JP3143802B2 - Posture control method for unmanned towing vehicle for wagon vehicles - Google Patents
Posture control method for unmanned towing vehicle for wagon vehiclesInfo
- Publication number
- JP3143802B2 JP3143802B2 JP03270766A JP27076691A JP3143802B2 JP 3143802 B2 JP3143802 B2 JP 3143802B2 JP 03270766 A JP03270766 A JP 03270766A JP 27076691 A JP27076691 A JP 27076691A JP 3143802 B2 JP3143802 B2 JP 3143802B2
- Authority
- JP
- Japan
- Prior art keywords
- vehicle
- wagon
- deviation
- unmanned
- towing vehicle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims description 6
- 238000005070 sampling Methods 0.000 claims description 3
- 238000005259 measurement Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
Landscapes
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、手押し台車(以下、ワ
ゴン車という)の下にもぐり込んで当該ワゴン車を牽引
する無人牽引車のもぐり込み姿勢制御方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for controlling the position of an unmanned towing vehicle which is driven under a hand truck (hereinafter referred to as a "wagon vehicle") to tow the wagon vehicle.
【0002】[0002]
【従来の技術】図3〜図5は工場における部品配達や病
院における配膳等に使用されるワゴン車の1例を示した
もので、この種のワゴン車10は4個の自由輪11を有
し、図6に示すように、その底板12には、工場や病院
の走行路面FLに向かって開口するピン受け孔14を有
する連結部13が設けられている。15は把持部であ
る。2. Description of the Related Art FIGS. 3 to 5 show an example of a wagon truck used for delivering parts at a factory or serving food at a hospital. This type of wagon truck 10 has four free wheels 11. Then, as shown in FIG. 6, the bottom plate 12 is provided with a connecting portion 13 having a pin receiving hole 14 opening toward the traveling road surface FL of a factory or a hospital. Reference numeral 15 denotes a grip.
【0003】20は車高の低い無人牽引車であって、前
後に操舵軸を持つ駆動輪21を有し、工場や病院の床に
張られた誘導線(磁気テープや光学テープ等)22を検
出するためのガイドセンサー23、このガイドセンサ2
3の出力や走行路面FL上の各種制御用のマークを読み
取るマークセンサ(図示せず)の出力を取り込んで操舵
・駆動輪21の操舵角や回転速度を制御する制御装置2
4を搭載し、指令入力に基づき所定のプログラムを実行
して目的地から目的地への走行・停止を繰り返す。無人
牽引車20には、図6に示すように、車体カバーの天板
25から鉛直向きに突出可能に突出しピン26とこの突
出しピン26とラック・ピニオン係合して所定距離だけ
上下駆動するピン駆動部27を有している。28は光学
式の位置センサであって、無人牽引車20は、突出しピ
ン26がピン受け孔14に上下に対向する位置まで走行
すると、ワゴン車10の底板12外面に貼着してある光
反射板(図示せず)に対向して信号を発生する。[0003] Reference numeral 20 denotes an unmanned towing vehicle having a low vehicle height, which has drive wheels 21 having steering shafts at the front and rear, and guide wires (magnetic tape, optical tape, etc.) 22 on the floor of a factory or hospital. Guide sensor 23 for detecting, this guide sensor 2
Control device 2 for controlling the steering angle and the rotation speed of the steering / driving wheels 21 by taking in the output of the motor 3 and the output of a mark sensor (not shown) for reading various control marks on the road surface FL.
4 is mounted, and a predetermined program is executed based on a command input to repeatedly run and stop from the destination to the destination. As shown in FIG. 6, the unmanned towing vehicle 20 has a pin 26 projecting vertically from the top plate 25 of the vehicle body cover and a pin which engages with the projecting pin 26 and a rack and pinion to drive up and down a predetermined distance. It has a drive unit 27. Reference numeral 28 denotes an optical position sensor. When the unmanned towing vehicle 20 travels to a position where the protruding pin 26 is vertically opposed to the pin receiving hole 14, the light reflected on the outer surface of the bottom plate 12 of the wagon vehicle 10 is reflected. A signal is generated facing a plate (not shown).
【0004】ワゴン車10は、走行路面FL上の予め定
められた配車位置へ人手により置かれる。無人牽引車2
0は、所定の配車位置に停められているワゴン車10の
下まで自動走行してワゴン車10の下にもぐり込み、位
置センサ28が出力すると、一旦、停止し、突出しピン
26を上昇させて、図6に示すように、ワゴン車10の
連結部13のピン受け孔14内へ突出させ、この連結動
作が終わると、次の目的地へ向かって走行を開始し、ワ
ゴン車10を牽引する。[0004] The wagon 10 is manually placed at a predetermined dispatch position on the traveling road surface FL. Unmanned towing vehicle 2
0 automatically travels under the wagon vehicle 10 parked at a predetermined vehicle allocation position, enters under the wagon vehicle 10, stops when the position sensor 28 outputs, temporarily raises the protrusion pin 26, As shown in FIG. 6, the wagon vehicle 10 is protruded into the pin receiving hole 14 of the connecting portion 13 of the wagon vehicle 10, and when this connecting operation is completed, the vehicle starts traveling to the next destination and tow the wagon vehicle 10. .
【0005】[0005]
【発明が解決しようとする課題】ワゴン車10は、人手
により、予め定められている配車位置に停められるもの
である上、前記のように全車輪が自由輪11であるた
め、正しい姿勢で、精度良く停めることが難しい。例え
ば、突出しピン26の外径d2 が30mm、ピン受け孔
14の内径d1 が40mmである場合、無人牽引車20
の進行方向の停止精度がプラスマイナス5mmである
と、横方向に許容されるずれ(横ずれ)は0mmしかな
く、停止精度がプラスマイナス0mmの場合は、横方向
に許容されるずれ(横ずれ)プラスマイナス5mmとな
る。すなわち、図7と図8から理解されるように、無人
牽引車の進行方向の停止誤差が大きくなる程、横方向に
許容されるずれ余裕は小さくなり、実際には、このよう
な数値の精度でワゴン車10を停めることは難しいの
で、ワゴン車10と無人牽引車20を、常に自動的にピ
ン連結させることは不可能である。The wagon 10 is manually stopped at a predetermined dispatch position, and all the wheels are free wheels 11 as described above. It is difficult to stop accurately. For example, if the outer diameter d 2 is 30mm ejector pins 26, the inner diameter d 1 of the pin receiving hole 14 is 40 mm, the unmanned tractor 20
When the stop accuracy in the traveling direction of the moving direction is ± 5 mm, the deviation (lateral deviation) allowed in the lateral direction is only 0 mm, and when the stopping accuracy is ± 0 mm, the deviation (lateral deviation) allowed in the lateral direction is plus. It becomes minus 5 mm. That is, as can be understood from FIGS. 7 and 8, as the stop error in the traveling direction of the unmanned tow vehicle increases, the deviation margin allowed in the lateral direction decreases. It is difficult to stop the wagon 10 with the vehicle, so it is impossible to always automatically and automatically connect the wagon 10 and the unmanned towing vehicle 20 with pins.
【0006】このため、配車位置に機械的なガイド(所
定間隔で平行するバー)を設けてワゴン車10の姿勢を
規制する考え方があるが、ガイドが人の通行の邪魔にな
る他、ガイドとワゴン車とを接触させないために、両者
間に狭い間隙を取る必要があり、ワゴン車の車幅精度の
バラツキをおさえなくてはならないので、ワゴン車が高
価になるといった問題が発生する。For this reason, there is an idea that a mechanical guide (a bar parallel at a predetermined interval) is provided at a vehicle allocation position to regulate the posture of the wagon vehicle 10, but the guide does not obstruct the passage of a person, and the guide does not interfere with the traffic. In order to avoid contact with the wagon vehicle, it is necessary to provide a narrow gap between the two, and it is necessary to suppress variations in the vehicle width accuracy of the wagon vehicle, causing a problem that the wagon vehicle becomes expensive.
