too close to or too far from the station, it will be traversed by four-wheel steering, or will be a predetermined distance due to repeated forward and backward movements. To fix.

【0022】また、無人走行体Aの停止位置の前後のず
れを修正する場合は、無人走行体Aに設けられた光電ス
イッチ41,42と、ステーションに設けられたドグ4
3,44を利用し、光電スイッチ41,42がドグ4
3,44を同時に感知したところで無人走行体Aを停止
させる。なお、光電スイッチとドグは一対だけでも良
い。
When correcting the front-back deviation of the stop position of the unmanned vehicle A, the photoelectric switches 41 and 42 provided in the unmanned vehicle A and the dog 4 provided in the station are corrected.
3 and 44 are used, the photoelectric switches 41 and 42 are dog 4
When 3 and 44 are sensed at the same time, the unmanned traveling body A is stopped. The photoelectric switch and the dog may be a pair.

【0023】ステーションにおける無人走行体Aの正し
い停止位置の座標値は予め分っているので、上記の操作
で無人走行体Aを上記の正しい位置に位置決めした後、
無人走行体Aの位置情報を位置決め停止位置の座標値に
修正する。なお、このような修正はステーション以外の
定点でも行うことができる。レーザ測距器31,32、
レフレクタシート33、光電スイッチ41,42、ドグ
43,44は、他の測距手段、反射手段、スイッチ手
段、ドグ手段にそれぞれ変えることができる。
Since the coordinate value of the correct stop position of the unmanned traveling body A at the station is known in advance, after positioning the unmanned traveling body A at the above correct position by the above operation,
The position information of the unmanned traveling body A is corrected to the coordinate value of the positioning stop position. It should be noted that such correction can be performed at a fixed point other than the station. Laser range finder 31, 32,
The reflector sheet 33, the photoelectric switches 41 and 42, and the dogs 43 and 44 can be replaced with other distance measuring means, reflecting means, switch means, and dog means, respectively.

【0024】[0024]

【発明の効果】以上説明したように、本発明に係る無人
走行体の位置検出方法及び装置は前記の構成とされてい
るので、車輪のスリップや径変化の影響を受けることが
なく、したがって無人走行体の走行位置を正確に検出す
ることができる。また、無人走行体が定点に走行してき
たときに、無人走行体の位置情報を上記定点の位置に修
正するようにすると、誤差の増大を防止して位置の検出
精度を保つことができる。
As described above, since the method and apparatus for detecting the position of an unmanned vehicle according to the present invention have the above-mentioned structure, they are not affected by wheel slips or diameter changes, and therefore unmanned. The traveling position of the traveling body can be accurately detected. Further, when the unmanned traveling body travels to the fixed point, if the position information of the unmanned traveling body is corrected to the position of the fixed point, an increase in error can be prevented and the position detection accuracy can be maintained.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明に係る無人走行体の位置検出装置の一
実施例を示すブロック図である。
FIG. 1 is a block diagram showing an embodiment of a position detecting device for an unmanned traveling body according to the present invention.

【図2】 車輪とイメージセンサ及びジャイロの配置例
を示す平面図である。
FIG. 2 is a plan view showing an arrangement example of wheels, an image sensor, and a gyro.

【図3】 レーザ発振器とイメージセンサの働きを示す
図である。
FIG. 3 is a diagram showing operations of a laser oscillator and an image sensor.

【図4】 干渉縞の一例を示す図である。FIG. 4 is a diagram showing an example of interference fringes.

【図5】 干渉縞の移動を示す図である。FIG. 5 is a diagram showing movement of interference fringes.

【図6】 無人走行体の使用例を示す図である。FIG. 6 is a diagram showing an example of use of an unmanned traveling body.

【図7】 無人走行体の位置修正方法の説明図である。FIG. 7 is an explanatory diagram of a method for correcting the position of the unmanned traveling body.

【図8】 前後位置の修正方法の説明図である。FIG. 8 is an explanatory diagram of a front-back position correction method.

【図9】 走行位置の演算方法を示す図である。FIG. 9 is a diagram showing a method of calculating a traveling position.

【符号の説明】[Explanation of symbols]

4 路面 6 走行距離検出部 7 レーザ発振器 8 イメージセンサ 9 演算装置 11 ジャイロ 12 積分器 A 無人走行体 S 干渉縞 4 road surface 6 mileage detection unit 7 laser oscillator 8 image sensor 9 arithmetic unit 11 gyro 12 integrator A unmanned traveling body S interference fringes

