JP2016143260A - Movement direction measurement device and self-propelled type moving body - Google Patents

Movement direction measurement device and self-propelled type moving body Download PDF

Info

Publication number
JP2016143260A
JP2016143260A JP2015019113A JP2015019113A JP2016143260A JP 2016143260 A JP2016143260 A JP 2016143260A JP 2015019113 A JP2015019113 A JP 2015019113A JP 2015019113 A JP2015019113 A JP 2015019113A JP 2016143260 A JP2016143260 A JP 2016143260A
Authority
JP
Japan
Prior art keywords
movement
moving
moving body
self
predetermined distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015019113A
Other languages
Japanese (ja)
Other versions
JP6742071B2 (en
Inventor
佳一 山下
Keiichi Yamashita
佳一 山下
山崎 恵一
Keiichi Yamazaki
恵一 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okamura Corp
Original Assignee
Okamura Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okamura Corp filed Critical Okamura Corp
Priority to JP2015019113A priority Critical patent/JP6742071B2/en
Publication of JP2016143260A publication Critical patent/JP2016143260A/en
Application granted granted Critical
Publication of JP6742071B2 publication Critical patent/JP6742071B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a movement direction measurement device and self-propelled type moving body that can highly accurately measure a movement direction.SOLUTION: To a moving body (2) movable in a prescribed direction x, detection devices (9L and 9R) detecting amounts of movement xL and xR to the prescribed direction x relative to a movement surface are disposed at the left and right of the moving body with the detection devices spaced away at a prescribed distance h. When the moving body moves at a distance shorter than the prescribed distance h, an angle of deviation Δθ in a movement direction in pre and post movements of the moving body is obtained from a difference (xL-xR) between the amounts of movement detected by the left and right detection devices and the prescribed distance h. A speed of travelling bodies (5L and 5R) of the moving body (2) is modified so as to make the obtained angle of deviation Δθ small.SELECTED DRAWING: Figure 1

Description

本発明は、移動体の移動面に対する移動方向を検出する移動方向測定装置及び自走式移動体に関する。   The present invention relates to a moving direction measuring device and a self-propelled moving body that detect a moving direction of a moving body with respect to a moving surface.

従来から倉庫等に用いられ床面上を所望の目的位置まで自走する電動移動棚、電動により移動可能な観覧席、工場等に用いられる無人台車等の自走式移動体が知られている。
例えば、電動移動棚(自走式移動体)は、モータにより車輪を回転させて床上を往復動するものであり、電動移動棚が幅方向にずれないようするために床面上に敷設されたシートレール状の被検出体に沿って移動するように左右の車輪を駆動するモータを独立して制御するとともに、電動移動棚が具備する接近センサが隣接する固定棚や停止中の電動移動棚への接近を検出したとき当該移動中の電動移動棚を停止させるようになされている(例えば、特許文献1参照)。
Conventionally, self-propelled moving bodies such as electric moving shelves used for warehouses and the like that self-propelled on a floor surface to a desired target position, bleachers that can be moved electrically, unmanned carts used in factories, etc. are known. .
For example, an electric movable shelf (self-propelled movable body) is a device that reciprocates on the floor by rotating wheels by a motor, and is laid on the floor surface so that the electric movable shelf does not shift in the width direction. Independently controls the motors that drive the left and right wheels to move along the seat rail-shaped object, and the proximity sensor provided in the electric movable shelf is adjacent to the adjacent fixed shelf or the stopped electric movable shelf. When an approach is detected, the electric moving shelf that is moving is stopped (see, for example, Patent Document 1).

特許第3832265号公報(段落0040、0060、図8)Japanese Patent No. 3832265 (paragraphs 0040 and 0060, FIG. 8) 特開平7−281740号公報(段落0015、0016、図1−5)Japanese Patent Laid-Open No. 7-281740 (paragraphs 0015 and 0016, FIGS. 1-5)

しかしながら、特許文献1にあっては、往復動する移動棚が幅方向(移動方向に直交する方向)にずれないようするために床面上にシートレール状の被検出体を敷設する必要があり、そのため電動移動棚を設置する場所の汎用性が低い。   However, in Patent Document 1, it is necessary to lay a seat rail-like object to be detected on the floor surface so that the reciprocating moving shelf does not shift in the width direction (direction orthogonal to the moving direction). Therefore, the versatility of the place where the electric movable shelf is installed is low.

また、任意の場所の用いられる自走式移動体として、ジャイロを搭載し、ジャイロの角速度情報を時間積分することにより走行方向(方位角)を得る無人台車がある(例えば特許文献2)。しかしながら、特許文献2にあっては、床面上に被検出体を敷設する必要はないものの、走行方向をジャイロより得ているため、略直線上を移動する場合には無人台車の角度の変化が小さくジャイロでは走行方向が正確に得られない又は精度が悪いという問題がある。さらに、無人台車の走行速度が小さい場合にはこの問題は顕著である。   Moreover, as a self-propelled mobile body used in an arbitrary place, there is an unmanned carriage that has a gyro and obtains a traveling direction (azimuth angle) by time-integrating angular velocity information of the gyro (for example, Patent Document 2). However, in Patent Document 2, although it is not necessary to lay the object to be detected on the floor surface, since the traveling direction is obtained from the gyro, the change in the angle of the unmanned carriage when moving on a substantially straight line However, the gyro has a problem that the traveling direction cannot be obtained accurately or the accuracy is poor. Furthermore, this problem is significant when the traveling speed of the unmanned carriage is low.

本発明は、このような問題点に着目してなされたもので、精度良く移動方向を測定できる移動方向測定装置及び自走式移動体を提供することを目的とする。   The present invention has been made paying attention to such problems, and an object of the present invention is to provide a moving direction measuring device and a self-propelled moving body that can accurately measure the moving direction.

前記課題を解決するために、本発明の移動方向測定装置は、
所定方向xに移動可能な移動体に、移動面に対する前記所定方向xへの移動量xL,xRを検出する検出装置が前記移動体の左右に所定距離h離間して配設され、
前記所定距離hよりも短い距離移動した際に、前記移動体の移動前後における移動方向の偏角Δθを、前記左右の検出装置により検出された移動量の差分(xL−xR)と前記所定距離hとから求めることを特徴としている。
この特徴によれば、左右の検出装置が配設される間隔である所定距離hよりも短い距離移動した際に移動面に対する所定方向xへの移動量xL,xRを検出するため精度良く移動方向を測定することができる。特に、移動方向xに対して角度の変化が小さい略直線上を移動する場合、精度良く移動方向を測定することができる。
In order to solve the above-mentioned problem, the moving direction measuring device of the present invention comprises:
A detection device that detects movement amounts xL and xR in the predetermined direction x with respect to the moving surface is arranged on the moving body movable in the predetermined direction x at a predetermined distance h from the left and right of the moving body,
When the movable body moves a distance shorter than the predetermined distance h, the deviation Δθ in the movement direction before and after the movement of the moving body is calculated by using the difference (xL−xR) between the movement amounts detected by the left and right detection devices and the predetermined distance. It is characterized by obtaining from h.
According to this feature, the movement direction is detected with high accuracy in order to detect the movement amounts xL and xR in the predetermined direction x with respect to the moving surface when the right and left detection devices are moved by a distance shorter than the predetermined distance h. Can be measured. In particular, when moving on a substantially straight line with a small change in angle with respect to the moving direction x, the moving direction can be accurately measured.

前記移動量の差分(xL−xR)は、前記左右の検出装置が同時刻に検出した移動量xL,xRにより求められることを特徴としている。
この特徴によれば、同時刻に検出した左右の移動量xL,xRを用いるため、得られる移動方向の正確性が増す。
The difference (xL−xR) between the movement amounts is obtained from the movement amounts xL and xR detected by the left and right detection devices at the same time.
According to this feature, since the left and right movement amounts xL, xR detected at the same time are used, the accuracy of the obtained movement direction is increased.

前記移動体が前記所定距離hよりも十分に短い距離移動した際に、前記偏角Δθを求めることを特徴としている。
この特徴によれば、求められる偏角Δθが十分に小さいため、その値をsinθに近似でき、偏角Δθを正確且つ迅速に得ることができる。
When the moving body moves a distance sufficiently shorter than the predetermined distance h, the deviation angle Δθ is obtained.
According to this feature, since the required deviation angle Δθ is sufficiently small, the value can be approximated to sin θ, and the deviation angle Δθ can be obtained accurately and quickly.

前記検出装置は、移動面にレーザ光を照射するレーザ発信器と、前記レーザ光により生じた移動面のスペックルパターンを読み取るイメージセンサとを有することを特徴としている。
この特徴によれば、レーザ光により生じた移動面のスペックルパターンを読み取るため、移動量を精度良く得ることができる。
The detection device includes a laser transmitter that irradiates a moving surface with laser light, and an image sensor that reads a speckle pattern on the moving surface generated by the laser light.
According to this feature, since the speckle pattern on the moving surface generated by the laser light is read, the moving amount can be obtained with high accuracy.

本発明の自走式移動体は、
検出された位置関連情報に基づき所定方向xに自走可能な移動体であって、
前記移動体は、
左右に所定距離h離間して配設され、移動面に対する所定方向xへの移動量xL,xRをそれぞれ検出する検出装置と、
前記所定距離hよりも短い距離移動した際に、前記左右の検出装置により検出された移動量の差分(xL−xR)から、この差分(xL−xR)を小さくするように前記移動体の移動方向を修正する走行制御部とを備えたことを特徴としている。
この特徴によれば、左右の検出装置が配設される間隔である所定距離hよりも短い距離移動した際に、移動量の差分(xL−xR)を小さくするように移動体の移動方向を修正するため、精度良く移動体の移動方向xが修正される。特に、移動方向xに対して角度の変化が小さい略直線上を移動する場合に顕著である。
The self-propelled mobile body of the present invention is
A mobile body capable of self-propelling in a predetermined direction x based on the detected position-related information,
The moving body is
A detection device which is arranged at a predetermined distance h from the left and right and detects movement amounts xL and xR in a predetermined direction x with respect to the moving surface;
The movement of the moving body so as to reduce this difference (xL-xR) from the difference (xL-xR) of the amount of movement detected by the left and right detection devices when moving a distance shorter than the predetermined distance h. And a travel control unit for correcting the direction.
According to this feature, the moving direction of the moving body is set so as to reduce the difference (xL−xR) in the moving amount when moving a distance shorter than a predetermined distance h that is an interval between the left and right detecting devices. In order to correct, the moving direction x of the moving body is corrected with high accuracy. This is particularly noticeable when moving on a substantially straight line with a small change in angle with respect to the moving direction x.

前記走行制御部は、前記移動体の移動前後における移動方向の偏角Δθを、前記左右の検出装置により検出された移動量の差分(xL−xR)と前記所定距離hとから求め、この偏角Δθに基づき前記移動方向を修正することを特徴としている。
この特徴によれば、偏角Δθに基づいて移動体の移動方位を制御することができる。このため、所定距離hなどの移動体の固有の形状によらないパラメータにより移動体を走行制御することができる。
The travel control unit obtains the deviation angle Δθ in the movement direction before and after the movement of the moving body from the difference (xL−xR) of the movement amount detected by the left and right detection devices and the predetermined distance h. The moving direction is corrected based on the angle Δθ.
According to this feature, the moving direction of the moving object can be controlled based on the deviation angle Δθ. For this reason, traveling control of the moving body can be performed using parameters that do not depend on the specific shape of the moving body, such as the predetermined distance h.

前記自走式移動体は左右両側に走行体を有しており、かつ、略直線に走行するものであり、
前記走行制御部は、前記求められた偏角Δθの修正を前記左右の走行体の移動量で調整することを特徴としている。
この特徴によれば、偏角Δθの修正を左右の走行体の移動量で調整するため、迅速な調整が可能である。
The self-propelled mobile body has a traveling body on both the left and right sides, and travels in a substantially straight line,
The travel control unit is characterized in that the correction of the obtained deviation angle Δθ is adjusted by the movement amount of the left and right traveling bodies.
According to this feature, since the correction of the deviation angle Δθ is adjusted by the movement amount of the left and right traveling bodies, quick adjustment is possible.

実施例1におけるレールレス移動棚の時刻0と時刻1における移動状態を上方から見た説明図である。It is explanatory drawing which looked at the movement state in the time 0 and the time 1 of the railless movement shelf in Example 1 from the upper direction. 図1のレールレス移動棚を正面からみた説明図である。It is explanatory drawing which looked at the railless movement shelf of FIG. 1 from the front. 移動量検出センサの出力信号を示す図である。It is a figure which shows the output signal of a movement amount detection sensor. 走行制御の動作を示すフローチャートである。It is a flowchart which shows operation | movement of traveling control. 走行軌跡を示す図である。It is a figure which shows a driving | running | working locus | trajectory. 実施例2における走行制御の動作を示すフローチャートである。6 is a flowchart illustrating an operation of traveling control in the second embodiment. 実施例3におけるレールレス移動棚の時刻0と時刻1における移動状態を上方から見た説明図である。It is explanatory drawing which looked at the movement state in the time 0 of the railless movement shelf in Example 3, and the time 1 from the upper direction.

本発明に係るレールレス移動棚(移動方向測定装置及び自走式移動体)を実施するための形態を実施例に基づいて以下に説明する。   EMBODIMENT OF THE INVENTION The form for implementing the railless movable shelf (movement direction measuring apparatus and self-propelled mobile body) which concerns on this invention is demonstrated below based on an Example.

実施例1に係るレールレス移動棚につき、図1から図5を参照して説明する。以下、図1のx方向、図2の紙面奥行き方向をレールレス移動棚の進行方向(前方)とし、図1、図2のy方向をレールレス移動棚の左右方向として説明する。   A railless movable shelf according to the first embodiment will be described with reference to FIGS. In the following description, the x direction in FIG. 1 and the depth direction in FIG. 2 are the traveling direction (front) of the railless moving shelf, and the y direction in FIGS. 1 and 2 is the left and right direction of the railless moving shelf.

レールレス移動棚2は、左右に設けられたサーボモータ6L、6Rにより車輪(走行体)5L、5Rが駆動されて、床1上を自走可能に、すなわち敷設されたレール上ではなく床1上を直接自走可能に構成されている。レールレス移動棚2は、車輪5L、5R、サーボモータ6L、6R、走行制御部7、位置計測部8、移動量検出センサ(検出装置)9L、9Rが主に配置される下部のフレーム部3と、物品を載置・収容可能な棚が設けられた上部の物品収容部4から構成されている。   The railless movable shelf 2 has wheels (running bodies) 5L and 5R driven by servo motors 6L and 6R provided on the left and right sides so that it can run on the floor 1 in other words, that is, on the floor 1 instead of on the laid rail. It is configured to be able to run directly. The railless movable shelf 2 includes wheels 5L and 5R, servo motors 6L and 6R, a travel control unit 7, a position measurement unit 8, and movement amount detection sensors (detection devices) 9L and 9R. The upper article storage section 4 is provided with a shelf on which articles can be placed and stored.

移動量検出センサ9L、9Rは、フレーム部3の左右両端に配置され、それぞれ、床1に向けてレーザ光を照射するレーザ発信器10L、10Rと、CCD、CMOS等のイメージセンサ11L、11Rから構成されている。床1に照射されたレーザ光は、床の微小な凹凸により乱反射した光が光路差により像面で干渉し、スペックルパターンが生じる。   The movement amount detection sensors 9L and 9R are arranged at the left and right ends of the frame part 3, respectively, and laser transmitters 10L and 10R that irradiate laser light toward the floor 1, and image sensors 11L and 11R such as CCD and CMOS, respectively. It is configured. In the laser light irradiated on the floor 1, the light irregularly reflected by the minute unevenness of the floor interferes with the image plane due to the optical path difference, and a speckle pattern is generated.

イメージセンサ11L、11Rは、床1のスペックルパターンを撮像しており、レールレス移動棚2の移動に伴いスペックルパターンが移動すると、その移動量に応じた出力信号12L、12Rを出力する。図3に示されるように、各出力信号12L、12Rは、x方向への移動量に応じたパルス数からなる移動パルス、x方向への移動の正負方向を示すH、L信号、y方向への移動量に応じたパルス数からなる移動パルス、y方向への移動の正負方向を示すH、L信号からなる。なお、図3ではy方向パルスが出力される例を示しているが、レールレス移動棚2の場合には、基本的に往復動するものであるため、現実にはy方向パルスが出力されることはほとんどない。   The image sensors 11L and 11R image the speckle pattern of the floor 1, and when the speckle pattern moves as the railless moving shelf 2 moves, output signals 12L and 12R corresponding to the movement amounts are output. As shown in FIG. 3, each output signal 12L, 12R is a moving pulse having a pulse number corresponding to the amount of movement in the x direction, an H, L signal indicating the positive / negative direction of movement in the x direction, and in the y direction. Movement pulses having the number of pulses corresponding to the amount of movement, and H and L signals indicating the positive and negative directions of movement in the y direction. Although FIG. 3 shows an example in which a y-direction pulse is output, the railless movable shelf 2 basically reciprocates, so that a y-direction pulse is actually output. There is almost no.

位置計測部8は、出力信号12L、12Rを入力し、移動パルスの数及びH,L信号から、床1に対する移動量検出センサ9L、9Rのx方向及びy方向の移動量を求める。ここで、上述したスペックルパターンを用いる検出手法は、いわゆるレーザスペックル法と呼ばれ、周知の手法である。実施例1では、例えば、イメージセンサ11L、11Rは、求めるx方向、y方向の移動量の分解能が1mmであればよく、例えばスキャンレート6000回/秒、トラッキング解像度400dpiのものにより実現できる。   The position measuring unit 8 receives the output signals 12L and 12R, and obtains the movement amounts of the movement amount detection sensors 9L and 9R with respect to the floor 1 in the x and y directions from the number of movement pulses and the H and L signals. Here, the above-described detection method using the speckle pattern is called a so-called laser speckle method and is a well-known method. In the first embodiment, for example, the image sensors 11L and 11R need only have a resolution of 1 mm for the amount of movement in the x and y directions to be obtained, and can be realized with a scan rate of 6000 times / second and a tracking resolution of 400 dpi, for example.

次いで、位置計測部8による移動方向の計測について説明する。図1に示されるように、時刻t=0における、レールレス移動棚2の中心の座標(x、y、θ)、移動量検出センサ9L、9Rの中心の座標(xL0、yL0)、(xR0、yR0)は、それぞれ時刻t=1において座標(x’、y’、θ’)、(xL1、yL1)、(xR1、yR1)に移動されている。また、レールレス移動棚2の中心の移動方向Aは、時刻t=1では偏角Δθだけその方向が変化している。
移動量検出センサ9L、9Rのx方向の移動量はxL(=√((xL1−xL0)+(yL1−yL0)))、xR(=√((xR1−xR0)+(yR1−yR0))で求められ、その差はxL−xRとして求められる。
Next, measurement of the moving direction by the position measuring unit 8 will be described. As shown in FIG. 1, the coordinates (x, y, θ) of the railless moving shelf 2 at the time t = 0, the coordinates (xL0, yL0) of the centers of the movement amount detection sensors 9L, 9R, (xR0, yR0) is moved to coordinates (x ′, y ′, θ ′), (xL1, yL1), (xR1, yR1) at time t = 1, respectively. Further, the moving direction A at the center of the railless moving shelf 2 changes its direction by the deviation angle Δθ at time t = 1.
The movement amounts of the movement amount detection sensors 9L and 9R in the x direction are xL (= √ ((xL1−xL0) 2 + (yL1−yL0) 2 )), xR (= √ ((xR1−xR0) 2 + (yR1− yR0) 2 ), and the difference is obtained as xL−xR.

偏角Δθは幾何学的関係から数1により表すことができる。
sinΔθ=(xL−xR)/h・・・(数1)
ここで、レールレス移動棚2の左右幅(y方向幅)が長く、移動量検出センサ9L、9R間の距離hは差xL−xRに比べて十分に長いため、数2のようにsinΔθはΔθに近似することができる。例えば、h=3600mm、xL−xR=5mmであり、hはxL−xRに比べ十分に長い。
sinΔθ≒Δθ・・・(数2)
したがって、時刻t=1の移動方向Aは、θ+Δθとして、θ+(xL−xR)/hにより得ることができる。
The declination Δθ can be expressed by Equation 1 from the geometrical relationship.
sin Δθ = (xL−xR) / h (Equation 1)
Here, since the left-right width (width in the y direction) of the railless movable shelf 2 is long and the distance h between the movement amount detection sensors 9L and 9R is sufficiently longer than the difference xL-xR, sin Δθ is Δθ as shown in Equation 2. Can be approximated. For example, h = 3600 mm and xL-xR = 5 mm, and h is sufficiently longer than xL-xR.
sin Δθ≈Δθ (Expression 2)
Therefore, the moving direction A at time t = 1 can be obtained as θ + (xL−xR) / h as θ + Δθ.

次いで、図4を参照して、レールレス移動棚2の移動方向の走行制御を説明する。
レールレス移動棚2は往復動するものであるが、床1の汚れ、隆起等により移動方向が図1に示されるように旋回することがあり、この旋回を検出してその移動方向A(θ)をx方向に向ける必要がある。
Next, traveling control in the moving direction of the railless moving shelf 2 will be described with reference to FIG.
Although the railless movable shelf 2 reciprocates, the movement direction may be swung as shown in FIG. 1 due to dirt, bumps or the like of the floor 1, and the movement direction A (θ) is detected by detecting this turn. Must be oriented in the x direction.

位置計測部8は、変数nをインクリメントし(ステップ1)、移動量検出センサ9L、9Rのx方向の移動量xLn、xRn、レールレス移動体2の移動方向の偏角Δθを出力する(ステップ2)。なお、nの初期値は0である。
走行制御部7は、偏角Δθを所定値k(例えば0.001)と比較し(ステップ3)、所定値kよりも大きいときは移動方向Aが右方向に変化しているとして、その偏角Δθを打ち消すように、右側のサーボモータ6Rを左側のサーボモータ6Lに対して相対的に増速修正させる(ステップ4)。
The position measuring unit 8 increments the variable n (step 1) and outputs the movement amounts xLn and xRn of the movement amount detection sensors 9L and 9R in the x direction and the deviation angle Δθ of the movement direction of the railless moving body 2 (step 2). ). Note that the initial value of n is 0.
The traveling control unit 7 compares the deviation angle Δθ with a predetermined value k (for example, 0.001) (step 3), and if it is larger than the predetermined value k, it is determined that the moving direction A has changed to the right. The right servo motor 6R is corrected to increase in speed relative to the left servo motor 6L so as to cancel the angle Δθ (step 4).

ステップ3が否定されたときには、偏角Δθを所定値−k(例えば−0.001)と比較し(ステップ5)、所定値−kよりも小さいときは移動方向Aが左方向に変化しているとして、その偏角Δθを打ち消すように、左側のサーボモータ6Lを右側のサーボモータ6Rに対して相対的に増速修正させる(ステップ6)。
ステップ6が否定されたときには、レールレス移動棚2は直進しているため、左右のサーボモータ6L、6Rの速度修正は不要である。
このようにして、偏角Δθは例えば図5のように修正され、レールレス移動棚2を直進させることができる。なお、上述に加えて、横滑りの検出によるy方向の移動量yLn、yRnを求め、y方向の移動量をy’=yに戻るようにサーボモータ6L、6Rを制御する処理を加えてもよい。
When step 3 is negative, the declination angle Δθ is compared with a predetermined value −k (for example, −0.001) (step 5), and when smaller than the predetermined value −k, the moving direction A changes to the left. If so, the left servo motor 6L is corrected to increase in speed relative to the right servo motor 6R so as to cancel the deviation angle Δθ (step 6).
When step 6 is negative, since the railless movable shelf 2 is moving straight, it is not necessary to correct the speed of the left and right servomotors 6L and 6R.
In this way, the deviation angle Δθ is corrected as shown in FIG. 5, for example, and the railless movable shelf 2 can be moved straight. In addition to the above, a process may be added in which the movement amounts yLn and yRn in the y direction based on the detection of skid are obtained, and the servo motors 6L and 6R are controlled so that the movement amounts in the y direction return to y ′ = y. .

ここで、偏角Δθの演算時期(周期)について説明する。偏角Δθは、所定距離hよりも短い距離移動した際、好ましくは十分に短い距離移動した際に演算すればy方向に大きくずれることがない。十分に小さいとは、1/10、更に好ましくは1/100である。言い換えると、許容される誤差の範囲によるが、数2によりsinΔθをΔθに近似できる値とすればよい。例えば、sinの値より誤差を1%に収めるときはΔθが2°以内であればよく、演算時期は移動棚2の移動速度及び距離hから求めることができる。例えば、h=3600mm、レールレス移動棚2が5m/min移動するとして、概ね、1秒毎に演算すると、仮にサーボモータ6L、6Rの一方が故障し停止し旋回する場合でもΔθは0.06°(これは2°よりも非常に小さい角度)であるから、左右のサーボモータ6L、6Rの速度修正を行うとy方向へのずれがほとんど生じることなく、上述したように、偏角Δθのみを修正することにより直進を維持することができる。   Here, the calculation time (cycle) of the deflection angle Δθ will be described. The deviation angle Δθ is not greatly deviated in the y direction if it is calculated when the distance is shorter than the predetermined distance h, preferably when the distance is sufficiently short. The sufficiently small value is 1/10, more preferably 1/100. In other words, depending on the allowable error range, the value of sin Δθ can be approximated to Δθ by Equation 2. For example, when the error is within 1% from the value of sin, Δθ should be within 2 °, and the calculation time can be obtained from the moving speed of the moving shelf 2 and the distance h. For example, assuming that h = 3600 mm and the railless moving shelf 2 moves 5 m / min, if approximately every second is calculated, Δθ is 0.06 ° even if one of the servo motors 6L and 6R fails and stops and turns. (This is an angle that is much smaller than 2 °). Therefore, when the speed correction of the left and right servomotors 6L and 6R is performed, there is almost no deviation in the y direction, and as described above, only the deviation angle Δθ is obtained. It is possible to keep going straight by correcting.

上述したように、移動量検出センサ9L、9Rが配設される間隔である所定距離hよりも短い距離移動した際に移動面に対する所定方向xへの移動量xL,xRを検出するため、精度良く移動方向を測定することができる。特に、レールレス移動棚2は、移動方向xに対して角度の変化が小さい略直線上を移動するものであること、かつ、移動速度が低速であることから、精度良く移動方向を測定することができる。すなわち、略直線上を移動するもの、又は、移動速度が低速であるものに採用すると特によい。
また、周知の左右車輪間の速度差により移動方向を求める場合と異なり、車輪と床との間のスリップないため、精度が良い。
As described above, since the movement amounts xL and xR in the predetermined direction x with respect to the moving surface are detected when the movement amount detection sensors 9L and 9R are moved by a distance shorter than the predetermined distance h that is an interval between the movement amount detection sensors 9L and 9R. The moving direction can be measured well. In particular, the railless moving shelf 2 moves on a substantially straight line with a small change in angle with respect to the moving direction x, and since the moving speed is low, the moving direction can be accurately measured. it can. In other words, it is particularly preferable to adopt the one that moves on a substantially straight line or one that moves at a low speed.
In addition, unlike the case of obtaining the moving direction based on the known speed difference between the left and right wheels, there is no slip between the wheel and the floor, so the accuracy is good.

また、同時刻に検出した左右の移動量xL,xRを用いるため、得られる移動方向の正確性が増す。
また、求められる偏角Δθが小さいため、その値をsinθに近似でき、偏角を正確且つ迅速に得ることができる。
また、レーザ光により生じた移動面のスペックルパターンを読み取るため、移動量を精度良く得ることができる。
また、偏角Δθにより移動方向Aを修正するため、所定距離hなどの移動体の固有の形状によらないパラメータk,−kにより移動体を走行制御することができる。
Moreover, since the left and right movement amounts xL and xR detected at the same time are used, the accuracy of the obtained movement direction is increased.
Further, since the required deflection angle Δθ is small, the value can be approximated to sin θ, and the deflection angle can be obtained accurately and quickly.
Further, since the speckle pattern on the moving surface generated by the laser beam is read, the moving amount can be obtained with high accuracy.
Further, since the moving direction A is corrected by the deviation angle Δθ, it is possible to control the moving body with parameters k and −k that do not depend on the specific shape of the moving body such as the predetermined distance h.

次に、実施例2に係るレールレス移動棚につき、図6を参照して説明する。尚、前記実施例1と同一構成で重複する構成を省略する。実施例1では、偏角Δθを求め、偏角Δθに応じて左右のサーボモータ6L、6Rの速度修正を行う例について説明したが、図6に示されるように、左右のx方向の移動量の差xLn−xRnを求め、この差を所定値m、−mと比較することにより、左右のサーボモータ6L、6Rの速度修正を行うようにしてもよい。   Next, a railless movable shelf according to the second embodiment will be described with reference to FIG. In addition, the same structure as the said Example 1 and the overlapping structure are abbreviate | omitted. In the first embodiment, an example in which the deflection angle Δθ is obtained and the speeds of the left and right servomotors 6L and 6R are corrected according to the deflection angle Δθ has been described. However, as illustrated in FIG. The speed of the left and right servomotors 6L and 6R may be corrected by obtaining the difference xLn−xRn and comparing the difference with predetermined values m and −m.

次に、実施例3に係るレールレス移動棚につき、図7を参照して説明する。尚、前記実施例1と同一構成で重複する構成を省略する。実施例1では、位置計測部8が移動方向Aを求める例について説明したが、移動方向に加えて二次元位置x、y、θを求めるようにしてもよい。   Next, a railless movable shelf according to the third embodiment will be described with reference to FIG. In addition, the same structure as the said Example 1 and the overlapping structure are abbreviate | omitted. In the first embodiment, the example in which the position measurement unit 8 obtains the movement direction A has been described. However, in addition to the movement direction, the two-dimensional positions x, y, and θ may be obtained.

図7は図1と同様にレールレス移動棚2が時刻t=0から時刻t=1にかけて移動することを説明する図であり、図1に加えて、旋回の中心O、半径rが示されている。レールレス移動棚2の移動距離は上述したようにx方向の移動距離となる。この動作を回転運動として近似した場合、微小時間経過後のレールレス移動棚2の二次元位置x’、y’、θ’は、曲座標を用いて以下のように表される。   FIG. 7 is a diagram for explaining that the railless moving shelf 2 moves from time t = 0 to time t = 1 as in FIG. 1. In addition to FIG. 1, the turning center O and the radius r are shown. Yes. The moving distance of the railless moving shelf 2 is the moving distance in the x direction as described above. When this operation is approximated as a rotational motion, the two-dimensional positions x ′, y ′, and θ ′ of the railless movable shelf 2 after a lapse of a minute time are expressed as follows using the music coordinates.

Δθ=(xL−xR)/h ・・・(数3)
r=−xR/θ ・・・(数4)
x’=x−r・sinθ+r・sin(θ+Δθ)・・・(数5)
y’=y−r・cosθ+r・cos(θ+Δθ)・・・(数6)
θ’=θ+Δθ ・・・(数7)
Δθ = (xL−xR) / h (Equation 3)
r = −xR / θ (Expression 4)
x ′ = x−r · sin θ + r · sin (θ + Δθ) (Equation 5)
y ′ = y−r · cos θ + r · cos (θ + Δθ) (Equation 6)
θ ′ = θ + Δθ (Expression 7)

以上、本発明の実施例を図面により説明してきたが、具体的な構成はこれら実施例に限られるものではなく、本発明の要旨を逸脱しない範囲における変更や追加があっても本発明に含まれる。   Although the embodiments of the present invention have been described with reference to the drawings, the specific configuration is not limited to these embodiments, and modifications and additions within the scope of the present invention are included in the present invention. It is.

前記実施例では、自走式移動体としてレールレス移動棚を例に説明したが、これに限られず、自走する無人搬送車、自走式ロボット、移動観覧席等であってもよい。特に、移動方向が正確に得られるという観点から、略直線上を移動する移動体や、移動速度が遅い移動体が好ましい。   In the above-described embodiment, the railless moving shelf is described as an example of the self-propelled moving body. However, the self-propelled moving body is not limited thereto, and may be a self-propelled automatic guided vehicle, a self-propelled robot, a moving bleacher, or the like. In particular, from the viewpoint that the moving direction can be accurately obtained, a moving body that moves on a substantially straight line and a moving body that moves slowly are preferable.

また、移動量検出センサ9L、9Rとして、レーザ発信器10L、10Rと、イメージセンサ11L、11Rとを有し、スペックルパターンを検出するものを例に説明したが、撮像装置により撮像したデジタル画像を用い画像相関法により移動量を検出するものであってもよい。   Further, although the movement amount detection sensors 9L and 9R have the laser transmitters 10L and 10R and the image sensors 11L and 11R and detect the speckle pattern as an example, a digital image captured by the imaging device is described. And the amount of movement may be detected by an image correlation method.

また、車輪5L、5Rの横滑りがないことを前提に説明したが、横滑りが生じた場合には、両移動量検出センサ9L、9Rから同量のy方向の移動距離が出力されるため、横滑りを判別することが可能である。また、走行体は無限軌道等、車輪以外であってもよい。   Further, the description has been made on the assumption that the wheels 5L and 5R do not slip sideways. However, when a side slip occurs, the same amount of movement distance in the y direction is output from both the movement amount detection sensors 9L and 9R. Can be determined. The traveling body may be other than wheels such as an endless track.

2 レールレス移動棚(自走式移動体)
3 フレーム部
4 物品収容部
5L、5R 車輪(走行体)
6L、6R サーボモータ
7 走行制御部
8 位置計測部
9L、9R 移動量検出センサ(検出装置)
10L、10R レーザ発信器
11L、11R イメージセンサ
A 移動方向
h 所定距離
Δθ 偏角
2 Railless movable shelf (self-propelled movable body)
3 Frame part 4 Article accommodating part 5L, 5R Wheel (running body)
6L, 6R Servo motor 7 Travel control unit 8 Position measurement unit 9L, 9R Movement amount detection sensor (detection device)
10L, 10R Laser transmitters 11L, 11R Image sensor A Movement direction h Predetermined distance Δθ Declination

Claims (7)

所定方向xに移動可能な移動体に、移動面に対する前記所定方向xへの移動量xL,xRを検出する検出装置が前記移動体の左右に所定距離h離間して配設され、
前記所定距離hよりも短い距離移動した際に、前記移動体の移動前後における移動方向の偏角Δθを、前記左右の検出装置により検出された移動量の差分(xL−xR)と前記所定距離hとから求めることを特徴とする移動方向測定装置。
A detection device that detects movement amounts xL and xR in the predetermined direction x with respect to the moving surface is arranged on the moving body movable in the predetermined direction x at a predetermined distance h from the left and right of the moving body,
When the movable body moves a distance shorter than the predetermined distance h, the deviation Δθ in the movement direction before and after the movement of the moving body is calculated by using the difference (xL−xR) between the movement amounts detected by the left and right detection devices and the predetermined distance. A moving direction measuring device obtained from h.
前記移動量の差分(xL−xR)は、前記左右の検出装置が同時刻に検出した移動量xL,xRにより求められることを特徴とする請求項1に記載の移動方向測定装置。   The movement direction measuring apparatus according to claim 1, wherein the difference (xL-xR) between the movement amounts is obtained from movement amounts xL and xR detected by the right and left detection devices at the same time. 前記移動体が前記所定距離hよりも十分に短い距離移動した際に、前記偏角Δθを求めることを特徴とする請求項1または2に記載の移動方向測定装置。   3. The moving direction measuring apparatus according to claim 1, wherein the deviation angle Δθ is obtained when the moving body moves a distance sufficiently shorter than the predetermined distance h. 前記検出装置は、移動面にレーザ光を照射するレーザ発信器と、前記レーザ光により生じた移動面のスペックルパターンを読み取るイメージセンサとを有することを特徴とする請求項1乃至3のいずれかに記載の移動方向測定装置。   The said detection apparatus has a laser transmitter which irradiates a moving surface with a laser beam, and an image sensor which reads the speckle pattern of the moving surface produced by the said laser beam. The moving direction measuring device according to 1. 検出された位置関連情報に基づき所定方向xに自走可能な移動体であって、
前記移動体は、
左右に所定距離h離間して配設され、移動面に対する所定方向xへの移動量xL,xRをそれぞれ検出する検出装置と、
前記所定距離hよりも短い距離移動した際に、前記左右の検出装置により検出された移動量の差分(xL−xR)から、この差分(xL−xR)を小さくするように前記移動体の移動方向を修正する走行制御部とを備えたことを特徴とする自走式移動体。
A mobile body capable of self-propelling in a predetermined direction x based on the detected position-related information,
The moving body is
A detection device which is arranged at a predetermined distance h from the left and right and detects movement amounts xL and xR in a predetermined direction x with respect to the moving surface;
The movement of the moving body so as to reduce this difference (xL-xR) from the difference (xL-xR) of the amount of movement detected by the left and right detection devices when moving a distance shorter than the predetermined distance h. A self-propelled mobile body comprising a travel control unit that corrects a direction.
前記走行制御部は、前記移動体の移動前後における移動方向の偏角Δθを、前記左右の検出装置により検出された移動量の差分(xL−xR)と前記所定距離hとから求め、この偏角Δθに基づき前記移動方向を修正することを特徴とする請求項5に記載の自走式移動体。   The travel control unit obtains the deviation angle Δθ in the movement direction before and after the movement of the moving body from the difference (xL−xR) of the movement amount detected by the left and right detection devices and the predetermined distance h. The self-propelled mobile body according to claim 5, wherein the moving direction is corrected based on an angle Δθ. 前記自走式移動体は左右両側に走行体を有しており、かつ、略直線に走行するものであり、
前記走行制御部は、前記求められた偏角Δθの修正を前記左右の走行体の移動量で調整することを特徴とする請求項5または6に記載の自走式移動体。
The self-propelled mobile body has a traveling body on both the left and right sides, and travels in a substantially straight line,
The self-propelled mobile body according to claim 5 or 6, wherein the travel control unit adjusts the correction of the obtained deviation angle Δθ by a movement amount of the left and right travel bodies.
JP2015019113A 2015-02-03 2015-02-03 Self-propelled railless mobile Active JP6742071B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015019113A JP6742071B2 (en) 2015-02-03 2015-02-03 Self-propelled railless mobile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015019113A JP6742071B2 (en) 2015-02-03 2015-02-03 Self-propelled railless mobile

Publications (2)

Publication Number Publication Date
JP2016143260A true JP2016143260A (en) 2016-08-08
JP6742071B2 JP6742071B2 (en) 2020-08-19

Family

ID=56570484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015019113A Active JP6742071B2 (en) 2015-02-03 2015-02-03 Self-propelled railless mobile

Country Status (1)

Country Link
JP (1) JP6742071B2 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62105206A (en) * 1985-10-31 1987-05-15 Yokogawa Electric Corp Guiding device for unmanned guided vehicle
JPH05324057A (en) * 1992-05-18 1993-12-07 Meidensha Corp Unmanned vehicle for autonomous traveling system
JPH07281740A (en) * 1994-04-04 1995-10-27 Niigata Eng Co Ltd Method and device for detecting position of unmanned vehicle
JPH08175381A (en) * 1994-12-28 1996-07-09 Nissan Motor Co Ltd Unmanned truck
JP2002274620A (en) * 2001-03-19 2002-09-25 Daifuku Co Ltd Mobile rack facility
JP2003146580A (en) * 2001-11-08 2003-05-21 Mitsui Eng & Shipbuild Co Ltd Linear traveling control device and linear traveling control method of railless type traveling body
JP2005112498A (en) * 2003-10-03 2005-04-28 Daifuku Co Ltd Moving body
JP2010172441A (en) * 2009-01-29 2010-08-12 Panasonic Corp Self-propelling type vacuum cleaner
JP2011203224A (en) * 2010-03-26 2011-10-13 Shimizu Corp System and method for detection of moving body position

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62105206A (en) * 1985-10-31 1987-05-15 Yokogawa Electric Corp Guiding device for unmanned guided vehicle
JPH05324057A (en) * 1992-05-18 1993-12-07 Meidensha Corp Unmanned vehicle for autonomous traveling system
JPH07281740A (en) * 1994-04-04 1995-10-27 Niigata Eng Co Ltd Method and device for detecting position of unmanned vehicle
JPH08175381A (en) * 1994-12-28 1996-07-09 Nissan Motor Co Ltd Unmanned truck
JP2002274620A (en) * 2001-03-19 2002-09-25 Daifuku Co Ltd Mobile rack facility
JP2003146580A (en) * 2001-11-08 2003-05-21 Mitsui Eng & Shipbuild Co Ltd Linear traveling control device and linear traveling control method of railless type traveling body
JP2005112498A (en) * 2003-10-03 2005-04-28 Daifuku Co Ltd Moving body
JP2010172441A (en) * 2009-01-29 2010-08-12 Panasonic Corp Self-propelling type vacuum cleaner
JP2011203224A (en) * 2010-03-26 2011-10-13 Shimizu Corp System and method for detection of moving body position

Also Published As

Publication number Publication date
JP6742071B2 (en) 2020-08-19

Similar Documents

Publication Publication Date Title
JP6492024B2 (en) Moving body
JP4910219B2 (en) Autonomous moving method and autonomous moving body
US20160170412A1 (en) Autonomous mobile device and method for controlling same
JP5218479B2 (en) Mobile system
KR20170024003A (en) Driverless transport vehicle and method for operating a driverless transport vehicle
JP6962027B2 (en) Mobile vehicle
JP2007219960A (en) Position deviation detection device
JP4984831B2 (en) Automated guided vehicle and control method thereof
JP2016143260A (en) Movement direction measurement device and self-propelled type moving body
JP2015055906A (en) Position detection device for outputting control command to travel control means of moving body and moving body system
JP2009244965A (en) Moving object
JP7002791B2 (en) Information processing equipment and mobile robots
JP2022098354A (en) Control device and program
JP2011243129A (en) Transportation vehicle system
JP2000132229A (en) Travel controlling method for movable body
JP2019003479A (en) Moving vehicle
JPH10254543A (en) Guiding equipment for moving body
JPH0215882B2 (en)
JP2017152051A (en) Traveling object attached with position detection device for outputting control command to travel control means of traveling object, and position detection device of the same
KR100310363B1 (en) Position inspecting apparatus for agv(automated guided vehicle) and method thereof
JP2023040644A (en) Self-propelled conveying device and control method for self-propelled conveying device
JP2004287711A (en) Moving mechanism for moving carriage and movement control method
JPH10254544A (en) Guiding equipment for moving body
JP4983783B2 (en) Mobile body and mobile body system
JP2842675B2 (en) Moving object distance measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190402

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190603

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190903

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191203

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20191212

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20200110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200728

R150 Certificate of patent or registration of utility model

Ref document number: 6742071

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250