【0007】本発明はこの問題を解消するためになされ
たもので、ワゴン車の姿勢を規制するのではなく、無人
牽引車のもぐり込み姿勢を配車位置にあるワゴン車の姿
勢に追従させ、ワゴン車用ガイド等の走行路上の固定設
備を不要にすることができるワゴン車用無人牽引車のも
ぐり込み姿勢制御方法を提供することを目的とする。The present invention has been made to solve this problem. Instead of restricting the position of the wagon vehicle, the unmanned towing vehicle is caused to follow the posture of the wagon vehicle at the dispatching position. It is an object of the present invention to provide a method for controlling a recessed attitude of an unmanned towing vehicle for a wagon vehicle, which can eliminate the need for a fixed facility such as a vehicle guide on a traveling path.
【0008】[0008]
【課題を解決するための手段】本発明は上記目的を達成
するため、請求項1では、無人牽引車が、ワゴン車との
車幅方向の左右車間距離を測定するための無線式右測距
センサと左測距センサを有し、両測距センサの出力をサ
ンプリング入力して左右車間距離のずれ幅を検出し、か
つ単位時間走行して後の距離情報をサンプリング入力し
上記左右車間距離のずれ幅との間で車体姿勢のずれ角度
を算出し、これらのずれ量が許容値を超えた場合には、
上記誘導制御からプログラム制御に切換えて、横ずれ時
は、前後輪の操舵角を同一にして斜行させ、車体姿勢の
ずれ時は、前後輪の操舵角を上記算出したずれ角度分だ
け相互に逆方向に操舵し車体姿勢を修正する方向に走行
させる構成とした。In order to achieve the above object, according to the present invention, an unmanned towing vehicle is provided with a wireless right distance measuring device for measuring a distance between a left and right vehicle in a vehicle width direction with respect to a wagon vehicle. It has a sensor and a left ranging sensor, and detects and inputs the output of both ranging sensors to detect the deviation width of the distance between the left and right vehicles .
After running one unit time, the distance information after sampling
The deviation angle of the vehicle body posture is calculated between the deviation width of the left-to-right vehicle distance and when the deviation amount exceeds the allowable value,
By switching to program control from the induction control, strike-slip at the time
Skew the front and rear wheels at the same steering angle,
In the case of a deviation, the steering angles of the front and rear wheels are equal to the deviation angle calculated above.
Steering in opposite directions and running in a direction to correct the body posture
The configuration was adopted.
【0009】請求項2では、ワゴン車の左右側部は、両
測距センサからの音波もしくし光波を反射可能な側板で
覆われている構成とした。According to a second aspect of the present invention, the left and right sides of the wagon vehicle are
With a side plate that can reflect sound waves or light waves from the distance measurement sensor
The configuration was covered .
【0010】[0010]
【0011】[0011]
【0012】[0012]
【作用】本発明では、無人牽引車は、配車位置にあるワ
ゴン車へのもぐり込みを開始すると、当該ワゴン車の姿
勢に追従するように姿勢を変えつつ走行するから、ワゴ
ン車の姿勢を拘束する場合と異なって、前記したガイド
等は不要になる。According to the present invention , when the unmanned tow vehicle starts moving into the wagon vehicle at the dispatch position, the vehicle travels while changing its posture so as to follow the posture of the wagon vehicle. Unlike the case of performing the above, the guide and the like described above become unnecessary.
【0013】[0013]
【実施例】以下、本発明の1実施例を図面を参照して説
明する。An embodiment of the present invention will be described below with reference to the drawings.
【0014】図1において、30Rと30Lは右測距セ
ンサと左測距センサであって、それぞれ無人牽引車20
の車体前部の右側及び左側(突出しピン26を挟んで)
に設けられている。両測距センサ30R,30Lは無線
式の測距センサーであって、その出力はディジタル変換
されて制御装置24の演算処理部CPUにサンプリング
入力される。なお、両測距センサ30R、30Lは超音
波式あるいは光電式の測距センサであって、本実施例の
ワゴン車10の左右側板のうち、測距センサ30R、3
0Lに対向する部分は、両測距センサ30R、30Lか
らの音波もしくは光を反射可能な材質のもので形成され
ている。In FIG. 1, reference numerals 30R and 30L denote a right distance measuring sensor and a left distance measuring sensor, respectively.
Right and left sides of the front of the vehicle (with the protruding pin 26 interposed)
It is provided in. Both distance measuring sensors 30R and 30L are wireless distance measuring sensors, and the outputs thereof are digitally converted and sampled and input to the arithmetic processing unit CPU of the control device 24. The two distance measuring sensors 30R and 30L are ultrasonic or photoelectric type distance measuring sensors. Of the left and right side plates of the wagon 10 of the present embodiment, the distance measuring sensors 30R and 30L are provided.
The portion facing 0L is formed of a material that can reflect the sound waves or light from both distance measuring sensors 30R and 30L.
【0015】無人牽引車20がワゴン車10へのもぐり
込みを開始すると、右測距センサ30Rがワゴン車10
の車体右側部までの車間距離Rを測定して出力し、左測
距センサ30Lがワゴン車10の車体左側部までの車間
距離Lを測定して出力する。制御装置24の演算処理部
CPUは右測距センサ30Rの測定値Rをサンブリング
入力し(サンプリング値をR1とする)、右測距センサ
30Lの測定値Lをサンブリング入力し(サンプリング
値をL1とする)、横ずれ量ΔW1=R1−L1を演算
する。続いて、無人牽引車20が単位時間を走行した時
に(この間の走行距離は一定値aとする)右測距センサ
30Rの測定値R2、右測距センサ30Lの測定値L2
を入力して横ずれ量ΔW2=R2−L2を演算する。演
算処理部CPUは、 (A)ΔW1、ΔW2が予め設定した許容範囲内にある
か否かを判定し、 (B)ΔW1、ΔW2が共に許容範囲内にある場合に
は、ワゴン車10が、図1に示すように、その中心線O
1が誘導線22上にある姿勢で停止しているものと判定
して、無人牽引車20を上記もぐり込み開始時の姿勢の
ままで走行させる。 (C)ΔW1、ΔW2のいずれか一方が上記許容範囲を
超えている場合にはワゴン車10が誘導線22からずれ
ているので、無人牽引車20の制御を誘導制御からプロ
グラム制御に切り換える。When the unmanned towing vehicle 20 starts to move into the wagon vehicle 10, the right distance measuring sensor 30R is turned on by the wagon vehicle 10.
The left distance measurement sensor 30L measures and outputs the inter-vehicle distance L to the left side of the vehicle body of the wagon vehicle 10. Control processing unit CPU of the device 24 and the measured value R San bling input from the right distance measuring sensor 30R (the sampling values and R 1), the measured value L of the right distance measuring sensors 30L San Bring input (sampled value is referred to as L 1), calculates the amount of lateral deviation ΔW 1 = R 1 -L 1. Subsequently, when the unmanned towing vehicle 20 travels for a unit time (the traveling distance during this time is assumed to be a constant value a), the measurement value R 2 of the right distance measurement sensor 30R and the measurement value L 2 of the right distance measurement sensor 30L.
To calculate the lateral shift amount ΔW 2 = R 2 −L 2 . The arithmetic processing unit CPU determines whether (A) ΔW 1 and ΔW 2 are within a preset allowable range, and (B) if both ΔW 1 and ΔW 2 are within the allowable range, The vehicle 10 has its center line O as shown in FIG.
It is determined that the vehicle 1 is stopped in a posture on the guide line 22, and the unmanned towing vehicle 20 is caused to travel in the posture at the start of the undercut. (C) If one of ΔW 1 and ΔW 2 exceeds the allowable range, the wagon vehicle 10 is displaced from the guide line 22, and the control of the unmanned towing vehicle 20 is switched from the guidance control to the program control. .
【0016】(1)△W1=△W2であると、例えば、
図2の(A)に示すように、ワゴン車10において、そ
の中心線01が誘導線22に対して△W1=△W2だけ
横ずれしているものと判定して、無人牽引車20の前後
輪を共に角度θKだけ操舵するとともに所要走行距離S
Kと所要走行速度VKを演算し、図2の(B)に示すよ
うに、無人牽引車20を斜行させる。(1) If △ W 1 = △ W 2 , for example,
As shown in FIG. 2A, in the wagon 10 , it is determined that the center line 01 of the wagon 10 is shifted laterally by 誘導 W 1 = △ W 2 with respect to the guide line 22, and Both the front and rear wheels are steered by an angle θ K and the required traveling distance S
K and the required traveling speed VK are calculated, and the unmanned towing vehicle 20 is skewed as shown in FIG.
【0017】(2)△R=R2−R1、△L=L2−L
1が0でない場合には、例えば、図2の(C)に示すよ
うに、ワゴン車10が誘導線22に対して回転している
と判定して、ずれ角θ1を次式により演算し、 ずれ角θ 1 =tan(a/(R 2 −R 1 ))=tan
(a/(L 2 −L 1 )) 無人牽引車20の前後輪を相互に逆方向、かつ共に角度
θ1だけ操舵して単位時間だけ走行させたのち(この間
の走行距離をa2とする)、右測距センサ30Rの測定
値R3、左測距センサ30Lの測定値L3を入力し、再
びずれ角θ 2 =tan(a 2 /(R 3 −R 2 ))=ta
n(a 2 /(L 3 −L 2 ))を演算して、無人牽引車2
0の前後輪を相互に逆方向、かつ共に角度θ 2 だけ操舵
して単位時間だけ走行させる。この動作をRn=Ln、
θn=0になるまで繰り返す。(2) ΔR = R 2 −R 1 , ΔL = L 2 −L
If 1 is not 0, for example, as shown in (C) of FIG. 2, it is determined that the wagon 10 is rotated relative to the guide wire 22, the deviation angle theta 1 is calculated by the following equation Deviation angle θ 1 = tan (a / (R 2 −R 1 )) = tan
(A / (L 2 −L 1 )) After the front and rear wheels of the unmanned towing vehicle 20 are driven in the opposite directions, and both are steered by the angle θ 1 , and run for a unit time (the running distance between these is defined as a 2 ) ), the measured value R 3 of the right distance-measuring sensors 30R, enter the measured value L 3 of the left distance measuring sensor 30L, again shift angle θ 2 = tan (a 2 / (R 3 -R 2)) = ta
n (a 2 / (L 3 −L 2 )) to calculate the unmanned towing vehicle 2
Reverse the front and rear wheels to each other 0, and allowed to travel by both the angle theta 2 steering to unit time. This operation is called R n = L n ,
Repeat until θ n = 0.
【0018】このように、本実施例では、無人牽引車2
0がワゴン車10へのもぐり込みを開始すると、ワゴン
車10の誘導線22に対する姿勢のずれが検出され、無
人牽引車20の姿勢が誘導線22に対してワゴン車10
と同じずれになるように制御されるので、無人牽引車2
0を、その中心線をワゴン車10の中心線O1に一致さ
せて配車位置に停止させることができ、横ずれ量を前記
した許容範囲に容易に収めることが可能となる。As described above, in this embodiment, the unmanned towing vehicle 2
When the vehicle starts moving into the wagon vehicle 10, the deviation of the posture of the wagon vehicle 10 with respect to the guide line 22 is detected, and the posture of the unmanned towing vehicle 20 is shifted with respect to the guide line 22.
Is controlled to be the same as
0 can be stopped at the vehicle allocation position with its center line coinciding with the center line O1 of the wagon vehicle 10, and the amount of lateral displacement can easily be within the allowable range described above.
【0019】[0019]
【発明の効果】本発明は以上説明した通り、もぐり込み
開始後、ワゴン車の誘導線に対する姿勢のずれ量を無人
牽引車側で非接触方式により測定し、この測定データを
用いて無人牽引車の姿勢をワゴン車の姿勢に追従させる
ので、通行の邪魔になる前記したガイド等の機械的手段
を用いなくて済み、ワゴン車の製作精度を緩和すること
ができるので、その分、製作費が安価になる。As described above, the present invention measures the amount of deviation of the attitude of the wagon vehicle with respect to the guide line by the non-contact method on the unmanned tow vehicle side after the start of digging, and uses the measured data to perform the measurement. Is made to follow the position of the wagon car, so that there is no need to use mechanical means such as the above-mentioned guides that obstruct the passage, and the manufacturing accuracy of the wagon car can be reduced, so that the manufacturing cost is accordingly reduced. Become cheap.
【図1】本発明の実施例を示す一部破断平面図である。FIG. 1 is a partially broken plan view showing an embodiment of the present invention.
【図2】上記実施例の動作を説明するための無人牽引車
とワゴン車の関係を示す模式図である。FIG. 2 is a schematic diagram showing a relationship between an unmanned towing vehicle and a wagon vehicle for explaining the operation of the embodiment.
【図3】従来のワゴン車と無人牽引車の側面図である。FIG. 3 is a side view of a conventional wagon and an unmanned towing vehicle.
【図4】従来のワゴン車と無人牽引車の平面図である。FIG. 4 is a plan view of a conventional wagon vehicle and an unmanned towing vehicle.
【図5】従来のワゴン車と無人牽引車の正面図である。FIG. 5 is a front view of a conventional wagon vehicle and an unmanned towing vehicle.
【図6】従来のワゴン車と無人牽引車のピン連結機構を
示す図である。FIG. 6 is a diagram showing a conventional pin connection mechanism between a wagon vehicle and an unmanned towing vehicle.
【図7】ワゴン車と無人牽引車の停止精度を説明するた
めの図である。FIG. 7 is a diagram for explaining the stopping accuracy of the wagon vehicle and the unmanned towing vehicle.
【図8】無人牽引車の進行方向停止精度とワゴン車に対
する横方向余裕との関係を説明するための図である。FIG. 8 is a diagram for explaining the relationship between the traveling direction stop accuracy of the unmanned towing vehicle and a lateral margin with respect to the wagon vehicle.
10 ワゴン車 11 自由輪 12 底板 13 ピン連結部 14 ピン受け孔 20 無人牽引車 21 操舵・駆動輪 22 誘導線 23 ガイドセンサ 24 制御装置 25 車体カバーの天板 26 突出しピン 27 ピン駆動部 30R、30L 測距センサ DESCRIPTION OF SYMBOLS 10 Wagon vehicle 11 Free wheel 12 Bottom plate 13 Pin connection part 14 Pin receiving hole 20 Unmanned towing vehicle 21 Steering / driving wheel 22 Guide wire 23 Guide sensor 24 Control device 25 Top plate of vehicle body cover 26 Protruding pin 27 Pin driving unit 30R, 30L Distance sensor
Claims (2)
の下にもぐり込んで当該ワゴン車とピン連結したのちワ
ゴン車を牽引する無人牽引車において、 この無人牽引車は、上記ワゴン車との車幅方向の左右車
間距離を測定するための無線式右測距センサと左測距セ
ンサを有し、両測距センサの出力をサンプリング入力し
て左右車間距離のずれ幅を検出し、かつ単位時間走行し
て後の距離情報をサンプリング入力し上記左右車間距離
のずれ幅との間で車体姿勢のずれ角度を算出し、これら
ずれ量が許容値を超えた場合には、上記誘導制御からプ
ログラム制御に切換えて、横ずれ時は、前後輪の操舵角
を同一にして斜行させ、車体姿勢のずれ時は、前後輪の
操舵角を上記算出したずれ角度分だけ相互に逆方向に操
舵し車体姿勢を修正する方向に走行させたことを特徴と
するワゴン車用無人牽引車のもぐり込み姿勢制御方法。1. An unmanned towing vehicle that pulls under a stopped wagon vehicle by means of guidance control, connects the wagon vehicle with a pin, and then tow the wagon vehicle. It has a wireless right ranging sensor and a left ranging sensor for measuring the distance between the left and right vehicles in the width direction, samples and inputs the outputs of both ranging sensors, detects the width of deviation between the left and right vehicles, and outputs a unit time Run
The distance information after sampling is input.
The deviation angle of the vehicle body posture is calculated with respect to the deviation width, and when the deviation amount exceeds an allowable value, the guidance control is switched to the program control, and in the case of a lateral deviation, the steering angles of the front and rear wheels are changed.
Skewed in the same direction.
The steering angle is steered in the opposite direction by the deviation angle calculated above.
A method of controlling a recessed posture of an unmanned towing vehicle for a wagon vehicle, wherein the vehicle is steered in a direction to correct a vehicle body posture .
らの音波もしくし光波を反射可能な側板で覆われている
ことを特徴とする請求項1に記載のワゴン車用無人牽引
車のもぐり込み姿勢制御方法。 2. The left and right sides of the wagon are provided with two distance measuring sensors.
These sound waves or light waves are covered by side plates that can reflect
The unmanned traction for a wagon vehicle according to claim 1, wherein
A method for controlling the car's recessed posture.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP03270766A JP3143802B2 (en) | 1991-10-18 | 1991-10-18 | Posture control method for unmanned towing vehicle for wagon vehicles |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP03270766A JP3143802B2 (en) | 1991-10-18 | 1991-10-18 | Posture control method for unmanned towing vehicle for wagon vehicles |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05108155A JPH05108155A (en) | 1993-04-30 |
JP3143802B2 true JP3143802B2 (en) | 2001-03-07 |
Family
ID=17490700
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP03270766A Expired - Fee Related JP3143802B2 (en) | 1991-10-18 | 1991-10-18 | Posture control method for unmanned towing vehicle for wagon vehicles |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3143802B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4280940B2 (en) | 2007-09-06 | 2009-06-17 | トヨタ自動車株式会社 | Automatic transfer device |
JP5526390B2 (en) * | 2010-12-08 | 2014-06-18 | 株式会社ダイフク | Carriage type transfer device and steering control method thereof |
CN113370894B (en) * | 2021-07-21 | 2023-04-07 | 贵州詹阳动力重工有限公司 | Tractor body positioning system |
-
1991
- 1991-10-18 JP JP03270766A patent/JP3143802B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH05108155A (en) | 1993-04-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20110153135A1 (en) | Travel control device for unmanned conveyance vehicle | |
JP3143802B2 (en) | Posture control method for unmanned towing vehicle for wagon vehicles | |
JPH10171535A (en) | Automated guided vehicle | |
JP4010247B2 (en) | Parking assistance device | |
JP3018658B2 (en) | Posture control method for unmanned towing vehicle for wagon vehicles | |
JP3666097B2 (en) | Vehicle connection method | |
JP3275364B2 (en) | Reverse traveling control method for automatic guided vehicles | |
JP2711837B2 (en) | Travel control device for automatically traveling vehicles | |
JP2000330635A (en) | Automatic guided vehicle | |
JP2840943B2 (en) | Mobile robot guidance device | |
JPH0823769B2 (en) | Unmanned guided vehicle | |
JPH07102809B2 (en) | Unloading device for unmanned material handling work vehicle and unloading method | |
JPS6049407A (en) | Unmanned truck | |
JPS6288006A (en) | Obstacle evading device for unmanned conveyance vehicle | |
JP2676831B2 (en) | Automatic guided vehicle position detection device | |
JPH02236707A (en) | Travel controller for unmanned vehicle | |
JPH0517703U (en) | Automated guided vehicle guidance device | |
JPH0749522Y2 (en) | Guidance signal detector for unmanned vehicles | |
JPH05150832A (en) | Control method for unattended work vehicle | |
JPS62288909A (en) | Distance measuring instrument for unattended carriage | |
JPH04257006A (en) | Course out detecting method for unmanned vehicle | |
JPH02300803A (en) | Unmanned mobile body | |
JP3804142B2 (en) | Unmanned vehicle steering control method | |
JP3976309B2 (en) | Unmanned vehicle | |
JPH04108206U (en) | Position correction detection device for autonomous unmanned vehicles |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |