JP3149661B2 - Automatic guided vehicle position identification method - Google Patents

Automatic guided vehicle position identification method

Info

Publication number
JP3149661B2
JP3149661B2 JP34753193A JP34753193A JP3149661B2 JP 3149661 B2 JP3149661 B2 JP 3149661B2 JP 34753193 A JP34753193 A JP 34753193A JP 34753193 A JP34753193 A JP 34753193A JP 3149661 B2 JP3149661 B2 JP 3149661B2
Authority
JP
Japan
Prior art keywords
light
laser
light amount
distance
detected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34753193A
Other languages
Japanese (ja)
Other versions
JPH07191744A (en
Inventor
薫 高阪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daifuku Co Ltd
Original Assignee
Daifuku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daifuku Co Ltd filed Critical Daifuku Co Ltd
Priority to JP34753193A priority Critical patent/JP3149661B2/en
Publication of JPH07191744A publication Critical patent/JPH07191744A/en
Application granted granted Critical
Publication of JP3149661B2 publication Critical patent/JP3149661B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、自由な走行ができ走行
環境を自ら判断する無人搬送車の位置同定方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for identifying a position of an automatic guided vehicle, which can freely travel and judges a traveling environment by itself.

【0002】[0002]

【従来の技術】従来使用されていたAGVは、ほとんど
が床に反射テープ、マグネットテープ、磁気線など電気
的な軌道を貼り付けてそれをガイドレールとして走るタ
イプが主流であった。このガイドレールは確実にAGV
を誘導するが、踏みつけられて破損したり定期交換が必
要で、床に埋設した場合は初期の床面工事に手間がかか
りまた経路変更が非常に難しいなど、メンテナンス性が
悪い。また、車両の走行がガイドレール貼り付け域に限
定されるため、走行の自由度が制限される。また、何ら
かの要因、例えば他の機械類にぶつかったりして車両が
ガイドレールから逸れてしまうと、車両を自動的にガイ
ドレールに戻すことは不可能であった。このことからガ
イドレールが無くても走行可能なガイドレス搬送車がユ
ーザーより求められていた。
2. Description of the Related Art In the past, most of AGVs used were of a type in which an electric track such as a reflective tape, a magnet tape, or a magnetic wire was adhered to a floor and used as a guide rail. This guide rail is sure AGV
However, when buried in the floor, it takes time and effort to perform the initial floor work and it is very difficult to change the route. In addition, since the traveling of the vehicle is limited to the guide rail attachment area, the degree of freedom of traveling is limited. In addition, if the vehicle deviates from the guide rail due to some factor, for example, collision with another machine, it is impossible to automatically return the vehicle to the guide rail. For this reason, users have demanded a guideless transport vehicle that can travel without a guide rail.

【0003】また変種変量生産における搬送物の変化に
対し、複数台AGVが協調して対応する様な次世代搬送
システムのコンセプトにおいては、ガイドレスで自由に
走行できるAGV技術が不可欠である。そこで、本出願
人は、近年、自律走行の研究をするために、室内のフロ
アを走行する全方位走行可能3輪駆動3輪操舵のテスト
台車を製作し、次いで、自己誘導(ガイドレス走行)技
術の検討に入っている。かかる自己誘導技術にも多くの
技術課題があるが、その中でも自分の位置、姿勢を認識
する技術(以下:位置同定技術)がもっとも重要であ
る。かかるガイドレス走行技術を用いたAGVは、SN
V(Self Navigation Vehicl
e)と呼ばれる。しかしこのガイドレス走行技術には、
走行ルートをどのようにセンシングするかという問題が
ある。ここで、センシングとは、SNVが今自分がどこ
を走っているかを知る(環境認識)という意味である。
これにより無人搬送車がステーション内で位置補正を行
ったり、工程間搬送中にルートからの走行ズレを補正し
たり、また外乱光等の影響により自己位置情報を無くし
た時でも自己復旧できると考えられる。該センシングに
ついては、現在大学の研究室などでも研究されている
が、環境、用途にかなり制限があり、決定的な技術が確
立していないのが現状である。
Further, in the concept of a next-generation transport system in which a plurality of AGVs cooperate with a change in a conveyed product in a variety of variable quantity production, an AGV technology that can run freely without a guide is indispensable. In order to study autonomous driving in recent years, the present applicant has produced an omnidirectional traveling three-wheel drive three-wheel steering test cart traveling on the indoor floor, and then self-guided (guideless driving). Technology is under study. Although there are many technical problems in such self-guidance technology, among them, a technology for recognizing one's position and posture (hereinafter, position identification technology) is the most important. AGV using such a guideless traveling technology is SN
V (Self Navigation Vehicle
e). However, this guideless driving technology includes
There is a problem of how to sense a traveling route. Here, sensing means that the SNV knows where it is running now (environment recognition).
It is thought that it will be possible for the automatic guided vehicle to perform position correction in the station, correct the deviation from the route during the transfer between processes, and to recover even when the self-position information is lost due to the influence of disturbance light etc. Can be This sensing is currently being studied in the laboratories of universities and the like, but the environment and uses are quite limited, and at present the definitive technology has not been established.

【0004】人間と同じように先を見通して判断するの
は難しい。人間の脳のように高度な人工知能や瞬時に先
を予測する高速コンピュータの開発は課題が山積みであ
る。仮に実現してもAGVに取り付けるにはコストが高
くなりすぎる。そこで限定した認識力で環境認識をおこ
なうことになる。現在多く使われているのが画像処理で
ある。しかしこの画像処理もかなりの情報処理とコスト
が必要になり環境認識の実現にはまだ時間がかかりそう
である。
[0004] Just like humans, it is difficult to make a forward-looking judgment. The development of advanced artificial intelligence, such as the human brain, and a high-speed computer that predicts instantaneously is a challenge. Even if realized, the cost would be too high to attach to the AGV. Therefore, environment recognition is performed with limited recognition power. Currently, image processing is widely used. However, this image processing also requires considerable information processing and cost, and realization of environment recognition is likely to take some time.

【0005】位置同定方法は、次のコンセプトに基づく
ものが望まれている。
It is desired that the position identification method be based on the following concept.

【0006】1.位置同定は連続認識でなく間欠認識と
する。
[0006] 1. Position identification is not continuous recognition but intermittent recognition.

【0007】2.AGVの判断速度の低下、全体の処理
の遅延を防ぐため、処理をできるだけ単純化する。
[0007] 2. The processing is simplified as much as possible to prevent a reduction in the AGV determination speed and a delay in the overall processing.

【0008】3.コストを安くする。[0008] 3. Reduce costs.

【0009】上記コンセプトに基づき、レーザを使用し
た位置同定ユニットが開発されている。現在市販されて
いるレーザでの位置認識技術は、次の特徴を有してい
た。
[0009] Based on the above concept, a position identification unit using a laser has been developed. The laser-based position recognition technology currently on the market has the following features.

【0010】1.図7の如く、工場内の四隅にコーナキ
ューブと呼ばれる特殊な反射物1を置く。
[0010] 1. As shown in FIG. 7, special reflectors 1 called corner cubes are placed at four corners in a factory.

【0011】2.AGV2からレーザ3を発射する。こ
の場合、レーザの発射方向を一定の角速度で変化させ、
全方位をなぞるようにして発射(スキャン)する。
2. A laser 3 is emitted from the AGV 2. In this case, the launch direction of the laser is changed at a constant angular velocity,
It fires (scans) by tracing all directions.

【0012】3.発射したレーザ3がコーナキューブ1
で反射したら、この反射光を受光し、このときの受光角
度および検出した距離から三角測量の要領で位置を逆算
する。
3. Laser 3 fired is corner cube 1
, The reflected light is received, and the position is back-calculated from the light receiving angle at this time and the detected distance in the manner of triangulation.

【0013】該手法は、船が灯台を使って緯度、経度を
得るのと類似しており、角度データのみで算出するため
誤差要因も少なく精度が良い。
This method is similar to the method in which a ship obtains latitude and longitude using a lighthouse, and since it is calculated using only angle data, there are few error factors and accuracy is high.

【0014】[0014]

【発明が解決しようとする課題】従来例のレーザ等非接
触センサは相手との間の直線距離等を測定することで位
置を判断するものであった。しかし、工場内では障害物
が多く、かかる環境下において直線状のレーザで位置を
判断しながら無人搬送を行うとすると、かなり限られた
環境でしか走行できなくなってしまう。
A conventional non-contact sensor such as a laser judges a position by measuring a linear distance or the like with a partner. However, there are many obstacles in the factory, and if unmanned transport is performed while determining the position with a linear laser in such an environment, the vehicle can travel only in a very limited environment.

【0015】本発明は、上記課題に鑑み、障害物があっ
ても誤差の少ない無人搬送車の位置同定方法の提供を目
的とする。
The present invention has been made in consideration of the above problems, and has as its object to provide a method for identifying a position of an automatic guided vehicle having a small error even when there is an obstacle.

【0016】また、従来例では、コーナキューブについ
て、レーザをAGVより反射しスキャンする方式を取っ
ていたため、強力なレーザ光が工場中を走りまわるとい
う欠点がある。
Further, in the conventional example, since the laser beam is reflected from the AGV and scanned with respect to the corner cube, there is a disadvantage that a strong laser beam runs around the factory.

【0017】本発明は、レーザ光が工場中を走りまわる
のを防止し得る無人搬送車の位置同定方法の提供をも目
的とする。
Another object of the present invention is to provide a method for identifying a position of an automatic guided vehicle, which can prevent a laser beam from running around a factory.

【0018】[0018]

【課題を解決するための手段】本発明の請求項1に係る
課題解決手段は、工場や倉庫等の室内で荷物を積載し自
動的に搬送する無人搬送車の位置同定方法であって、工
場や倉庫等の室内壁面にその光反射率より大きな光反射
率を有する反射板を取り付け、無人搬送車に取り付けら
れたレーザ距離計および反射光量検出装置を旋回装置に
て所定の角速度で縦軸周りに旋回させ、この状態で前記
レーザ距離計からレーザを照射し、前記レーザ距離計か
ら出射されて前記室内壁面または前記反射板で反射され
た光の光量を前記反射光量検出装置で検出し、前記反射
光量検出装置で受ける光の光量が急激に上昇したとき
に、光量上昇検知部にて前記レーザ距離計からのレーザ
の照射点が前記室内壁面から前記反射板の表面の一端部
に進入したと判断し、第1の距離検出部にて、前記光量
上昇検知部がレーザ照射点の前記反射板表面への進入を
判断した第1の時点の直後に前記レーザ距離計が測定し
た前記反射板までの第1の距離を検出し、次に反射光量
検出装置で受ける光の光量が急激に下降したときに、光
量下降検知部にて前記レーザ距離計からのレーザの照射
点が前記反射板の表面の他端部から前記室内壁面へ抜け
出たと判断し、第2の距離検出部にて、前記光量下降検
知部がレーザの照射点の前記反射板表面からの抜け出し
を判断した第2の時点の直前に前記レーザ距離計が測定
した前記反射板までの第2の距離を検出し、前記第1の
時点から前記第2の時点までに旋回装置にて旋回した旋
回角度を旋回角度検出部で検出し、前記旋回角度、前記
第1の距離および前記第2の距離に基づいて前記無人搬
送車の平面位置を演算する。
Means for Solving the Problems According to a first aspect of the present invention, there is provided a method for identifying a position of an automatic guided vehicle for loading and automatically transporting a load in a room such as a factory or a warehouse. A reflector with higher light reflectance than the light reflectance is attached to the indoor wall surface of a warehouse or warehouse, and the laser range finder and the reflected light amount detection device attached to the automatic guided vehicle are rotated around the vertical axis at a predetermined angular velocity by a turning device. In this state, the laser is irradiated from the laser range finder, and the reflected light amount detecting device detects the amount of light emitted from the laser range finder and reflected by the indoor wall surface or the reflecting plate, When the light amount of the light received by the reflected light amount detecting device suddenly rises, the light irradiation point of the laser from the laser distance meter enters the one end of the surface of the reflecting plate from the indoor wall surface in the light amount increase detecting unit. Judge In the first distance detecting section, immediately after the first time point at which the light quantity rise detecting section has determined that the laser irradiation point has entered the surface of the reflecting plate, the first distance to the reflecting plate measured by the laser range finder is measured. When the light amount of the light received by the reflected light amount detecting device suddenly drops, the irradiation point of the laser from the laser distance meter is detected by the light amount decrease detecting unit at the other end of the surface of the reflecting plate. It is determined that the laser light has escaped from the surface to the indoor wall surface, and the second distance detection unit determines that the laser beam has fallen from the surface of the reflection plate by the light amount decrease detection unit immediately before the second time point. A second distance to the reflector measured by the range finder is detected, a turning angle detected by the turning device from the first time point to the second time point by the turning device is detected by a turning angle detection unit, and the turning is performed. An angle, the first distance and the second distance. There are computing the planar position of the AGV.