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 レーザ光を路面に照射して路面の凹凸に
よる干渉縞のパターンをイメージセンサでとらえ、この
パターンの移動量を検出して無人走行体の走行距離情報
とするとともに、ジャイロによって無人走行体の走行方
位角を検出し、上記走行距離で上記走行方位角を積分し
て無人走行体の位置を検出することを特徴とする無人走
行体の位置検出方法。
1. A road surface is irradiated with laser light to capture a pattern of interference fringes due to unevenness of the road surface with an image sensor, and the amount of movement of this pattern is detected to be used as travel distance information of an unmanned traveling body. A position detecting method for an unmanned traveling body, comprising detecting a traveling azimuth angle of the traveling body and integrating the traveling azimuth angle at the traveling distance to detect a position of the unmanned traveling body.
【請求項2】 無人走行体が定点に走行してきたとき
に、無人走行体の位置情報を上記定点の位置に修正する
ことを特徴とする請求項1記載の無人走行体の位置検出
方法。
2. The position detecting method for an unmanned traveling body according to claim 1, wherein when the unmanned traveling body travels to a fixed point, the position information of the unmanned traveling body is corrected to the position of the fixed point.
【請求項3】 ジャイロで検出した走行方位角を、演算
装置により、走行距離検出部によって検出した走行距離
で積分して位置を検出する無人走行体において、上記走
行距離検出部は、路面にレーザ光を照射するレーザ発振
器と、路面の凹凸による照射レーザ光の干渉縞のパター
ンをとらえて上記演算装置に出力するイメージセンサと
を具備したことを特徴とする無人走行体の位置検出装
置。
3. An unmanned vehicle which detects a position by integrating a traveling azimuth detected by a gyro with a traveling distance detected by a traveling distance detecting section by a computing device, wherein the traveling distance detecting section has a laser on a road surface. A position detecting device for an unmanned vehicle, comprising: a laser oscillator that irradiates light; and an image sensor that captures an interference fringe pattern of the irradiating laser light due to unevenness of the road surface and outputs the image to the arithmetic device.
JP6066301A 1994-04-04 1994-04-04 Method and device for detecting position of unmanned vehicle Pending JPH07281740A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6066301A JPH07281740A (en) 1994-04-04 1994-04-04 Method and device for detecting position of unmanned vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6066301A JPH07281740A (en) 1994-04-04 1994-04-04 Method and device for detecting position of unmanned vehicle

Publications (1)

Publication Number Publication Date
JPH07281740A true JPH07281740A (en) 1995-10-27

Family

ID=13311859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6066301A Pending JPH07281740A (en) 1994-04-04 1994-04-04 Method and device for detecting position of unmanned vehicle

Country Status (1)

Country Link
JP (1) JPH07281740A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012053837A (en) * 2010-09-03 2012-03-15 Hitachi Plant Technologies Ltd Unmanned carrier and traveling control method
JP2016143260A (en) * 2015-02-03 2016-08-08 株式会社岡村製作所 Movement direction measurement device and self-propelled type moving body
WO2019014951A1 (en) * 2017-07-21 2019-01-24 深圳市萨斯智能科技有限公司 Information transmission method of robot and robot

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61151421A (en) * 1984-12-26 1986-07-10 Komatsu Ltd Calibration of direction detector of unmanned piloting of vehicle
JPS62105206A (en) * 1985-10-31 1987-05-15 Yokogawa Electric Corp Guiding device for unmanned guided vehicle
JPH02270003A (en) * 1988-06-27 1990-11-05 Meidensha Corp Carrier body/speed detecting device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61151421A (en) * 1984-12-26 1986-07-10 Komatsu Ltd Calibration of direction detector of unmanned piloting of vehicle
JPS62105206A (en) * 1985-10-31 1987-05-15 Yokogawa Electric Corp Guiding device for unmanned guided vehicle
JPH02270003A (en) * 1988-06-27 1990-11-05 Meidensha Corp Carrier body/speed detecting device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012053837A (en) * 2010-09-03 2012-03-15 Hitachi Plant Technologies Ltd Unmanned carrier and traveling control method
JP2016143260A (en) * 2015-02-03 2016-08-08 株式会社岡村製作所 Movement direction measurement device and self-propelled type moving body
WO2019014951A1 (en) * 2017-07-21 2019-01-24 深圳市萨斯智能科技有限公司 Information transmission method of robot and robot

Similar Documents

Publication Publication Date Title
Borenstein Experimental results from internal odometry error correction with the OmniMate mobile robot
KR102502219B1 (en) Drift control method due to carpet during robot movement, chip and cleaning robot
EP0273976B1 (en) Guiding apparatus for unmanned movable bodies
US6314341B1 (en) Method of recording trajectory data and sensor data for a manually-driven vehicle
JP2001515237A (en) Docking method of autonomous motion unit using guidance beam
DE3741259A1 (en) Method and device for the autonomous steering of a vehicle
JP2007156576A (en) Method and device for adjusting odometry(wheel range finder) parameter for traveling carrier
Roth et al. Navigation and docking manoeuvres of mobile robots in industrial environments
JPH07281740A (en) Method and device for detecting position of unmanned vehicle
JP3149661B2 (en) Automatic guided vehicle position identification method
JP2019215773A (en) Travel control device and travel control method for unmanned carrier
WO1995029380A1 (en) Navigation system for fast automated vehicles and mobile robots
JPH01282615A (en) Position correcting system for self-travelling unmanned vehicle
JP2000132229A (en) Travel controlling method for movable body
JPH10222225A (en) Unmanned travel body and its travel method
JP2676831B2 (en) Automatic guided vehicle position detection device
JP2660534B2 (en) Guidance traveling control device for moving objects
JP2503533Y2 (en) Vehicle position / speed detector
JPH10253372A (en) Recognition apparatus for position of moving body
JPS5965316A (en) Guiding method of unmanned truck
KR102653633B1 (en) Automated guided vehicle and method for controlling movement of automated guided vehicle
JPH0716165Y2 (en) Vehicle position / speed detector
JPH0456325B2 (en)
JPH1039927A (en) Position computing method at the time of autonomous operation of unmanned carrier
JP2503534Y2 (en) Vehicle position / speed detector

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19980714