【0019】本発明の請求項2に係る課題解決手段は、
工場や倉庫等の室内で荷物を積載し自動的に搬送する無
人搬送車の位置同定方法であって、工場や倉庫等の室内
壁面に第1の光反射率を有する第1の反射部および第2
の光反射率を有する第2の反射部を設け、前記両反射部
の各光反射率は互いに異なりかつ室内壁面の光反射率よ
り大に設定し、無人搬送車に取り付けられたレーザ照射
装置および反射光量検出装置を旋回装置にて所定の角速
度で縦軸周りに旋回させ、この状態で前記レーザ照射装
置からレーザを照射し、前記レーザ照射装置から出射さ
れて前記室内壁面または前記各反射部で反射された光の
光量を前記反射光量検出装置で検出し、前記反射光量検
出装置で受ける光の光量が急激に上昇して一方の反射部
の光反射率に対応する光量となった第1の時点を第1の
光量変化検知部にて検知し、次に反射光量検出装置で受
ける光の光量が前記一方の反射部の光反射率に対応する
光量から他方の反射部の光反射率に対応する光量となっ
た第2の時点を第2の光量変化検知部にて検知し、前記
第1の時点から前記第2の時点までに旋回装置にて旋回
した第1の旋回角度を第1の旋回角度検出部で検出し、
さらに反射光量検出装置で受ける光の光量が急激に下降
した第3の時点を第3の光量変化検知部にて検知し、前
記第2の時点から前記第3の時点までに旋回装置にて旋
回した第2の旋回角度を第2の旋回角度検出部で検出
し、前記第1の旋回角度、前記第2の旋回角度および予
め記憶された各反射部の幅に基づいて前記無人搬送車の
平面位置を演算する。
According to a second aspect of the present invention, there is provided:
What is claimed is: 1. A method for identifying a position of an automatic guided vehicle that automatically loads and loads cargo in a room such as a factory or a warehouse, comprising: a first reflecting portion having a first light reflectance on a wall surface of a room such as a factory or a warehouse; 2
A second reflecting portion having a light reflectance of each of the two reflecting portions is different from each other and set to be larger than the light reflectance of the indoor wall surface, a laser irradiation device attached to the automatic guided vehicle, and The reflected light amount detecting device is turned around a vertical axis at a predetermined angular velocity by a turning device, and in this state, a laser is irradiated from the laser irradiation device, emitted from the laser irradiation device, and emitted from the indoor wall surface or each of the reflecting portions. The amount of reflected light is detected by the reflected light amount detecting device, and the amount of light received by the reflected light amount detecting device rapidly rises to a first light amount corresponding to the light reflectance of one of the reflecting portions. The time point is detected by the first light amount change detection unit, and then the light amount of the light received by the reflected light amount detection device corresponds to the light reflectance of the other reflection unit from the light amount corresponding to the light reflectance of the one reflection unit. The second point in time when the amount of light Of detected at the light amount change detecting unit, the first rotation angle detected by the first pivot angle detector which pivots at pivot device from said first time point to the second point,
Further, a third time point at which the light amount of the light received by the reflected light amount detecting device sharply drops is detected by the third light amount change detecting unit, and the turning device turns from the second time point to the third time point. The second turning angle detected by the second turning angle detecting unit is detected, and the plane of the automatic guided vehicle is detected based on the first turning angle, the second turning angle, and the width of each reflecting unit stored in advance. Calculate the position.

【0020】本発明の請求項3に係る課題解決手段は、
工場や倉庫等の室内で荷物を積載し自動的に搬送する無
人搬送車の位置同定方法であって、工場や倉庫等の室内
壁面に第1の光反射率を有する第1の反射部および第2
の光反射率を有する第2の反射部を設け、前記両反射部
の各光反射率は互いに異なりかつ室内壁面の光反射率よ
り大に設定し、無人搬送車に取り付けられたレーザ距離
計および反射光量検出装置を旋回装置にて所定の角速度
で縦軸周りに旋回させ、前記レーザ距離計からレーザを
出射し、以後、無人搬送車が前記反射部に対して近距離
である場合に適した第1の位置同定手順と、無人搬送車
が前記反射部に対して遠距離である場合に適した第2の
位置同定手順とを切り換え可能に実行して前記無人搬送
車の平面位置を演算し、前記第1の位置同定手順は、前
記レーザ距離計から出射されて前記室内壁面または前記
各反射部で反射された光の光量を前記反射光量検出装置
で検出し、前記反射光量検出装置で受ける光の光量が急
激に上昇して一方の反射部の光反射率に対応する光量と
なった第1の時点を第1の光量変化検知部にて検知し、
次に反射光量検出装置で受ける光の光量が前記一方の反
射部の光反射率に対応する光量から他方の反射部の光反
射率に対応する光量となった第2の時点を第2の光量変
化検知部にて検知し、前記第1の時点から前記第2の時
点までに旋回装置にて旋回した第1の旋回角度を第1の
旋回角度検出部で検出し、さらに反射光量検出装置で受
ける光の光量が急激に下降した第3の時点を第3の光量
変化検知部にて検知し、前記第2の時点から前記第3の
時点までに旋回装置にて旋回した第2の旋回角度を第2
の旋回角度検出部で検出し、前記第1の旋回角度、前記
第2の旋回角度および予め記憶された各反射部の幅に基
づいて前記無人搬送車の平面位置を演算するものとし、
前記第2の位置同定手順は、前記レーザ距離計から出射
されて前記室内壁面または前記両反射部で反射された光
の光量を前記反射光量検出装置で検出し、前記反射光量
検出装置で受ける光の光量が急激に上昇したときに、光
量上昇検知部にて前記レーザ距離計からのレーザの照射
点が前記室内壁面から一方の反射部の表面の一端部に進
入したと判断し、第1の距離検出部にて、前記光量上昇
検知部がレーザ照射点の前記一方の反射部表面への進入
を判断した第1の時点の直後に前記レーザ距離計が測定
した前記一方の反射部までの第1の距離を検出し、次に
反射光量検出装置で受ける光の光量が急激に下降したと
きに、光量下降検知部にて前記レーザ距離計からのレー
ザの照射点が前記いずれかの反射部の表面の他端部から
前記室内壁面へ抜け出たと判断し、第2の距離検出部に
て、前記光量下降検知部がレーザの照射点の前記いずれ
かの反射部表面からの抜け出しを判断した第2の時点の
直前に前記レーザ距離計が測定した前記いずれかの反射
部までの第2の距離を検出し、前記第1の時点から前記
第2の時点までに旋回装置にて旋回した旋回角度を旋回
角度検出部で検出し、前記旋回角度、前記第1の距離お
よび前記第2の距離に基づいて前記無人搬送車の平面位
置を演算するものとする。
The problem solving means according to claim 3 of the present invention comprises:
What is claimed is: 1. A method for identifying a position of an automatic guided vehicle that automatically loads and loads cargo in a room such as a factory or a warehouse, comprising: a first reflecting portion having a first light reflectance on a wall surface of a room such as a factory or a warehouse; 2
A second reflection portion having a light reflectance of each of the two reflection portions is different from each other and set to be greater than the light reflectance of the indoor wall surface, a laser distance meter attached to the automatic guided vehicle and The reflected light amount detecting device is turned around a vertical axis at a predetermined angular velocity by a turning device, and a laser is emitted from the laser range finder.After that, it is suitable when the automatic guided vehicle is at a short distance to the reflecting portion. A first position identification procedure and a second position identification procedure suitable for a case where the automatic guided vehicle is at a long distance from the reflection unit are switchably executed to calculate the planar position of the automatic guided vehicle. In the first position identification procedure, the reflected light amount detecting device detects the amount of light emitted from the laser rangefinder and reflected by the indoor wall surface or each of the reflecting portions, and received by the reflected light amount detecting device. While the amount of light rises sharply The first time point when the amount of light corresponding to the optical reflectivity of the reflective portion is detected by the first light amount change detecting unit,
Next, a second time when the light amount of the light received by the reflected light amount detecting device becomes the light amount corresponding to the light reflectance of the other reflecting portion from the light amount corresponding to the light reflectance of the one reflecting portion is a second light amount. The change is detected by the change detection unit, the first turning angle detected by the turning device from the first time point to the second time point is detected by the first turning angle detection unit, and the reflected light amount detection device detects the first turning angle. A third time point at which the light amount of the received light sharply drops is detected by the third light amount change detection unit, and a second turning angle at which the turning device turns from the second time point to the third time point. The second
The turning position detection unit detects the first turning angle, the second turning angle, and the plane position of the automatic guided vehicle based on the width of each reflecting unit stored in advance,
The second position identification step includes detecting the amount of light emitted from the laser range finder and reflected by the indoor wall surface or the two reflecting portions by the reflected light amount detecting device, and detecting the amount of light received by the reflected light amount detecting device. When the light amount of the laser light rises sharply, the light amount increase detection unit determines that the irradiation point of the laser from the laser distance meter has entered one end of the surface of one of the reflection units from the indoor wall surface, and the first In the distance detecting section, the first light point measured by the laser range finder immediately after the first time point at which the light quantity rise detecting section has determined that the laser irradiation point has entered the surface of the one reflecting section. 1 is detected, and when the amount of light received by the reflected light amount detecting device is suddenly decreased, the irradiation point of the laser from the laser distance meter is detected by the decreased light amount detecting unit. Pull out from the other end of the surface to the indoor wall It is determined that the laser range finder has come out, and the laser distance meter detects the laser light range finder immediately before the second time point at which the second light amount detection unit determines that the irradiation point of the laser has escaped from any one of the reflection unit surfaces. A second distance from the measured one of the reflecting portions is detected, a turning angle detected by the turning device from the first time to the second time is detected by a turning angle detecting portion, and the turning is detected. The plane position of the automatic guided vehicle is calculated based on an angle, the first distance, and the second distance.

【0021】本発明の請求項4に係る課題解決手段は、
レーザ距離計で室内壁面までの距離を測定し、該距離測
定結果が近距離である場合は前記第1の位置同定手順で
前記無人搬送車の平面位置を演算し、前記距離測定結果
が遠距離である場合は前記第2の位置同定手順で前記無
人搬送車の平面位置を演算する。
According to a fourth aspect of the present invention, there is provided:
The distance to the indoor wall surface is measured with a laser range finder, and when the distance measurement result is a short distance, the plane position of the automatic guided vehicle is calculated by the first position identification procedure, and the distance measurement result is a long distance. In the case of, the planar position of the automatic guided vehicle is calculated in the second position identification procedure.

【0022】本発明の請求項5に係る課題解決手段は、
前記第1の位置同定手順と前記第2の位置同定手順とを
切り換える切換スイッチを設け、使用する室内の広さに
よって切換スイッチを切り換える。
[0022] The problem solving means according to claim 5 of the present invention is as follows.
A changeover switch for switching between the first position identification procedure and the second position identification procedure is provided, and the changeover switch is switched according to the size of the room to be used.

【0023】[0023]

【作用】本発明の請求項1に係る無人搬送車の位置同定
方法では、従来例のように室内四隅のコーナキューブを
使用する必要がなくなり、室内四隅を他の用途に有効に
使用できる他、複数のコーナキューブによるレーザの飛
び散りを防止できる。また、特に、レーザ距離計を用い
て測定した距離情報をもとに位置同定を行っているの
で、反射板までの距離が比較的長い場合にも距離情報に
一定の精度を持たせることができる。
With the method for identifying a position of an automatic guided vehicle according to the first aspect of the present invention, it is not necessary to use corner cubes at four corners of a room as in the conventional example, and the four corners of a room can be effectively used for other purposes. Scattering of the laser due to a plurality of corner cubes can be prevented. Further, in particular, since the position is identified based on the distance information measured by using the laser distance meter, even when the distance to the reflector is relatively long, the distance information can have a certain accuracy. .

【0024】そして、車両と反射板との間の一部に障害
物が存在し、反射板の表面を移動していたレーザの照射
点がその他端部に達していないにもかかわらず反射光量
検出装置で受ける光の光量が急激に下降しても、この急
激に下降した時点を第2の時点として第1の時点から第
2の時点までに旋回装置にて旋回した旋回角度を旋回角
度検出部で検出し、かかる実測値に基づいて位置同定を
行うことができ、反射板の幅を固有値として演算する場
合に比べて障害物による誤演算を防止できる。
An obstacle is present in a part between the vehicle and the reflector, and the reflected light amount is detected even though the laser irradiation point moving on the surface of the reflector has not reached the other end. Even if the amount of light received by the device drops sharply, the turning point that the turning device has turned with the turning device from the first point to the second point is defined as the turning point when the steep drop point is the second point. , And position identification can be performed based on the actual measurement value, and erroneous calculation due to an obstacle can be prevented as compared with a case where the width of the reflector is calculated as a unique value.

【0025】本発明の請求項2に係る無人搬送車の位置
同定方法では、反射部までの距離が短い場合に、レーザ
距離計を使用しなくても無人搬送車の位置同定を行い
得、レーザ距離計に特有の測定誤差の心配がなくなり、
精度の良い位置同定を実施できる。また、従来例のよう
に室内四隅のコーナキューブを使用する必要がなくな
り、室内四隅を他の用途に有効に使用できる他、複数の
コーナキューブによるレーザの飛び散りを防止できる。
また、特に、レーザ距離計を用いて測定した距離情報を
もとに位置同定を行っているので、反射板までの距離が
比較的長い場合にも距離情報に一定の精度を持たせるこ
とができる。
According to the position identification method of the automatic guided vehicle according to the second aspect of the present invention, when the distance to the reflecting portion is short, the position of the automatic guided vehicle can be identified without using a laser range finder. No more worries about measurement errors specific to rangefinders,
Accurate position identification can be performed. Further, unlike the conventional example, it is not necessary to use the corner cubes at the four corners of the room, and the four corners of the room can be effectively used for other purposes, and the scattering of the laser due to the plurality of corner cubes can be prevented.
Further, in particular, since the position is identified based on the distance information measured by using the laser distance meter, even when the distance to the reflector is relatively long, the distance information can have a certain accuracy. .

【0026】本発明の請求項3乃至請求項5に係る無人
搬送車の位置同定方法では、反射部までの距離が近距離
である場合に第1の位置同定手順で無人搬送車の平面位
置を演算し、遠距離である場合に第2の位置同定手順で
無人搬送車の平面位置を演算することができ、遠近両方
について位置同定精度を高く維持できる。
According to a third aspect of the present invention, when the distance to the reflector is short, the planar position of the automatic guided vehicle is determined by the first position identification procedure. When the distance is long, the planar position of the automatic guided vehicle can be calculated by the second position identification procedure in the second position identification procedure, and the position identification accuracy can be maintained high both in the distance and near.

【0027】[0027]

【実施例】【Example】

[第1の実施例] <構成>図1は本発明の第1の実施例を示す図である。
本実施例の無人搬送車は、工場や倉庫等の室内で荷物を
積載し自動的に搬送するものであって、図1の如く、荷
物10を積載する車両本体11と、該車両本体11の走
行用の車輪12と、前記車両本体11の上面に搭載され
たレーザ測定ユニット13とを備えている。
First Embodiment <Structure> FIG. 1 is a view showing a first embodiment of the present invention.
The automatic guided vehicle according to the present embodiment is for loading and automatically transporting luggage in a room such as a factory or a warehouse, and as shown in FIG. The vehicle includes a traveling wheel 12 and a laser measurement unit 13 mounted on the upper surface of the vehicle body 11.

【0028】前記レーザ測定ユニット13は、図2の如
く、工場や倉庫等の室内壁面17に設置された反射板1
8(マーク)との配置関係から車両の位置を求めるもの
で、レーザ距離計21、反射光量検出装置22および位
置認識手段26を備えたヘッド部23と、該ヘッド部2
3を縦軸24周りに旋回させる旋回装置25とを備えて
いる。
The laser measuring unit 13 is, as shown in FIG. 2, a reflecting plate 1 installed on an indoor wall 17 of a factory or a warehouse.
The position of the vehicle is obtained from the positional relationship with the mark 8 (mark). The head 23 includes a laser range finder 21, a reflected light amount detecting device 22, and a position recognizing means 26;
And a turning device 25 for turning the rotating member 3 around the vertical axis 24.

【0029】前記反射板18は例えばアルミニウム等の
金属板が用いられており、その光反射率は、室内壁面1
7の光反射率と大きく異なる所定の値に設定されてい
る。また、該反射板18は、その幅H1が所望の設計値
通り正確に設定されており、前記工場や倉庫等の室内壁
面17に精度良く設置される。
The reflection plate 18 is made of a metal plate such as aluminum.
7 is set to a predetermined value that is significantly different from the light reflectance of No. 7. The width H1 of the reflection plate 18 is set accurately according to a desired design value, and the reflection plate 18 is accurately installed on the indoor wall surface 17 such as the factory or the warehouse.

【0030】前記レーザ距離計21は、バッテリー駆動
のルビーレーザ等、特に保護具を必要としない小出力の
安全なものが用いられ、図3の如く、レーザを指向照射
する光学望遠鏡31と、該光学望遠鏡31から照射され
前記反射板18で反射した反射ビームを拾う光電子増倍
管32とを備える一般的なものである。前記反射光量検
出装置22は、受けた光の光量に応じて出力電流または
出力電圧が異なる光電変換素子が用いられている。前記
旋回装置25は、電気駆動の旋回アクチュエータ等が用
いられ、所定の角速度で旋回動作を行う。
As the laser range finder 21, a low-power safe one that does not require a protective device, such as a battery-powered ruby laser, is used. As shown in FIG. This is a general type including a photomultiplier tube 32 that picks up a reflected beam irradiated from the optical telescope 31 and reflected by the reflector 18. The reflected light amount detection device 22 uses a photoelectric conversion element whose output current or output voltage varies depending on the amount of received light. The turning device 25 uses an electrically driven turning actuator or the like, and performs a turning operation at a predetermined angular velocity.

【0031】前記位置認識手段26は、前記車両本体1
1の位置を認識するもので、前記反射光量検出装置22
から信号処理回路33を経て得られた出力値、すなわち
出力電流値または出力電圧値に基づいて受けた光の光量
が急激に上昇したことを検知する光量上昇検知部35
と、該光量上昇検知部35からの検知信号に基づき受け
た光の光量が急激に上昇した第1の時点の直後に前記レ
ーザ距離計21にて前記反射板18までの第1の距離を
検出する第1の距離検出部36と、前記反射光量検出装
置22からの出力値に基づいて受けた光の光量が急激に
下降したことを検知する光量下降検知部37と、該光量
下降検知部37からの検知信号に基づき受けた光の光量
が急激に下降した第2の時点でその直前に前記レーザ距
離計21にて測定した前記反射板18までの第2の距離
を検出する第2の距離検出部38と、受けた光の光量が
急激に上昇した第1の時点から急激に下降した第2の時
点まで、すなわちレーザの照射点(スポット)がマーク
としての反射板18の表面上を移動する間に旋回装置2
5で旋回した旋回角度θ12を検出する旋回角度検出部
39と、前記各距離検出部36,38および前記旋回角
度検出部39で検出した各検出情報に基づいて前記車両
本体11の位置を演算する演算部41としてのマイクロ
コンピュータチップとを備える。なお、前記旋回角度検
出部39は、例えば計時手段を有しており、受けた光の
光量が急激に上昇した第1の時点から急激に下降した第
2の時点までに要した時間を前記計時手段にて測定し、
該時間と、前記旋回装置25の所定の旋回角速度とを積
算してやれば、旋回角度θ12を容易に演算できる。あ
るいは、前記旋回角度検出部39に一般的なエンコーダ
を用いても良い。
The position recognizing means 26 is provided in the vehicle body 1.
1 for detecting the position of the reflected light
The light amount increase detection unit 35 detects that the light amount of the light received based on the output value obtained through the signal processing circuit 33, that is, the output current value or the output voltage value, sharply increases.
The first distance to the reflection plate 18 is detected by the laser distance meter 21 immediately after the first point in time when the light amount of the light received based on the detection signal from the light amount increase detection unit 35 sharply increases. A first distance detecting section 36 for detecting the amount of light received, based on an output value from the reflected light amount detecting device 22; The second distance for detecting the second distance to the reflector 18 measured by the laser distance meter 21 immediately before the second point in time when the amount of light received based on the detection signal from From the first point in time when the light amount of the received light suddenly rises to the second point in time when the light quantity of the received light suddenly rises, that is, the irradiation point (spot) of the laser moves on the surface of the reflecting plate 18 as a mark. Swivel 2
The turning angle detecting unit 39 for detecting the turning angle θ12 of turning at 5, and the position of the vehicle body 11 is calculated based on the detection information detected by the distance detecting units 36, 38 and the turning angle detecting unit 39. And a microcomputer chip as the arithmetic unit 41. The turning angle detection unit 39 has, for example, a timing unit, and measures the time required from the first time when the amount of received light sharply rises to the second time when the amount of light suddenly falls is measured by the time counting. Measured by means,
If the time and the predetermined turning angular velocity of the turning device 25 are integrated, the turning angle θ12 can be easily calculated. Alternatively, a general encoder may be used for the turning angle detection unit 39.

【0032】<位置同定方法>次に上記無人搬送車の位
置同定方法を説明する。まず、旋回装置25にてヘッド
部23を所定の角速度で縦軸24周りに旋回させなが
ら、レーザ距離計21の光学望遠鏡31にてレーザを指
向照射する。そうすると、図4中の如く、レーザの照射
点(スポット)は工場や倉庫等の室内壁面17を矢印α
1の方向に移動し、次いで反射板18の一端部からその
表面に移動する。このとき、反射板18の光反射率は室
内壁面17の光反射率に比べて極めて大とされているた
め、反射光量検出装置22で受ける光の光量が急激に上
昇し、反射光量検出装置22から信号処理回路33を経
て得られる出力値が大幅に変化する。この出力値の変化
に基づいて、位置認識手段26の光量上昇検知部35
は、受けた光の光量が急激に上昇したことを検知する。
そして、光量上昇検知部35からの検知信号に基づいて
受けた光の光量が急激に上昇した第1の時点の直後に、
第1の距離検出部36はレーザ距離計21にて反射板1
8までの第1の距離を検出する。なお、第1の距離検出
部36で第1の距離を検出した後も、レーザ距離計21
による距離測定は継続して行う。
<Position Identification Method> Next, a method for identifying the position of the automatic guided vehicle will be described. First, while the head unit 23 is turned around the vertical axis 24 at a predetermined angular velocity by the turning device 25, the laser is directed and irradiated by the optical telescope 31 of the laser distance meter 21. Then, as shown in FIG. 4, the irradiation point (spot) of the laser is directed to the indoor wall surface 17 such as a factory or a warehouse by an arrow α.
1 and then from one end of the reflector 18 to its surface. At this time, since the light reflectance of the reflection plate 18 is extremely large compared to the light reflectance of the indoor wall surface 17, the amount of light received by the reflected light amount detecting device 22 sharply increases, and the reflected light amount detecting device 22 The output value obtained through the signal processing circuit 33 greatly changes. Based on the change in the output value, the light amount increase detecting unit 35 of the position recognizing unit 26
Detects that the amount of received light has risen sharply.
Then, immediately after the first time point when the light amount of the light received based on the detection signal from the light amount increase detection unit 35 sharply increases,
The first distance detection unit 36 uses the laser distance meter 21 to
The first distance up to 8 is detected. It should be noted that even after the first distance is detected by the first distance detection unit 36, the laser distance meter 21 may be used.
Distance measurement is continuously performed.

【0033】一定時間経過後、ヘッド部23は旋回装置
25にて旋回するため、レーザの照射点(スポット)は
反射板18の表面を矢印α2の方向に移動し、次いで反
射板18の他端部から再び工場や倉庫等の室内壁面17
に抜け出る。このとき、室内壁面17の光反射率は反射
板18の光反射率に比べて極めて小とされているため、
反射光量検出装置22で受ける光の光量が急激に下降
し、反射光量検出装置22から信号処理回路33を経て
得られる出力値が大幅に変化する。この出力値の変化に
基づいて、位置認識手段26の光量下降検知部37は、
受けた光の光量が急激に下降したことを検知する。そし
て、光量下降検知部37からの検知信号に基づいて受け
た光の光量が急激に下降した第2の時点で、その直前に
レーザ距離計21で測定した反射板18までの第2の距
離を第2の距離検出部38にて検出する。
After a lapse of a predetermined time, the head 23 is turned by the turning device 25, so that the laser irradiation point (spot) moves on the surface of the reflector 18 in the direction of arrow α2, and then the other end of the reflector 18 Again from the interior of the factory or warehouse 17
Get out. At this time, since the light reflectance of the indoor wall surface 17 is extremely small as compared with the light reflectance of the reflection plate 18,
The light amount of the light received by the reflected light amount detecting device 22 sharply decreases, and the output value obtained from the reflected light amount detecting device 22 via the signal processing circuit 33 changes greatly. On the basis of the change in the output value, the light amount drop detection unit 37 of the position recognition unit 26
It detects that the amount of received light has dropped sharply. Then, at a second point in time when the light amount of the light received based on the detection signal from the light amount decrease detection unit 37 sharply decreases, the second distance to the reflection plate 18 measured by the laser distance meter 21 immediately before the second time point is calculated. Detected by the second distance detection unit 38.

【0034】そして、両距離検出部36,38で検出し
た距離情報に基づいて、演算部41が車両本体11の平
面位置を演算する。ここで、図4の如く、反射板18の
固有の幅をH1とし、また、反射板18の一端部の平面
位置を原点Pi(0,0)として、反射板18の表面上
のレーザ照射点の移動方向をX軸、反射板18の放線方
向をY軸にとり、反射板18の他端部の平面位置をPo
(H1,0)、車両本体11の平面位置をPa(x,
y,θsnv)、線分Po〜Paと反射板18とのなす
角をθa、線分Pi〜Paと反射板18とのなす角をθ
b、旋回角度検出部39で求めた旋回角度θ12、Pa
とPoの間の第2のの距離をL1、PaとPiの間の第
1の距離をL2とすると、車両本体11の平面位置Pa
(x,y,θsnv)は次のように演算できる。
Then, based on the distance information detected by the distance detecting sections 36 and 38, the calculating section 41 calculates the plane position of the vehicle body 11. Here, as shown in FIG. 4, a laser irradiation point on the surface of the reflecting plate 18 is defined as H1 where H1 is a unique width of the reflecting plate 18, and an origin Pi (0, 0) is a plane position of one end of the reflecting plate 18. The direction of movement of the reflector 18 is taken as the X-axis, the direction of radiation of the reflector 18 is taken as the Y-axis, and the plane position of the other end of the reflector 18 is Po
(H1,0), the plane position of the vehicle body 11 is defined as Pa (x,
y, θsnv), the angle between the line segments Po to Pa and the reflector 18 is θa, and the angle between the line segments Pi to Pa and the reflector 18 is θ
b, the turning angle θ12, Pa obtained by the turning angle detection unit 39
Assuming that a second distance between the vehicle body 11 and Po is L1 and a first distance between Pa and Pi is L2, the plane position Pa
(X, y, θsnv) can be calculated as follows.

【0035】[0035]

【数1】 (Equation 1)

【0036】但し、θαは車両本体11とのオフセット
角度であり、また、
Here, θα is an offset angle with respect to the vehicle body 11, and

【0037】[0037]

【数2】 (Equation 2)

【0038】である。このように、座標基準となる所定
幅のマークを用いてレーザポジショニングを行うので、
単純な計算式で位置同定を行うことができる。
Is as follows. As described above, since laser positioning is performed using a mark having a predetermined width serving as a coordinate reference,
Position identification can be performed using a simple calculation formula.

【0039】ところで、車両と反射板18との間の一部
に障害物が存在する場合があり、レーザが障害物に照射
されると、その反射光の光量が小となることがある。そ
うすると、反射板18の表面を移動していたレーザの照
射点はまだその他端部に達していないにもかかわらず、
反射光量検出装置22で受ける光の光量が急激に下降し
てしまい、反射光量検出装置22から信号処理回路33
を経て得られる出力値が大幅に変化してしまい、この時
点で前記L2を検出してしまう。したがって、固有値と
してのH1をそのまま演算要素として使用すると、大幅
に誤演算してしまうことになる。そこで、本実施例で
は、H1の値を固有値として処理するのではなく、実際
にL1およびL2を測定した時点と正確に対応させて逐
一演算している。具体的には、まず、旋回角度検出部3
9において、受けた光の光量が急激に上昇した第1の時
点から急激に下降した第2の時点までに要した時間を測
定し、該時間と、前記旋回装置25の所定の旋回角速度
とを積算し、レーザの照射点(スポット)がマークとし
ての反射板18の表面上を移動する間の旋回角度θ12
を演算する。そして、θ12、L1およびL2から次式
によりH1を容易に求めることができる。
By the way, an obstacle may be present at a part between the vehicle and the reflection plate 18, and when the obstacle is irradiated with the laser, the amount of reflected light may be small. Then, although the irradiation point of the laser moving on the surface of the reflection plate 18 has not yet reached the other end,
The amount of light received by the reflected light amount detection device 22 drops rapidly, and the signal processing circuit 33
Then, the output value obtained through the above-mentioned step changes greatly, and the L2 is detected at this point. Therefore, if H1 as the eigenvalue is directly used as a calculation element, a significant erroneous calculation will result. Therefore, in the present embodiment, instead of processing the value of H1 as an eigenvalue, the calculation is performed one by one in correspondence with the time when L1 and L2 are actually measured. Specifically, first, the turning angle detection unit 3
In 9, the time required from the first time when the amount of the received light sharply rises to the second time when the amount of light suddenly falls is measured, and the time and a predetermined turning angular velocity of the turning device 25 are determined. And the turning angle θ12 during which the irradiation point (spot) of the laser moves on the surface of the reflector 18 as a mark.
Is calculated. Then, H1 can be easily obtained from θ12, L1 and L2 by the following equation.

【0040】[0040]

【数3】 (Equation 3)

【0041】このようにして演算すれば、車両と反射板
18との間の一部に障害物が存在し、反射板18の表面
を移動していたレーザの照射点がその他端部に達してい
ないにもかかわらず反射光量検出装置22で受ける光の
光量が急激に下降しても、かかる状況に応じて検出した
マークの長さを現実に即して演算し、これに基づいて位
置同定を行うことができ、障害物による誤演算を防止で
きる。以後、レーザの照射点は工場や倉庫等の室内壁面
17を移動し、ヘッド部23が一旋回するごとに上記動
作を繰り返せばよい。
According to the above calculation, there is an obstacle in a part between the vehicle and the reflector 18 and the irradiation point of the laser moving on the surface of the reflector 18 reaches the other end. If the amount of light received by the reflected light amount detection device 22 suddenly drops despite the absence, the length of the detected mark is calculated in accordance with such a situation in accordance with the actual situation, and the position identification is performed based on this. Erroneous calculation due to an obstacle can be prevented. Thereafter, the laser irradiation point moves on the indoor wall surface 17 of a factory or a warehouse, and the above operation may be repeated each time the head unit 23 makes one turn.

【0042】このように、本実施例では、障害物が多い
工場でも誤差の少ない位置同定を可能にし、狭い場所で
スキャンが可能となる。また、従来例のように室内四隅
のコーナキューブを使用する必要がなくなり、室内四隅
を他の用途に有効に使用できる他、複数のコーナキュー
ブによるレーザの飛び散りを防止できる。なお、本実施
例では、レーザ距離計21を用いて測定したマークに対
する距離情報をパラメータとしているので、マークに対
する距離が比較的長い場合にも距離情報に一定の精度を
持たせることができ、特に大面積の室内での使用に適し
ている。
As described above, in the present embodiment, even in a factory having many obstacles, it is possible to identify a position with a small error and scan in a narrow place. Further, unlike the conventional example, it is not necessary to use the corner cubes at the four corners of the room, and the four corners of the room can be effectively used for other purposes, and the scattering of the laser due to the plurality of corner cubes can be prevented. In the present embodiment, since the distance information to the mark measured using the laser distance meter 21 is used as a parameter, even when the distance to the mark is relatively long, the distance information can have a certain accuracy. Suitable for indoor use in large areas.

【0043】[第2の実施例] <構成>本発明の第2の実施例の無人搬送車は、図1に
示した第1の実施例と同様に、レーザを用いて車両の位
置を求めるレーザ測定ユニット13を備えたものであ
る。しかしながら、第1の実施例では、レーザ距離計2
1にて反射板18の両端点までの距離を測定していた
が、通常のレーザの距離測定には一定の誤差が生じるた
め、正確な位置同定が困難になるおそれがある。そこで
本実施例では、かかる問題点を解消するために改良を加
えたものである。
[Second Embodiment] <Structure> In an automatic guided vehicle according to a second embodiment of the present invention, the position of the vehicle is obtained by using a laser similarly to the first embodiment shown in FIG. It has a laser measurement unit 13. However, in the first embodiment, the laser distance meter 2
Although the distance to both end points of the reflection plate 18 was measured at 1, there is a certain error in the ordinary laser distance measurement, so that accurate position identification may be difficult. Therefore, in the present embodiment, an improvement is added to solve such a problem.

【0044】本実施例における反射板18(マーク)
は、図5の如く、第1の光反射率を有する第1の反射部
18Aと、前記第1の光反射率と大幅に異なる第2の光
反射率を有する第2の反射部18Bとが隣接されてな
る。該両反射部18A,18Bの各光反射率は、使用さ
れる工場や倉庫等の室内壁面17の光反射率とも大幅に
異なって設定される。該反射板18の両反射部18A,
18Bの幅H11,H12は所望の設計値通り正確に設
定されている。
Reflector 18 (mark) in this embodiment
As shown in FIG. 5, a first reflecting portion 18A having a first light reflectance and a second reflecting portion 18B having a second light reflectance significantly different from the first light reflectance are provided. Be adjacent. The light reflectance of each of the reflecting portions 18A and 18B is set to be significantly different from the light reflectance of the indoor wall surface 17 of a factory or a warehouse used. The two reflection portions 18A of the reflection plate 18,
The widths H11 and H12 of the 18B are set exactly as desired design values.

【0045】そして、本実施例のレーザ測定ユニット1
3は、図1に示した第1の実施例と同様に、ヘッド部2
3と、該ヘッド部23を縦軸24周りに旋回させる旋回
装置25とを備えている。
Then, the laser measuring unit 1 of this embodiment
Reference numeral 3 denotes a head unit 2 as in the first embodiment shown in FIG.
3 and a turning device 25 for turning the head portion 23 around the longitudinal axis 24.

【0046】前記ヘッド部23内には、図6の如く、光
学望遠鏡を有するレーザ照射装置45と、該レーザ照射
装置45から出射され前記反射板18の各反射部18
A,18Bにて反射された反射光の光量を検出する反射
光量検出装置46と、該反射光量検出装置46で受けた
受光情報に基づいて前記車両本体11の位置を認識する
位置認識手段47とを備えている。
As shown in FIG. 6, a laser irradiator 45 having an optical telescope is provided in the head 23, and each reflector 18 of the reflector 18 emitted from the laser irradiator 45 is provided.
A reflected light amount detecting device 46 for detecting the amount of the reflected light reflected at A and 18B, a position recognizing unit 47 for recognizing the position of the vehicle body 11 based on the received light information received by the reflected light amount detecting device 46; It has.

【0047】前記反射光量検出装置46は、第1の実施
例と同様、受けた光の光量に応じて出力電流または出力
電圧が異なる光電変換素子が用いられている。
As in the first embodiment, the reflected light amount detecting device 46 uses a photoelectric conversion element having an output current or an output voltage that differs depending on the amount of received light.

【0048】前記位置認識手段47は、例えば前記ヘッ
ド部23内に配置され、前記反射光量検出装置46から
信号処理回路48を経て得られた出力値、すなわち出力
電流値または出力電圧値に基づいて受けた光の光量が急
激に上昇し第1の反射部18Aからの反射光の光量に等
しくなるよう変化したことを検知する第1の光量変化検
知部51と、前記反射光量検出装置46からの出力値に
基づいて受けた光の光量が第1の反射部18Aからの反
射光の光量から第2の反射部18Bからの反射光の光量
に等しくなるよう急激に変化したことを検知する第2の
光量変化検知部52と、前記第1の光量変化検知部51
が急激な反射光の光量変化を検知してから前記第2の光
量変化検知部52が急激な反射光の光量変化を検知する
まで、すなわちレーザの照射点(スポット)が反射板1
8の第1の反射部18Aの表面上を移動している間に旋
回装置25で旋回した旋回角度θ12を検出する第1の
旋回角度検出部53と、前記反射光量検出装置46から
信号処理回路48を経て得られた出力値に基づいて受け
た光の光量が第2の反射部18Bからの反射光の光量か
ら急激に下降したことを検知する第3の光量変化検知部
54と、前記第2の光量変化検知部52が急激な反射光
の光量変化を検知してから前記第3の光量変化検知部5
4が急激な反射光の光量変化を検知するまで、すなわち
レーザの照射点(スポット)が反射板18の第2の反射
部18Bの表面上を移動している間に旋回装置25で旋
回した旋回角度θ23を検出する第2の旋回角度検出部
55と、該各旋回角度検出部53,55で検出した検出
情報に基づいて前記車両本体11の位置を演算する演算
部56としてのマイクロコンピュータチップとを備え
る。なお、前記各旋回角度検出部53,55は、例えば
計時手段を有しており、前記第1の旋回角度検出部53
の場合は、反射光量が急激に第1の反射部18Aからの
ものになってから、次に急激に第2の反射部18Bから
のものになるまでに要した時間を、また、第2の旋回角
度検出部55の場合は、反射光量が急激に第2の反射部
18Bからのものになってから、次に急激に下降するま
でに要した時間を、夫々前記計時手段にて測定し、該時
間と、前記旋回装置25の所定の旋回角速度とを積算し
てやれば、旋回角度θ12,θ23を容易に演算でき
る。あるいは、前記各旋回角度検出部53,55に一般
的なエンコーダを用いても良い。
The position recognizing means 47 is disposed, for example, in the head section 23, and is based on an output value obtained from the reflected light amount detecting device 46 via the signal processing circuit 48, ie, an output current value or an output voltage value. A first light amount change detecting unit 51 for detecting that the amount of received light has risen rapidly and has changed to be equal to the amount of reflected light from the first reflecting unit 18A; A second method for detecting that the amount of light received based on the output value has changed abruptly from the amount of light reflected from the first reflector 18A to be equal to the amount of light reflected from the second reflector 18B. Light amount change detection unit 52 and the first light amount change detection unit 51
From when the light amount of the reflected light is suddenly changed until the second light amount change detecting unit 52 detects the sudden change in the light amount of the reflected light, that is, when the laser irradiation point (spot) is
A first turning angle detecting unit 53 for detecting a turning angle θ12 of turning by the turning device 25 while moving on the surface of the first reflecting unit 18A of FIG. A third light amount change detecting unit 54 for detecting that the light amount of the light received based on the output value obtained through 48 suddenly drops from the light amount of the reflected light from the second reflecting unit 18B; The second light amount change detecting unit 52 detects the sudden change in the amount of reflected light, and then the third light amount change detecting unit 5.
4 is turned by the turning device 25 until the laser beam 4 detects a sudden change in the amount of reflected light, that is, while the irradiation point (spot) of the laser is moving on the surface of the second reflecting portion 18B of the reflecting plate 18. A second turning angle detecting unit 55 for detecting the angle θ23, and a microcomputer chip as a calculating unit 56 for calculating the position of the vehicle body 11 based on the detection information detected by the turning angle detecting units 53 and 55. Is provided. Each of the turning angle detection units 53 and 55 has, for example, a time measuring unit, and the first turning angle detection unit 53
In the case of (1), the time required for the amount of reflected light to suddenly change from the first reflecting portion 18A to the next sharply changing amount to the second reflecting portion 18B, In the case of the turning angle detection unit 55, the time required until the amount of reflected light suddenly changes from the second reflecting unit 18B to the next sharp fall is measured by the timing means, respectively. If the time and the predetermined turning angular velocity of the turning device 25 are integrated, the turning angles θ12 and θ23 can be easily calculated. Alternatively, a general encoder may be used for each of the turning angle detection units 53 and 55.

【0049】<位置同定方法>次に上記無人搬送車の位
置同定方法を説明する。まず、旋回装置25にてヘッド
部23を所定の角速度で縦軸24周りに旋回させなが
ら、レーザ照射装置45にてレーザを指向照射する。そ
うすると、図5中の如く、レーザの照射点(スポット)
は工場や倉庫等の室内壁面17を矢印α1の方向に移動
し、次いで反射板18の第1の反射部18Aの一端部か
らその表面に移動する。このとき、第1の反射部18A
の光反射率は室内壁面17の光反射率に比べて極めて大
とされているため、反射光量検出装置46で受ける光の
光量が急激に上昇し、反射光量検出装置46から信号処
理回路48を経て得られる出力値が大幅に変化する。こ
の出力値の変化に基づいて、位置認識手段47の第1の
光量変化検知部51は、受けた光の光量が急激に上昇し
たことを検知する。
<Position Identification Method> Next, a description will be given of a position identification method of the automatic guided vehicle. First, the laser irradiating device 45 directs and irradiates a laser while rotating the head unit 23 around the vertical axis 24 at a predetermined angular velocity by the circling device 25. Then, as shown in FIG. 5, the laser irradiation point (spot)
Moves on the indoor wall surface 17 of a factory or a warehouse in the direction of arrow α1, and then moves from one end of the first reflection portion 18A of the reflection plate 18 to the surface thereof. At this time, the first reflecting portion 18A
Is extremely large as compared with the light reflectance of the indoor wall surface 17, the amount of light received by the reflected light amount detecting device 46 rapidly rises, and the signal processing circuit 48 is transmitted from the reflected light amount detecting device 46 to the signal processing circuit 48. The output value obtained through this greatly changes. Based on this change in the output value, the first light amount change detecting section 51 of the position recognition means 47 detects that the amount of received light has risen sharply.

【0050】一定時間経過後、ヘッド部23は旋回装置
25にて旋回するため、レーザの照射点(スポット)は
第1の反射部18Aの表面を矢印α2aの方向に移動
し、次いで第1の反射部18Aの他端部から、第2の反
射部18Bの一端部に進入する。このとき、両反射部1
8A,18Bの光反射率は互いに異なって設定されてい
るため、反射光量検出装置46で受ける光の光量が急激
に上昇し、反射光量検出装置46から信号処理回路48
を経て得られる出力値が大幅に変化する。この出力値の
変化に基づいて、位置認識手段47の第2の光量変化検
知部52は、受けた光の光量が急激に変化したことを検
知する。そして、第1の旋回角度検出部53にて、レー
ザの照射点(スポット)が反射板18の第1の反射部1
8Aの表面上を移動している間に旋回装置25で旋回し
た旋回角度θ12を検出する。
After a lapse of a certain time, the head 23 is turned by the turning device 25, so that the irradiation point (spot) of the laser moves on the surface of the first reflecting portion 18A in the direction of the arrow α2a, and then the first From the other end of the reflector 18A, it enters one end of the second reflector 18B. At this time, both reflection portions 1
Since the light reflectances of 8A and 18B are set to be different from each other, the amount of light received by the reflected light amount detecting device 46 sharply increases, and the reflected light amount detecting device 46 outputs a signal processing circuit 48.
The output value obtained through the above changes greatly. Based on the change in the output value, the second light amount change detecting unit 52 of the position recognizing unit 47 detects that the light amount of the received light has changed abruptly. Then, in the first turning angle detection unit 53, the irradiation point (spot) of the laser is changed to the first reflection unit 1 of the reflection plate 18.
The turning angle θ12 of turning by the turning device 25 while moving on the surface of 8A is detected.

【0051】さらに一定時間経過後、ヘッド部23は旋
回装置25にて旋回するため、レーザの照射点(スポッ
ト)は第2の反射部18Bの表面を矢印α2bの方向に
移動し、次いで第2の反射部18Bの他端部から、再び
工場や倉庫等の室内壁面17に抜け出る。このとき、室
内壁面17の光反射率は第2の反射部18Bの光反射率
に比べて極めて小とされているため、反射光量検出装置
46で受ける光の光量が急激に下降し、反射光量検出装
置46から信号処理回路48を経て得られる出力値が大
幅に変化する。この出力値の変化に基づいて、位置認識
手段47の第3の光量変化検知部54は、受けた光の光
量が急激に下降したことを検知する。そして、第2の旋
回角度検出部55にて、レーザの照射点(スポット)が
反射板18の第2の反射部18Bの表面上を移動してい
る間に旋回装置25で旋回した旋回角度θ23を検出す
る。
After a certain period of time, the head 23 is turned by the turning device 25, so that the irradiation point (spot) of the laser moves on the surface of the second reflecting portion 18B in the direction of the arrow α2b. From the other end of the reflecting portion 18B again escapes to the interior wall surface 17 of a factory or a warehouse. At this time, since the light reflectance of the indoor wall surface 17 is extremely small as compared with the light reflectance of the second reflecting portion 18B, the light amount of the light received by the reflected light amount detecting device 46 rapidly decreases, and the reflected light amount The output value obtained from the detection device 46 via the signal processing circuit 48 changes greatly. Based on this change in the output value, the third light amount change detection unit 54 of the position recognition unit 47 detects that the light amount of the received light has dropped sharply. Then, in the second turning angle detecting unit 55, the turning angle θ23 turned by the turning device 25 while the irradiation point (spot) of the laser moves on the surface of the second reflecting unit 18B of the reflecting plate 18. Is detected.

【0052】しかる後、両旋回角度検出部53,55で
検出した旋回角度情報に基づいて、演算部56が車両本
体11の平面位置を演算する。ここで、図5の如く、第
1の反射部18Aの固有の幅をH11、第2の反射部1
8Bの固有の幅をH12とし、また、第1の反射部18
Aの一端部の平面位置を原点Pi(0,0)として、反
射板18の表面上のレーザ照射点の移動方向をX軸、反
射板18の放線方向をY軸にとり、第1の反射部18A
の他端部の平面位置をP1(H11,0)、第2の反射
部18Bの他端部の平面位置をP2(H11+H12,
0)、車両本体11の平面位置をPa(x,y,θsn
v)、線分P2〜Paと反射板18とのなす角をθa、
線分P1〜Paと第2の反射部18Bとのなす角をθ
b、線分P1〜Paと第1の反射部18Aとのなす角を
θc、線分Pi〜Paと反射板18とのなす角をθd、
第1の旋回角度検出部53で求めた旋回角度をθ12、
第2の旋回角度検出部55で求めた旋回角度をθ23、
PaとPiの間の第1の距離をL11、PaとP1の間
の第2の距離をL12、PaとP2の間の第3の距離を
L13とし、反射板18の両反射部18A,18Bの固
有の幅を夫々H11,H12すると、車両本体11の平
面位置Pa(x,y,θsnv)は次のように演算でき
る。
Thereafter, the calculating section 56 calculates the plane position of the vehicle body 11 based on the turning angle information detected by the turning angle detecting sections 53 and 55. Here, as shown in FIG. 5, the unique width of the first reflecting portion 18A is H11, and the second reflecting portion 1
8B is H12, and the first reflecting portion 18
With the plane position of one end of A as the origin Pi (0, 0), the moving direction of the laser irradiation point on the surface of the reflecting plate 18 is taken as the X axis, and the radiation direction of the reflecting plate 18 is taken as the Y axis. 18A
The plane position of the other end of the second reflecting portion 18B is P1 (H11,0), and the plane position of the other end of the second reflecting portion 18B is P2 (H11 + H12,
0), the plane position of the vehicle body 11 is defined as Pa (x, y, θsn).
v), the angle between the line segments P2 to Pa and the reflection plate 18 is θa,
The angle between the line segments P1 to Pa and the second reflecting portion 18B is θ
b, the angle between the line segments P1 to Pa and the first reflecting portion 18A is θc, the angle between the line segments Pi to Pa and the reflecting plate 18 is θd,
The turning angle obtained by the first turning angle detection unit 53 is θ12,
The turning angle obtained by the second turning angle detection unit 55 is θ23,
The first distance between Pa and Pi is L11, the second distance between Pa and P1 is L12, the third distance between Pa and P2 is L13, and both reflecting portions 18A and 18B of the reflecting plate 18 are provided. Are respectively H11 and H12, the plane position Pa (x, y, θsnv) of the vehicle body 11 can be calculated as follows.

【0053】[0053]

【数4】 (Equation 4)

【0054】但し、However,

【0055】[0055]

【数5】 (Equation 5)

【0056】である。このように、座標基準となる所定
幅のマークを用いてレーザポジショニングを行うので、
第1の実施例で用いていたレーザ距離計を使用しなくて
も、車両本体11の位置同定を行い得る。したがって、
レーザ距離計に特有の測定誤差の心配がなくなり、精度
の良い位置同定を実施できる。また、従来例のように室
内の四隅全部にコーナキューブを使用する必要がなくな
り、室内四隅を他の用途に有効に使用できる他、複数の
コーナキューブによるレーザの飛び散りを防止できる。
なお、本実施例のように、距離測定を行わずに二個のマ
ークとしての反射部18A,18Bに対する角度測定だ
けで位置同定を行う場合、マークからの距離があまり離
れ過ぎると、角度測定の精度が劣化する。したがって、
本実施例の位置同定方法は、マークからの距離が少なく
とも1000mm以内、望ましくは500mm以内の比
較的近距離の場合について有効である。
Is as follows. As described above, since laser positioning is performed using a mark having a predetermined width serving as a coordinate reference,
The position identification of the vehicle body 11 can be performed without using the laser distance meter used in the first embodiment. Therefore,
There is no need to worry about measurement errors peculiar to the laser distance meter, and accurate position identification can be performed. Further, unlike the conventional example, it is not necessary to use corner cubes in all four corners of a room, and the four corners of the room can be effectively used for other purposes, and scattering of laser beams by a plurality of corner cubes can be prevented.
In the case where the position identification is performed only by measuring the angles of the reflecting portions 18A and 18B as two marks without performing the distance measurement as in the present embodiment, if the distance from the mark is too far, the angle measurement is not performed. Accuracy deteriorates. Therefore,
The position identification method of the present embodiment is effective for a case where the distance from the mark is relatively short, at least within 1000 mm, preferably within 500 mm.

【0057】[変形例] (1)第1の実施例(第1の位置同定手順)では、レー
ザ距離計21を用いて測定したマークに対する距離情報
をパラメータとすることで、マークに対する距離が比較
的長い場合にも距離情報に一定の精度を持たせることが
できた。また、第2の実施例(第2の位置同定手順)で
は、距離測定を行わずに二個のマークとしての反射部1
8A,18Bに関する角度測定だけで位置同定を行うこ
とで、レーザ距離計に特有の測定誤差の心配をなくし、
比較的短距離のマークに対して精度の良い位置同定を行
うことができた。これらの両実施例の特質に鑑み、両位
置同定方法を組み合わせてもよい。具体的には、例え
ば、常時レーザ距離計21で室内壁面までの距離を測定
しておき、該距離測定結果が例えば500mm未満等の
近距離である場合は、第2の実施例のように二個の反射
部18A,18Bに対する角度測定だけで位置同定を行
い、距離測定結果が例えば500mm以上等の遠距離で
ある場合は、第1の実施例のようにレーザ距離計21を
用いて測定したマークに対する距離情報をパラメータと
して用いて位置同定を行えば、車両本体11が室内壁面
に対してどのような位置にあっても、遠近両方の場合に
ついて位置同定精度を向上させ得る。なお、この場合
は、第1の実施例のレーザ距離計21、反射光量検出装
置22、光量上昇検知部35および光量下降検知部37
を、第2の実施例のレーザ照射装置45、反射光量検出
装置45、第1の光量変化検知部51および第3の光量
変化検知部54として夫々そのまま用いればよい。ま
た、第1の実施例の旋回角度検出部39で検出する旋回
角度は、第2の実施例の第1の旋回角度検出部53およ
び第2の旋回角度検出部55での両検出値を加算してや
ればよい。
[Modifications] (1) In the first embodiment (first position identification procedure), the distance to the mark is compared by using the distance information for the mark measured using the laser distance meter 21 as a parameter. Even if the target is long, the distance information can have a certain accuracy. In the second embodiment (second position identification procedure), the reflection unit 1 serving as two marks without measuring the distance is used.
By performing position identification only by angle measurement for 8A and 18B, there is no need to worry about measurement errors specific to laser rangefinders.
Accurate position identification could be performed for a relatively short distance mark. In view of the characteristics of both of these embodiments, both position identification methods may be combined. Specifically, for example, the distance to the indoor wall surface is always measured by the laser range finder 21 and, if the distance measurement result is a short distance such as less than 500 mm, for example, the distance is measured as in the second embodiment. The position identification was performed only by measuring the angles of the reflecting portions 18A and 18B, and when the distance measurement result was a long distance such as 500 mm or more, the measurement was performed using the laser distance meter 21 as in the first embodiment. If the position identification is performed using the distance information to the mark as a parameter, the position identification accuracy can be improved in both the near and far directions, regardless of the position of the vehicle body 11 with respect to the indoor wall surface. In this case, in this case, the laser distance meter 21, the reflected light amount detecting device 22, the light amount rising detecting unit 35, and the light amount falling detecting unit 37 of the first embodiment are used.
May be used as they are as the laser irradiation device 45, the reflected light amount detection device 45, the first light amount change detection unit 51, and the third light amount change detection unit 54 of the second embodiment. The turning angle detected by the turning angle detecting unit 39 of the first embodiment is the sum of the values detected by the first turning angle detecting unit 53 and the second turning angle detecting unit 55 of the second embodiment. Do it.

【0058】(2)あるいは、第1の実施例の位置同定
方法(第1の位置同定手順)と、第2の実施例の位置同
定方法(第2の位置同定手順)とを切り換える切換スイ
ッチを設け、使用する室内の広さによって作業者が切り
換えるように構成すれば、簡単な構成で、狭い室内での
使用と、広い室内での使用とを使い分けることができ
る。
(2) Alternatively, a changeover switch for switching between the position identification method of the first embodiment (first position identification procedure) and the position identification method of the second embodiment (second position identification procedure) is provided. If it is configured such that the operator can switch according to the size of the room to be provided and used, the use in a small room and the use in a large room can be selectively used with a simple configuration.

【0059】[0059]

【発明の効果】本発明の請求項1によると、レーザ距離
計および反射光量検出装置を旋回させ、この状態でレー
ザ距離計からレーザを照射し、室内壁面または反射板で
の反射光量を検出し、反射光量が急激に上昇した直後に
レーザ距離計で反射板までの第1の距離を検出し、反射
光量が急激に下降したときに、その時点の直前にレーザ
距離計で反射板までの第2の距離を検出し、その間に旋
回した旋回角度を検出し、旋回角度、第1の距離および
第2の距離に基づいて無人搬送車の平面位置を演算して
いるので、従来例のように室内四隅のコーナキューブを
使用する必要がなくなり、室内壁面を他の用途に有効に
使用できる他、複数のコーナキューブによるレーザの飛
び散りを防止できる。また、特に、レーザ距離計を用い
て測定した距離情報をもとに位置同定を行っているの
で、反射板までの距離が比較的長い場合にも距離情報に
一定の精度を持たせることができる。
According to the first aspect of the present invention, the laser range finder and the reflected light amount detecting device are turned, and in this state, the laser is irradiated from the laser range finder to detect the reflected light amount on the indoor wall surface or the reflecting plate. Immediately after the reflected light amount rises sharply, the first distance to the reflector is detected by the laser distance meter, and when the reflected light amount falls sharply, the first distance to the reflector by the laser distance meter is measured immediately before that point. Since the distance of the automatic guided vehicle is detected based on the turning angle, the first distance, and the second distance, the plane position of the automatic guided vehicle is calculated based on the turning angle, the first distance, and the second distance. It is not necessary to use the corner cubes at the four corners of the room, and the wall surface of the room can be effectively used for other purposes, and the scattering of the laser due to a plurality of corner cubes can be prevented. Further, in particular, since the position is identified based on the distance information measured by using the laser distance meter, even when the distance to the reflector is relatively long, the distance information can have a certain accuracy. .

【0060】そして、車両と反射板との間の一部に障害
物が存在し、反射板の表面を移動していたレーザの照射
点がその他端部に達していないにもかかわらず反射光量
検出装置で受ける光の光量が急激に下降しても、この急
激に下降した時点を第2の時点として第1の時点から第
2の時点までに旋回装置にて旋回した旋回角度を旋回角
度検出部で検出し、かかる実測値に基づいて位置同定を
行うことができ、反射板の幅を固有値として演算する場
合に比べて障害物による誤演算を防止できるという効果
がある。
An obstacle is present at a part between the vehicle and the reflector, and the reflected light amount is detected even though the laser irradiation point moving on the surface of the reflector has not reached the other end. Even if the amount of light received by the device drops sharply, the turning point that the turning device has turned with the turning device from the first point to the second point is defined as the turning point when the steep drop point is the second point. In this case, the position can be identified based on the actual measurement value, and an erroneous calculation due to an obstacle can be prevented as compared with the case where the width of the reflector is calculated as an eigenvalue.

【0061】本発明の請求項2によると、工場や倉庫等
の室内壁面に光反射率の異なる二個の反射部を設け、レ
ーザ照射装置および反射光量検出装置を旋回させ、この
状態でレーザ照射装置からレーザを照射し、室内壁面ま
たは各反射部での反射光量を検出し、反射光量が一方の
反射部の光反射率に対応する光量となった第1の時点
と、反射光量が一方の反射部の光反射率に対応する光量
から他方の反射部の光反射率に対応する光量となった第
2の時点とを夫々検知し、第1の時点から第2の時点ま
でに旋回した第1の旋回角度を検出し、さらに反射光量
が急激に下降した第3の時点を検知し、第2の時点から
第3の時点までに旋回した第2の旋回角度を検出し、第
1の旋回角度、第2の旋回角度および予め記憶された各
反射部の幅に基づいて無人搬送車の平面位置を演算して
いるので、レーザ距離計を使用しなくても無人搬送車の
位置同定を行い得、特に反射部までの距離が短い場合に
レーザ距離計に特有の測定誤差の心配がなくなり、精度
の良い位置同定を実施できる。また、従来例のように複
数のコーナキューブを使用する必要がなくなり、室内壁
面を他の用途に有効に使用できる他、複数のコーナキュ
ーブによるレーザの飛び散りを防止できる。また、特
に、レーザ距離計を用いて測定した距離情報をもとに位
置同定を行っているので、反射板までの距離が比較的長
い場合にも距離情報に一定の精度を持たせることができ
るという効果がある。
According to the second aspect of the present invention, two reflecting portions having different light reflectivities are provided on the indoor wall surface of a factory or a warehouse, and the laser irradiating device and the reflected light amount detecting device are turned. The device irradiates a laser to detect the amount of reflected light on the indoor wall surface or each reflecting portion. The first time when the amount of reflected light is the amount of light corresponding to the light reflectance of one of the reflecting portions, A second time point when the light amount corresponding to the light reflectance of the other reflecting portion is detected from the light amount corresponding to the light reflectance of the reflecting portion, respectively, and the second time point turned from the first time point to the second time point is detected. 1 is detected, a third time point at which the amount of reflected light is sharply reduced is detected, a second turning angle from the second time point to the third time point is detected, and the first turning angle is detected. Based on the angle, the second turning angle, and the width of each of the reflecting portions stored in advance. Since the planar position of the automatic guided vehicle is calculated, the position of the automatic guided vehicle can be identified without using a laser range finder. Is eliminated, and accurate position identification can be performed. Further, unlike the conventional example, it is not necessary to use a plurality of corner cubes, and the interior wall surface can be effectively used for other purposes, and laser scattering by the plurality of corner cubes can be prevented. Further, in particular, since the position is identified based on the distance information measured by using the laser distance meter, even when the distance to the reflector is relatively long, the distance information can have a certain accuracy. This has the effect.

【0062】本発明の請求項3乃至請求項5によると、
無人搬送車が反射部に対して近距離である場合に適した
第1の位置同定手順と、無人搬送車が反射部に対して遠
距離である場合に適した第2の位置同定手順とを切り換
え可能に実行できるので、反射部までの距離が近距離で
ある場合に第1の位置同定手順で無人搬送車の平面位置
を演算し、遠距離である場合に第2の位置同定手順で無
人搬送車の平面位置を演算することができ、遠近両方に
ついて位置同定精度を高く維持できる。特に、請求項4
によると、レーザ距離計での室内壁面までの測定距離に
基づいて第1の位置同定手順と第2の位置同定手順とを
自動的に切り換えることができ、精度維持を確実に行う
ことができる。一方、請求項5によると、切換スイッチ
といった簡単な構成で第1の位置同定手順と第2の位置
同定手順とを切り換えることができ、無人搬送車のコス
ト低減を図り得るという効果がある。
According to claims 3 to 5 of the present invention,
A first position identification procedure suitable for when the automatic guided vehicle is at a short distance to the reflector, and a second position identification procedure suitable for when the automatic guided vehicle is at a long distance to the reflector. When the distance to the reflector is short, the planar position of the automatic guided vehicle is calculated by the first position identification procedure, and when the distance is long, the unmanned carrier is calculated by the second position identification procedure. The plane position of the carrier can be calculated, and the position identification accuracy can be maintained high both in the near and far directions. In particular, claim 4
According to this, the first position identification procedure and the second position identification procedure can be automatically switched based on the measurement distance to the indoor wall surface by the laser range finder, and the accuracy can be maintained reliably. On the other hand, according to the fifth aspect, the first position identification procedure and the second position identification procedure can be switched with a simple configuration such as a changeover switch, so that the cost of the automatic guided vehicle can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施例の無人搬送車を示す斜視
図である。
FIG. 1 is a perspective view showing an automatic guided vehicle according to a first embodiment of the present invention.

【図2】本発明の第1の実施例の無人搬送車の位置同定
動作を示す斜視図である。
FIG. 2 is a perspective view showing a position identifying operation of the automatic guided vehicle according to the first embodiment of the present invention.

【図3】本発明の第1の実施例の無人搬送車のヘッド部
内部の機能ブロック図である。
FIG. 3 is a functional block diagram showing the inside of a head portion of the automatic guided vehicle according to the first embodiment of the present invention.

【図4】本発明の第1の実施例の無人搬送車の位置同定
原理を示す説明図である。
FIG. 4 is an explanatory diagram showing a position identification principle of the automatic guided vehicle according to the first embodiment of the present invention.

【図5】本発明の第2の実施例の無人搬送車のヘッド部
内部の機能ブロック図である。
FIG. 5 is a functional block diagram showing the inside of a head portion of an automatic guided vehicle according to a second embodiment of the present invention.

【図6】本発明の第2の実施例の無人搬送車の位置同定
原理を示す説明図である。
FIG. 6 is an explanatory diagram showing a position identification principle of an automatic guided vehicle according to a second embodiment of the present invention.

【図7】従来例の無人搬送車の位置同定動作を示す斜視
図である。
FIG. 7 is a perspective view showing a position identification operation of a conventional automatic guided vehicle.

【符号の説明】[Explanation of symbols]

17 室内壁面 18 反射板 18A 第1の反射部 18B 第2の反射部 21 レーザ距離計 22 反射光量検出装置 24 縦軸 25 旋回装置 35 光量上昇検知部 36 第1の距離検出部 37 光量下降検知部 38 第2の距離検出部 39 旋回角度検出部 45 レーザ照射装置 46 反射光量検出装置 51 第1の光量変化検知部 52 第2の光量変化検知部 53 第1の旋回角度検出部 54 第3の光量変化検知部 55 第2の旋回角度検出部 Reference Signs List 17 Indoor wall surface 18 Reflector 18A First reflector 18B Second reflector 21 Laser rangefinder 22 Reflection light quantity detector 24 Vertical axis 25 Rotating device 35 Light quantity rise detector 36 First distance detector 37 Light quantity fall detector 38 second distance detecting unit 39 turning angle detecting unit 45 laser irradiation device 46 reflected light amount detecting device 51 first light amount change detecting unit 52 second light amount change detecting unit 53 first turning angle detecting unit 54 third light amount Change detection unit 55 Second turning angle detection unit

フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G05D 1/02 Continuation of front page (58) Field surveyed (Int.Cl. 7 , DB name) G05D 1/02

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 工場や倉庫等の室内で荷物を積載し自動
的に搬送する無人搬送車の位置同定方法であって、 工場や倉庫等の室内壁面にその光反射率より大きな光反
射率を有する反射板を取り付け、 無人搬送車に取り付けられたレーザ距離計および反射光
量検出装置を旋回装置にて所定の角速度で縦軸周りに旋
回させ、 この状態で前記レーザ距離計からレーザを照射し、 前記レーザ距離計から出射されて前記室内壁面または前
記反射板で反射された光の光量を前記反射光量検出装置
で検出し、 前記反射光量検出装置で受ける光の光量が急激に上昇し
たときに、光量上昇検知部にて前記レーザ距離計からの
レーザの照射点が前記室内壁面から前記反射板の表面の
一端部に進入したと判断し、 第1の距離検出部にて、前記光量上昇検知部がレーザ照
射点の前記反射板表面への進入を判断した第1の時点の
直後に前記レーザ距離計が測定した前記反射板までの第
1の距離を検出し、 次に反射光量検出装置で受ける光の光量が急激に下降し
たときに、光量下降検知部にて前記レーザ距離計からの
レーザの照射点が前記反射板の表面の他端部から前記室
内壁面へ抜け出たと判断し、 第2の距離検出部にて、前記光量下降検知部がレーザの
照射点の前記反射板表面からの抜け出しを判断した第2
の時点の直前に前記レーザ距離計が測定した前記反射板
までの第2の距離を検出し、 前記第1の時点から前記第2の時点までに旋回装置にて
旋回した旋回角度を旋回角度検出部で検出し、 前記旋回角度、前記第1の距離および前記第2の距離に
基づいて前記無人搬送車の平面位置を演算する無人搬送
車の位置同定方法。
1. A method for identifying a position of an automatic guided vehicle that automatically loads and loads cargo in a room such as a factory or a warehouse, wherein a light reflectance greater than the light reflectance of the indoor wall surface of the factory or the warehouse is provided. Attach a reflector plate, rotate the laser range finder and the reflected light amount detection device attached to the automatic guided vehicle around the vertical axis at a predetermined angular velocity with a turning device, and irradiate laser from the laser range finder in this state, The amount of light emitted from the laser rangefinder and reflected by the indoor wall surface or the reflection plate is detected by the reflected light amount detection device, and when the amount of light received by the reflected light amount detection device rapidly increases, The light amount increase detecting unit determines that the irradiation point of the laser from the laser rangefinder has entered one end of the surface of the reflector from the indoor wall surface, and the first distance detecting unit determines that the light amount increase detecting unit Is a laser Immediately after the first time point at which it is determined that the irradiation point has entered the reflector surface, a first distance to the reflector measured by the laser range finder is detected. When the light amount suddenly decreases, the light amount decrease detection unit determines that the irradiation point of the laser from the laser distance meter has escaped from the other end of the surface of the reflection plate to the indoor wall surface, and detects the second distance. The second light quantity detecting unit determines that the irradiation point of the laser has escaped from the surface of the reflecting plate;
Detecting a second distance to the reflector measured by the laser range finder immediately before the time point, and detecting a turning angle of the turning device turned by the turning device from the first time point to the second time point. A position identification method of the automatic guided vehicle, wherein the automatic detection unit calculates a planar position of the automatic guided vehicle based on the turning angle, the first distance, and the second distance.
【請求項2】 工場や倉庫等の室内で荷物を積載し自動
的に搬送する無人搬送車の位置同定方法であって、 工場や倉庫等の室内壁面に第1の光反射率を有する第1
の反射部および第2の光反射率を有する第2の反射部を
設け、 前記両反射部の各光反射率は互いに異なりかつ室内壁面
の光反射率より大に設定し、 無人搬送車に取り付けられたレーザ照射装置および反射
光量検出装置を旋回装置にて所定の角速度で縦軸周りに
旋回させ、 この状態で前記レーザ照射装置からレーザを照射し、 前記レーザ照射装置から出射されて前記室内壁面または
前記各反射部で反射された光の光量を前記反射光量検出
装置で検出し、 前記反射光量検出装置で受ける光の光量が急激に上昇し
て一方の反射部の光反射率に対応する光量となった第1
の時点を第1の光量変化検知部にて検知し、 次に反射光量検出装置で受ける光の光量が前記一方の反
射部の光反射率に対応する光量から他方の反射部の光反
射率に対応する光量となった第2の時点を第2の光量変
化検知部にて検知し、 前記第1の時点から前記第2の時点までに旋回装置にて
旋回した第1の旋回角度を第1の旋回角度検出部で検出
し、 さらに反射光量検出装置で受ける光の光量が急激に下降
した第3の時点を第3の光量変化検知部にて検知し、 前記第2の時点から前記第3の時点までに旋回装置にて
旋回した第2の旋回角度を第2の旋回角度検出部で検出
し、 前記第1の旋回角度、前記第2の旋回角度および予め記
憶された各反射部の幅に基づいて前記無人搬送車の平面
位置を演算する無人搬送車の位置同定方法。
2. A method for identifying a position of an automatic guided vehicle that loads and automatically transports a load in a room such as a factory or a warehouse, wherein the first wall has a first light reflectance on a wall surface of the room such as a factory or a warehouse.
And a second reflector having a second light reflectivity, wherein the respective light reflectivities of the two reflectors are different from each other and are set to be larger than the light reflectivity of the indoor wall surface, and are attached to the automatic guided vehicle. The laser irradiation device and the reflected light amount detection device are turned around a vertical axis at a predetermined angular velocity by a turning device. In this state, laser is irradiated from the laser irradiation device, and the laser light is emitted from the laser irradiation device and the indoor wall surface is emitted. Alternatively, the amount of light reflected by each of the reflecting portions is detected by the reflected light amount detecting device, and the amount of light received by the reflected light amount detecting device rapidly rises and the amount of light corresponding to the light reflectance of one of the reflecting portions. Became the first
Is detected by the first light amount change detecting unit, and then the light amount of the light received by the reflected light amount detecting device is changed from the light amount corresponding to the light reflectance of the one reflecting unit to the light reflectance of the other reflecting unit. A second time point at which the corresponding light amount has been reached is detected by a second light amount change detection unit, and a first turning angle of the turning by the turning device from the first time point to the second time point is set to a first time. And a third time point at which the amount of light received by the reflected light amount detecting device suddenly drops is detected by a third light amount change detecting unit. From the second time point, the third time point The second turning angle detected by the turning device by the turning device up to the time point is detected by the second turning angle detection unit, and the first turning angle, the second turning angle, and the width of each of the reflection units stored in advance are detected. A position identification method of the automatic guided vehicle, which calculates a planar position of the automatic guided vehicle based on the equation.
【請求項3】 工場や倉庫等の室内で荷物を積載し自動
的に搬送する無人搬送車の位置同定方法であって、 工場や倉庫等の室内壁面に第1の光反射率を有する第1
の反射部および第2の光反射率を有する第2の反射部を
設け、 前記両反射部の各光反射率は互いに異なりかつ室内壁面
の光反射率より大に設定し、 無人搬送車に取り付けられたレーザ距離計および反射光
量検出装置を旋回装置にて所定の角速度で縦軸周りに旋
回させ、 前記レーザ距離計からレーザを出射し、 以後、無人搬送車が前記反射部に対して近距離である場
合に適した第1の位置同定手順と、 無人搬送車が前記反射部に対して遠距離である場合に適
した第2の位置同定手順とを切り換え可能に実行して前
記無人搬送車の平面位置を演算し、 前記第1の位置同定手順は、 前記レーザ距離計から出射されて前記室内壁面または前
記各反射部で反射された光の光量を前記反射光量検出装
置で検出し、 前記反射光量検出装置で受ける光の光量が急激に上昇し
て一方の反射部の光反射率に対応する光量となった第1
の時点を第1の光量変化検知部にて検知し、 次に反射光量検出装置で受ける光の光量が前記一方の反
射部の光反射率に対応する光量から他方の反射部の光反
射率に対応する光量となった第2の時点を第2の光量変
化検知部にて検知し、 前記第1の時点から前記第2の時点までに旋回装置にて
旋回した第1の旋回角度を第1の旋回角度検出部で検出
し、 さらに反射光量検出装置で受ける光の光量が急激に下降
した第3の時点を第3の光量変化検知部にて検知し、 前記第2の時点から前記第3の時点までに旋回装置にて
旋回した第2の旋回角度を第2の旋回角度検出部で検出
し、 前記第1の旋回角度、前記第2の旋回角度および予め記
憶された各反射部の幅に基づいて前記無人搬送車の平面
位置を演算するものとし、 前記第2の位置同定手順は、 前記レーザ距離計から出射されて前記室内壁面または前
記両反射部で反射された光の光量を前記反射光量検出装
置で検出し、 前記反射光量検出装置で受ける光の光量が急激に上昇し
たときに、光量上昇検知部にて前記レーザ距離計からの
レーザの照射点が前記室内壁面から一方の反射部の表面
の一端部に進入したと判断し、 第1の距離検出部にて、前記光量上昇検知部がレーザ照
射点の前記一方の反射部表面への進入を判断した第1の
時点の直後に前記レーザ距離計が測定した前記一方の反
射部までの第1の距離を検出し、 次に反射光量検出装置で受ける光の光量が急激に下降し
たときに、光量下降検知部にて前記レーザ距離計からの
レーザの照射点が前記いずれかの反射部の表面の他端部
から前記室内壁面へ抜け出たと判断し、 第2の距離検出部にて、前記光量下降検知部がレーザの
照射点の前記いずれかの反射部表面からの抜け出しを判
断した第2の時点の直前に前記レーザ距離計が測定した
前記いずれかの反射部までの第2の距離を検出し、 前記第1の時点から前記第2の時点までに旋回装置にて
旋回した旋回角度を旋回角度検出部で検出し、 前記旋回角度、前記第1の距離および前記第2の距離に
基づいて前記無人搬送車の平面位置を演算するものとす
る無人搬送車の位置同定方法。
3. A method for identifying a position of an automatic guided vehicle that loads and automatically transports a load in a room such as a factory or a warehouse, wherein the first surface of the indoor wall of the factory or the warehouse has a first light reflectance.
And a second reflector having a second light reflectivity, wherein the respective light reflectivities of the two reflectors are different from each other and are set to be larger than the light reflectivity of the indoor wall surface, and are attached to the automatic guided vehicle. The obtained laser range finder and the reflected light amount detection device are turned around a vertical axis at a predetermined angular velocity by a turning device, and a laser is emitted from the laser range finder. And a second position identification procedure suitable for a case where the automatic guided vehicle is located at a long distance from the reflection unit. The first position identification procedure comprises: detecting the amount of light emitted from the laser rangefinder and reflected by the indoor wall surface or each of the reflection units with the reflected light amount detection device; Of the light received by the reflected light detector The amount became rapidly rises to the amount of light corresponding to the light reflectance of one reflecting portion first
Is detected by the first light amount change detecting unit, and then the light amount of the light received by the reflected light amount detecting device is changed from the light amount corresponding to the light reflectance of the one reflecting unit to the light reflectance of the other reflecting unit. A second time point at which the corresponding light amount has been reached is detected by a second light amount change detection unit, and a first turning angle of the turning by the turning device from the first time point to the second time point is set to a first time. And a third time point at which the amount of light received by the reflected light amount detecting device suddenly drops is detected by a third light amount change detecting unit. From the second time point, the third time point The second turning angle detected by the turning device by the turning device up to the time point is detected by the second turning angle detection unit, and the first turning angle, the second turning angle, and the width of each of the reflection units stored in advance are detected. The planar position of the automatic guided vehicle is calculated based on the second position identification procedure. When the amount of light emitted from the laser rangefinder and reflected by the indoor wall surface or the two reflecting portions is detected by the reflected light amount detecting device, and the amount of light received by the reflected light amount detecting device rapidly increases. The light amount rise detecting unit determines that the irradiation point of the laser from the laser distance meter has entered one end of the surface of one of the reflecting units from the indoor wall surface, and the first distance detecting unit determines that the light amount Immediately after the first point in time when the ascending detecting section has determined that the laser irradiation point has entered the surface of the one reflecting section, the first distance to the one reflecting section measured by the laser range finder is detected immediately after the first point in time. When the light amount of the light received by the reflected light amount detecting device suddenly drops, the irradiation point of the laser from the laser distance meter is detected by the light amount decrease detecting unit from the other end of the surface of any of the reflecting units to the room. Judging that it has escaped to the wall, the second The distance detector, the laser light meter measures any one of the reflections immediately before the second time point at which the light amount drop detector determines that the irradiation point of the laser has escaped from the surface of the one of the reflectors. A second distance to the section, a turning angle detected by the turning device from the first time point to the second time point is detected by a turning angle detection section, and the turning angle and the first distance are detected. And a position identification method of the automatic guided vehicle, wherein a planar position of the automatic guided vehicle is calculated based on the second distance.
【請求項4】 レーザ距離計で室内壁面までの距離を測
定し、 該距離測定結果が近距離である場合は前記第1の位置同
定手順で前記無人搬送車の平面位置を演算し、 前記距離測定結果が遠距離である場合は前記第2の位置
同定手順で前記無人搬送車の平面位置を演算する、請求
項3記載の無人搬送車の位置同定方法。
4. A method of measuring a distance to a wall surface of a room with a laser distance meter, and calculating a plane position of the automatic guided vehicle in the first position identification procedure when the distance measurement result is a short distance. 4. The method of claim 3, wherein when the measurement result is a long distance, the planar position of the automatic guided vehicle is calculated in the second position identification procedure. 5.
【請求項5】 前記第1の位置同定手順と前記第2の位
置同定手順とを切り換える切換スイッチを設け、使用す
る室内の広さによって切換スイッチを切り換える、請求
項3記載の無人搬送車の位置同定方法。
5. The position of the automatic guided vehicle according to claim 3, further comprising a changeover switch for switching between the first position identification procedure and the second position identification procedure, and switching the changeover switch according to the size of a room to be used. Identification method.
JP34753193A 1993-12-24 1993-12-24 Automatic guided vehicle position identification method Expired - Fee Related JP3149661B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34753193A JP3149661B2 (en) 1993-12-24 1993-12-24 Automatic guided vehicle position identification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34753193A JP3149661B2 (en) 1993-12-24 1993-12-24 Automatic guided vehicle position identification method

Publications (2)

Publication Number Publication Date
JPH07191744A JPH07191744A (en) 1995-07-28
JP3149661B2 true JP3149661B2 (en) 2001-03-26

Family

ID=18390862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34753193A Expired - Fee Related JP3149661B2 (en) 1993-12-24 1993-12-24 Automatic guided vehicle position identification method

Country Status (1)

Country Link
JP (1) JP3149661B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19606786C1 (en) * 1996-02-23 1997-08-21 Goetting Jun Hans Heinrich Vehicle position detection and/or guidance method
JP2009289212A (en) * 2008-05-30 2009-12-10 Sogo Keibi Hosho Co Ltd System, method and program for controlling autonomous mobile object, and recording medium
KR101591471B1 (en) * 2008-11-03 2016-02-04 삼성전자주식회사 apparatus and method for extracting feature information of object and apparatus and method for generating feature map
JP4962742B2 (en) * 2008-12-11 2012-06-27 株式会社安川電機 Mobile system
US8473141B2 (en) 2008-12-11 2013-06-25 Kabushiki Kaisha Yaskawa Denki Robot system
JP2012113765A (en) * 2012-03-22 2012-06-14 Yaskawa Electric Corp Traveling body system
CN108195377B (en) * 2017-12-22 2020-09-04 广东嘉腾机器人自动化有限公司 Reflector matching algorithm based on triangular perimeter matching
JP6849714B2 (en) * 2019-02-14 2021-03-24 三菱ロジスネクスト株式会社 Laser guided vehicle

Also Published As

Publication number Publication date
JPH07191744A (en) 1995-07-28

Similar Documents

Publication Publication Date Title
CN107976999B (en) Mobile robot and obstacle avoidance and path planning method and system thereof
EP0238615B1 (en) Method of navigating an automated guided vehicle
US6259979B1 (en) Method and device for association of anonymous reflectors to detected angle positions
US4855915A (en) Autoguided vehicle using reflective materials
JP3865121B2 (en) Vehicle obstacle detection device
US6799099B2 (en) Material handling systems with high frequency radio location devices
US20030043362A1 (en) Six dimensional laser tracking system and method
JP2001515237A (en) Docking method of autonomous motion unit using guidance beam
Nishizawa et al. An implementation of on-board position estimation for a mobile robot-ekf based odometry and laser reflector landmarks detection
JP3149661B2 (en) Automatic guided vehicle position identification method
CN111516777A (en) Robot trolley and obstacle identification method thereof
JP2010256179A (en) Distance measurement method and onboard distance measuring apparatus
JP2003058998A (en) Vehicle parking system
KR20180023608A (en) Driving system of automated guided vehicle
JPH02181806A (en) Steering position detector for self-travelling vehicle and reference point detector for above device
JP2017032329A (en) Obstacle determination device, mobile body, and obstacle determination method
JPH09128041A (en) Method and system for guiding moving robot
Shoval et al. Implementation of a Kalman filter in positioning for autonomous vehicles, and its sensitivity to the process parameters
WO1995029380A1 (en) Navigation system for fast automated vehicles and mobile robots
JP3244642B2 (en) Mobile body guidance equipment
KR102653633B1 (en) Automated guided vehicle and method for controlling movement of automated guided vehicle
Batlle et al. Dynamic positioning of a mobile robot using a laser-based goniometer
CN112578789A (en) Moving body
JP2020154451A (en) Autonomous mobile device, program, and method for steering autonomous mobile device
KR20240042394A (en) Automated guided vehicle and method for controlling movement of automated guided vehicle

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090119

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100119

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110119

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110119

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110119

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120119

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120119

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130119

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130119

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees