JPH0572739B2 - - Google Patents

Info

Publication number
JPH0572739B2
JPH0572739B2 JP58039471A JP3947183A JPH0572739B2 JP H0572739 B2 JPH0572739 B2 JP H0572739B2 JP 58039471 A JP58039471 A JP 58039471A JP 3947183 A JP3947183 A JP 3947183A JP H0572739 B2 JPH0572739 B2 JP H0572739B2
Authority
JP
Japan
Prior art keywords
layer
type
formula
amorphous
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58039471A
Other languages
Japanese (ja)
Other versions
JPS59165468A (en
Inventor
Minoru Takamizawa
Yasushi Kobayashi
Akira Hayashida
Takaaki Shimizu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP58039471A priority Critical patent/JPS59165468A/en
Publication of JPS59165468A publication Critical patent/JPS59165468A/en
Publication of JPH0572739B2 publication Critical patent/JPH0572739B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • H01L31/202Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials including only elements of Group IV of the Periodic System
    • H01L31/204Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials including only elements of Group IV of the Periodic System including AIVBIV alloys, e.g. SiGe, SiC
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、太陽電池用窓枠材の製造方法、特に
は非晶質シリコン太陽電池用の窓枠材の製造方法
に関するものである。 シリコン太陽電池については、近時単結晶シリ
コンに代えて非晶質シリコンを使用したものが開
発され、シヨツトキーバリヤー型、pin型、MIS
型、ヘテロ接合型のものなどの研究が行なわれて
いるが、このpin型太陽電池についてはそのp型
またはn型の非晶質シリコンはキヤリヤー寿命が
短かく、また光の吸収係数が1層に比べて大きい
ことから、光を照射する側に位置する層、すなわ
ち窓枠材であるp層での光の吸収ロスが大きいと
いう問題点があり、この改良のためにそのn層側
から光を照射するという方法も試みられている
が、これもp層での光の吸収ロスが若干有利とさ
れる程度であり、光の吸収ロスがあるという不利
は解決されていない。 そのため、この非晶質シリコンに代えてシラ
ン、フツ化シランまたはそれらの誘導体と炭化水
素化合物、フツ化炭化水素化合物、アルキルシラ
ン、フツ化アルキルシランまたはそれらの誘導体
との混合ガスをプラズマ気相沈積法(以下CVD
法という)で処理して得た非晶質SiXC1-XをPH3
またはB2H6でドープした薄膜をpin接合光電素子
のn層またはn層の少なくとも一方に用いること
によつて、p型で7.2%、n型で7.3%の変換効率
を示す太陽電池を得るという方法が提案されてい
る(特開昭57−126175号公報参照)。しかし、こ
の方法には、始発材として使用されるシラン
(SiH4)が空気中で発火性をもつ取扱いの難しい
もので、その廃棄ガス処理にも問題をもつもので
あり、これはまたフツ化シラン(SiFnH4-n)と
共に工業的に高価格のものであるという不利な点
があり、この方法にはさらにこれらのガスと炭素
源としての炭化水素化合物との混合モル比の選
定、保持が必要とされるという難点がある。 本発明はこのような不利を解決した非晶質SiX
C1-X薄膜をもつ太陽電池用窓枠材の製造方法に関
するものであり、これは非晶質シリコン光電素子
のp層またはn層の少なくとも一方を、分子中に
少なくとも1ケの≡SiH結合をもち、かつSi原子
が2〜3ケからなる有機けい素化合物のプラズマ
CVD法で得た式SiXC1-X(xは0.2〜0.8)で示され
る非晶質炭化けい素としてなることを特徴とする
ものである。 これを説明すると、本発明者らはさきに分子中
にSiX結合(xはハロゲン原子または酸素原子)
を含まない有機けい素化合物またはこの有機けい
素化合物と炭化水素化合物とをプラズマCVD法
で処理して基体上に非晶質の炭化けい素被覆を行
なうという方法を開発した(特開昭57−228504
号)が、このようにして形成させた非晶質炭化け
い素被膜についてさらに検討を行なつたところ、
このプラズマCVD法処理に当つてこの有機けい
素化合物にPH3、B2H6などのドープ剤を含有さ
せればp型またはn型にドープされた式SiXC1-X
で示される炭化けい素薄膜を容易に得ることがで
き、これを光電素子のp層またはn層とすれば変
換効率の高い太陽電池を工業的に容易に、かつ安
価に製造できることを見出し、これらの反応条件
などについても検討を行ない本発明を完成させ
た。 本発明を実施するたにあたつては、例えば基体
物質(ガラス板等)上にSnO2等の透明電極をつ
け、その上に分子中に少なくとも1ケの≡Si−H
結合を有し、かつSi原子が2〜3ケからなる有機
けい素化合物および所定のドープ剤をプラズマ気
相沈積法でp型又はn型のSiXC1-Xで示される非
晶質炭化けい素層を必要な厚さに蒸着し、この上
にi層として非晶質シリコン層、さらにn型また
はp型層としてドープ材を含有する非晶質シリコ
ン層または非晶質SiXC1-X層をプラズマ気相沈積
法によりもうけ、最後にアルミ電極をオーム接触
させて光電素子を製造することができる。 本発明の目的である良質な非晶質のSiXC1-X
膜を蒸着成長させるためには、ここに使用する有
機けい素化合物が、反応器中にガス状で導入され
るので、これは揮発性のものとされるが、このも
のはその分子中に少なくとも1ケの≡SiH結合を
含み、かつSi原子が2〜3ケからなるものとする
ことが必要であり、その分子中に分解性のわるい
SiX結合を含まないものとすることが望ましい。
これらの有機けい素化合物としては、例えば一般
式R2o+2Sio(ここにRは水素原子またはメチル基、
エチル基、プロピル基、フエニル基、ビニル基か
ら選ばれる1価炭化水素基、nは2〜3の正数)
で示されるジシランまたはポリシラン類、および
一般式
The present invention relates to a method for manufacturing a window frame material for a solar cell, particularly a method for manufacturing a window frame material for an amorphous silicon solar cell. Regarding silicon solar cells, those using amorphous silicon instead of single crystal silicon have recently been developed, and there are various types such as shot key barrier type, pin type, and MIS.
Research is being conducted on pin-type and heterojunction type solar cells, but the p-type or n-type amorphous silicon has a short carrier life, and the light absorption coefficient of the single layer is low. Since this is larger than A method of irradiating with light has also been attempted, but this method is only considered to have a slight advantage in light absorption loss in the p layer, and the disadvantage of light absorption loss has not been solved. Therefore, instead of this amorphous silicon, a mixed gas of silane, fluorinated silane, or their derivatives, and a hydrocarbon compound, fluorinated hydrocarbon compound, alkyl silane, fluorinated alkyl silane, or their derivatives is deposited in a plasma vapor phase. Act (hereinafter referred to as CVD)
The amorphous Si X C 1-X obtained by
Alternatively, by using a thin film doped with B 2 H 6 in the n layer or at least one of the n layers of a pin junction photoelectric device, a solar cell exhibiting a conversion efficiency of 7.2% for p-type and 7.3% for n-type can be obtained. A method has been proposed (see Japanese Patent Laid-Open No. 126175/1983). However, this method has problems because the silane (SiH 4 ) used as the starting material is flammable in the air and is difficult to handle, and there are also problems in the disposal of its waste gas. Along with silane (SiF n H 4-n ), it has the disadvantage of being industrially expensive; this method also requires the selection of the molar ratio of these gases and the hydrocarbon compound as carbon source; The drawback is that retention is required. The present invention solves these disadvantages by using amorphous Si
This relates to a method for manufacturing a window frame material for solar cells having a C 1-X thin film, and this method involves forming at least one of the p-layer or n-layer of an amorphous silicon photoelectric device with at least one ≡SiH bond in the molecule. plasma of an organosilicon compound containing 2 to 3 Si atoms.
It is characterized by being formed as amorphous silicon carbide expressed by the formula Si X C 1-X (x is 0.2 to 0.8) obtained by the CVD method. To explain this, the inventors first discovered that SiX bonds (x is a halogen atom or an oxygen atom) in the molecule.
We have developed a method of coating amorphous silicon carbide on a substrate by treating an organosilicon compound that does not contain carbon dioxide or this organosilicon compound and a hydrocarbon compound using a plasma CVD method (Japanese Unexamined Patent Application Publication No. 1989-1999). 228504
No.) further investigated the amorphous silicon carbide film formed in this way and found that
In this plasma CVD process, if a dopant such as PH 3 or B 2 H 6 is contained in the organosilicon compound, the formula Si X C 1-X doped to p-type or n-type
It was discovered that a silicon carbide thin film represented by the formula can be easily obtained, and that if it is used as the p-layer or n-layer of a photoelectric element, a solar cell with high conversion efficiency can be manufactured industrially easily and at low cost. The present invention was completed by studying the reaction conditions and the like. In carrying out the present invention, for example, a transparent electrode such as SnO 2 is attached on a substrate material (glass plate, etc.), and at least one ≡Si-H in the molecule is placed on the transparent electrode.
Amorphous carbonization represented by p-type or n - type Si A silicon layer is deposited to a required thickness, and on top of this is an amorphous silicon layer as an i-layer, and an amorphous silicon layer containing a dopant or amorphous Si X C 1 as an n-type or p-type layer. -X layer is deposited by plasma vapor deposition, and finally an aluminum electrode is brought into ohmic contact to produce a photoelectric device. In order to deposit and grow a high-quality amorphous Si is considered to be volatile, but it must contain at least one ≡SiH bond in its molecule and consist of 2 to 3 Si atoms. Poor degradability
It is preferable that it does not contain SiX bonds.
These organosilicon compounds include, for example, the general formula R 2o+2 Si o (where R is a hydrogen atom or a methyl group,
Monovalent hydrocarbon group selected from ethyl group, propyl group, phenyl group, and vinyl group, n is a positive number of 2 to 3)
Disilanes or polysilanes represented by and the general formula

【式】(ここにRは前記に同じ、 R1はメチレン基、エチレン基またはフエニレン
基、mは1〜2の正数)で示されるシルアルキレ
ン化合物またはシルフエニレン化合物あるいは同
一分子中にその両者の主骨格をもつ化合物などが
あげられる。この有機けい素化合物としては次式
[Formula] (where R is the same as above, R 1 is a methylene group, ethylene group or phenylene group, m is a positive number of 1 to 2) or a silphenylene compound or both in the same molecule. Examples include compounds with a main skeleton. This organosilicon compound has the following formula:

【式】【formula】

【式】【formula】

【式】【formula】

【式】【formula】

【式】【formula】

【式】【formula】

【式】【formula】

【式】【formula】

【式】 で示されるジシラン、ポリシランが例示され、こ
れらはその1種または2種かあるいは2種以上の
混合物として使用される。これについてはメチル
ポリシラン類を350℃以上で熱分解させて得られ
るメチルハイドロジエンジシラン類、または直接
法と呼ばれているメチルクロロシランの製造時に
副生されるメチルクロロジシラン類の還元により
得られる一般式(CH3aSibCH(ここにb=2〜
3、2b+1≧a≧1、2b+1≧c≧1、a+c
=2b+2)で示されるメチルハイドロジエンジ
シラン類と、トリシラン類とすることがよく、こ
れによれば工業的に安価に、しかもプラズマ
CVD法で好ましい組成をもつ非晶質のSiXC1-X
得ることができるという有利性が与えられる。 これらの有機けい素化合物は、プラズマ処理に
よつてSiXC1-Xで示される炭化けい素となり、こ
れが基体物質表面に被着されるのであるが、この
x値は0.2〜0.8、好ましくは0.3〜0.7とすること
がよい。なお、このSiXSC1-Xの被覆層は太陽電池
用としてp型層またはn型層にドープしたものと
されるが、これをp型層とする場合にはこの有機
けい素化合物に周期律表b族元素の化合物、例
えばB2H6がSiXC1-Xの中に0.001〜10原子%、好
ましくは0.005〜2.0原子%含まれるように添加す
ればよく、これをn型層とするためには周期律表
Vb族元素の化合物例えばPH3がSiXC1-Xの中に
0.001〜10原子%、好ましくは0.005〜2.0原子%含
まれるように添加すればよい。 本発明の方法で製造されたSiXC1-Xの被覆層を
もつ基材は太陽電池の窓枠材として使用される
が、この太陽電池は例えば添付の第1図、第2図
に示されている。第1図に示されたものはガラス
層1、透明電極2、p型SiXC1-X層3、i型Si層
4、n型Si層5、アルミニウム電極6とから構成
されるp型層から受光する太陽電池であり、第2
図にはステンレス層11、p型Si層12、i型Si
層13、n型SiXC1-X層14、透明電極15で構
成されるn型層から受光する太陽電池が例示され
ている。なお、このp型またはn型にドープした
非晶質のSiXC1-Xをpin型接合光電素子の窓枠材と
して利用すれば、変換効率が大巾に改善されるこ
とはすでに提案されている通りである。 つぎに第3図は本発明で使用されるプラズマ
CVD装置の一例を示したものであるが、図に示
されているプラズマ反応器31には、その内部に
入力側電極32とアース電極33が設置されてお
り、これは系外の真空ポンプ34によつてトラツ
プ35を経て10トル以下の減圧以下に保持され、
この系内の真空度はセンサー36によつてピラニ
ー真空計37に記録される。アース電極33上に
は透明電極又は電極基板38がセツトされてお
り、これは外部のヒーター電源39によつて加熱
され、50〜500℃好ましくは100〜400℃の所定温
度に保持される。ついでp層−i層−n層または
n層−i層−p層の順でシランまたは上記有機け
い素化合物ガスが必要に応じてドープ剤および/
またはH2、He、Arなどのキヤリヤーガスと共に
導入され、10トル以下好ましくは0.05〜1トルの
ガス圧にそれぞれ調整した後、入力側電極32に
高周波電源40から10KHz〜100MHz、5W〜
100KWの高周波電力を印加して、系内に低温プ
ラズマ発生させ、基板上にp層−i層−n層また
はn層−i層−p層の順で非晶質Si層または非晶
質SiXC1-X層を形成させればよい。 要するに本発明の方法は、上記特殊な有機けい
素化合物のプラズマ処理で生成したSiXC1-Xで示
される非晶質の炭化けい素系化合物の皮膜を形成
させて太陽電池用の窓枠材を製造するものであ
り、これによれば始発材を取扱う上での危険性お
よび製造時における種々の条件設定などに困難性
を伴なわず、容易に太陽電池窓枠材としての好ま
しい特性をもつたものを、しかも安価に得ること
ができるし、この場合においてここに使用する有
機けい素化合物の種類、キヤリヤーガスの種類、
量、プラズマ発生条件などを調整すれば常に均一
組成のSiXC1-X層を5〜50Å/秒の成長速度で得
ることができる。 つぎに本発明方法の実施例をあげるが、例中に
おけるMeはメチル基を示したものである。 実施例 1 第3図に示した装置を使用し、このアース電極
上にSnO2透明電極のついたガラス基板を固定し
てこれを250℃に保つたのち、内圧を0.05トルに
まで真空排気し、ついでキヤリヤーガスとして
H2/Ar=1/1(容量比)の混合ガスを導入し
0.2トルとしてから、ここにB/SiCが0.1原子%
となるようにしたB2H6を含むテトラメチルジシ
ラン
Disilanes and polysilanes represented by the formula are exemplified, and these are used alone, in combinations of two or more, or as a mixture of two or more thereof. Regarding this, methylhydrodienedisilanes are obtained by thermally decomposing methylpolysilanes at 350℃ or higher, or general ones are obtained by reducing methylchlorodisilanes, which are by-produced during the production of methylchlorosilanes, which is called the direct method. Formula (CH 3 ) a Si b C H (where b=2~
3, 2b+1≧a≧1, 2b+1≧c≧1, a+c
=2b+2) Methylhydrodienedisilanes and trisilanes are often used, which are industrially inexpensive and plasma-compatible.
The CVD method offers the advantage of being able to obtain amorphous Si X C 1-X with a preferred composition. These organosilicon compounds become silicon carbide represented by Si X C 1-X by plasma treatment, and this is deposited on the surface of the base material, and this x value is 0.2 to 0.8, preferably It is preferable to set it to 0.3 to 0.7. It should be noted that this Si A compound of a group b element in the Table of Contents, for example B 2 H 6 , may be added to Si X C 1-X in an amount of 0.001 to 10 at. In order to do this, the periodic table
Compounds of group Vb elements such as PH 3 are present in Si X C 1-X
It may be added in an amount of 0.001 to 10 at%, preferably 0.005 to 2.0 at%. The base material having a coating layer of Si X C 1-X produced by the method of the present invention is used as a window frame material for a solar cell. has been done. The one shown in FIG. 1 is a p-type device consisting of a glass layer 1, a transparent electrode 2, a p-type Si X C 1-X layer 3, an i-type Si layer 4, an n-type Si layer 5, and an aluminum electrode 6. It is a solar cell that receives light from the second layer.
The figure shows a stainless steel layer 11, a p-type Si layer 12, an i-type Si layer
A solar cell that receives light from an n-type layer composed of a layer 13, an n-type Si X C 1-X layer 14, and a transparent electrode 15 is illustrated. It has already been proposed that conversion efficiency can be greatly improved if this p-type or n-doped amorphous Si X C 1-X is used as a window frame material for pin-type junction photoelectric devices. That's exactly what it says. Next, Figure 3 shows the plasma used in the present invention.
This is an example of a CVD device. The plasma reactor 31 shown in the figure has an input side electrode 32 and a ground electrode 33 installed inside it, and this is connected to a vacuum pump 34 outside the system. is maintained at a vacuum of less than 10 torr through trap 35,
The degree of vacuum in this system is recorded by a sensor 36 on a Pirani vacuum gauge 37. A transparent electrode or electrode substrate 38 is set on the ground electrode 33, which is heated by an external heater power source 39 and maintained at a predetermined temperature of 50 to 500°C, preferably 100 to 400°C. Then, silane or the above organosilicon compound gas is applied as a dopant and/or in the order of p layer-i layer-n layer or n layer-i layer-p layer as necessary.
Alternatively, the gas is introduced together with a carrier gas such as H 2 , He, Ar, etc., and after adjusting the gas pressure to 10 torr or less, preferably 0.05 to 1 torr, a high frequency power source 40 of 10 KHz to 100 MHz, 5 W to
A high-frequency power of 100KW is applied to generate low-temperature plasma in the system, and an amorphous Si layer or amorphous Si is formed on the substrate in the order of p layer - i layer - n layer or n layer - i layer - p layer. What is necessary is to form an X C 1-X layer. In short, the method of the present invention forms a film of an amorphous silicon carbide compound represented by Si According to this method, it is possible to easily obtain favorable characteristics as a solar cell window frame material without the danger of handling the starting material or the difficulty in setting various conditions during manufacturing. In this case, the type of organosilicon compound used here, the type of carrier gas,
By adjusting the amount, plasma generation conditions, etc., it is possible to always obtain a Si x C 1-X layer with a uniform composition at a growth rate of 5 to 50 Å/sec. Next, examples of the method of the present invention will be given, in which Me represents a methyl group. Example 1 Using the apparatus shown in Figure 3, a glass substrate with a SnO 2 transparent electrode was fixed on the ground electrode and maintained at 250°C, and then the internal pressure was evacuated to 0.05 torr. , then as a carrier gas
A mixed gas of H 2 /Ar = 1/1 (volume ratio) was introduced.
From 0.2 Torr, B/SiC is 0.1 atomic% here.
Tetramethyldisilane containing B 2 H 6 so that

【式】(B.P.=86〜88℃)をキヤリヤ ーガスの一部を用いて導入して系内を0.35トルと
した。 つぎに、この入力側電極に13.56MHz、30Wの
高周波電極を印加して系内にプラズマを発生させ
て、このSnO2電極上にBドープされたp型のSiX
C1-X層を180Åの厚さで生形し、この上に同様の
条件でSiH4のプラズマ処理によるi型Si層を
6000Åの厚さで、さらにその上にPH3でドープし
たn型Si層を500Åの厚さで堆積したのち、これ
にアルミニウム層を蒸着させて太陽電池を作り、
これについてAM−1(100MW/cm2)の光照射の
ソーラーシユミレーターにより、短絡電流
(Isc)、解放電圧(Voc)、フイルフアクター
(FF)を測定し、変換効率を求めたところ、これ
は6.7%の値を示した。 なお、このSiXC1-X層のx値を測定するため、
上記の同じ条件で作成したSiXC1-X層について
ESCAによる電子分光分析を行なつたところ、こ
のx値は0.36であつた。 実施例 2〜8 実施例1と同様の装置を使用し、蒸溜で分離精
製したテトラメチルジシラン
[Formula] (BP=86-88°C) was introduced using a portion of the carrier gas to bring the inside of the system to 0.35 torr. Next, a 13.56 MHz, 30 W high frequency electrode is applied to this input side electrode to generate plasma in the system, and B - doped p-type Si
A C 1-X layer was formed to a thickness of 180 Å, and an i-type Si layer was formed on top of it by SiH 4 plasma treatment under the same conditions.
After depositing an n-type Si layer doped with PH 3 to a thickness of 500 Å on top of a 6000 Å thick layer, an aluminum layer is deposited on top of this to form a solar cell.
Regarding this, we measured the short circuit current (Isc), open voltage (Voc), and film factor (FF) using a solar simulator with AM-1 (100 MW/cm 2 ) light irradiation, and determined the conversion efficiency. showed a value of 6.7%. In addition, in order to measure the x value of this Si X C 1-X layer,
Regarding the Si X C 1-X layer created under the same conditions above
Electron spectroscopic analysis using ESCA revealed that the x value was 0.36. Examples 2 to 8 Tetramethyldisilane separated and purified by distillation using the same equipment as in Example 1

【式】(B.P.=85〜88℃)、 ジメチルジシラン[Formula] (B.P.=85-88℃), dimethyldisilane

【式】(B.P.= 48〜49℃)、ペンタメチルトリシラン[Formula] (B.P.= 48-49℃), pentamethyltrisilane

【式】(B.P.=138〜143℃)、 テトラメチルジシルメチレン[Formula] (B.P.=138-143℃), Tetramethyldisylmethylene

【式】(B.P.=102〜104℃)、 トリメチルトリシラン[Formula] (B.P.=102~104℃), Trimethyltrisilane

【式】(B. P.=113〜117℃)、メチルジシラン[Formula] (B. P.=113-117℃), methyldisilane

【式】(B.P.=15〜16℃)からなる 第1表に示した有機けい素化合物の導入量、キヤ
リヤーガスの組成、導入量を変えて同様の条件下
でプラズマ処理を行なつてガラス−透明電極−p
型SiXC1-X層−i型Si層−n型Si層−Al電極から
なる太陽電池を作り、その特性をしらべたとこ
ろ、第1表に併記したような結果が得られた。
[Formula] (BP=15~16°C) The amount of introduced organosilicon compound shown in Table 1, the composition of the carrier gas, and the amount of introduced were changed and plasma treatment was performed under the same conditions to make the glass transparent. Electrode-p
When a solar cell consisting of a type Si X C 1-X layer, an i-type Si layer, an n-type Si layer, and an Al electrode was prepared and its characteristics were investigated, the results shown in Table 1 were obtained.

【表】 実施例 9 第3図に示した装置を使用し、このアース電極
上に厚さ1mmのステンレス板を固定して200℃に
加熱し、内圧を0.1トルにまで真空排気してから
キヤリヤーガスとしてのH2/Ar=1/1(容量
比)のガスを導入して内圧を0.25トルとし、つい
でここにB2H6を1モル%含有するSiH4ガスを導
入して内圧を0.4トルとした。 つぎに、この入力側電極に13.56MHz、50Wの
高周波電力を印加して系内にプラズマを発生させ
て、このステンレス板上に約200Åのp型Si層を
作つてから、この上にドープしていないSiH4
導入によつてi型Si層5000Åを堆積させ、さらに
この上にPH4を1.0モル%含有するジメチルシラ
[Table] Example 9 Using the apparatus shown in Fig. 3, a 1 mm thick stainless steel plate was fixed on the ground electrode, heated to 200°C, and the internal pressure was evacuated to 0.1 torr, and then the carrier gas was A gas of H 2 /Ar = 1/1 (volume ratio) was introduced to bring the internal pressure to 0.25 torr, and then SiH 4 gas containing 1 mol% of B 2 H 6 was introduced to bring the internal pressure to 0.4 torr. And so. Next, a high-frequency power of 13.56 MHz and 50 W is applied to this input side electrode to generate plasma in the system to form a p-type Si layer of about 200 Å on this stainless steel plate, and then dope the p-type Si layer on this stainless steel plate. An i-type Si layer of 5000 Å was deposited by introducing SiH 4 , which was not added, and then dimethylsilane containing 1.0 mol% of PH 4 was further deposited on top of this.

【式】(B.P.=48〜49℃)をキヤリ ヤーガスの一部を用いて導入し、同様に処理して
250Åのn型SiXC1-X層を形成させたのち、これに
ITO膜を電子ビーム蒸着で付着させて太陽電池を
作り、この変換効果を測定したところ、これは
7.1%の値を示した。 なお、このSiXC1-X層についてのX値を実施例
1と同様にして測定したところ、これは0.56であ
つた。 実施例 10〜13 実施例9における有機けい素化合物を蒸溜で分
離精製したテトラメチルジシラン(前出)、ペン
タメチルトリシラン(前出)、メチルジシラン
(前出)とし、その導入量、キヤリヤーガスの組
成、導入量を第2表のように変え、同様に処理し
てステンレンス板−p型Si層−i型Si層−n型
SiXC1-X層−透明電極層からなる太陽電池を作り、
これらの変換効率をしらべたところ、第2表に併
記したとおりの結果が得られた。
[Formula] (BP=48~49℃) was introduced using a part of the carrier gas and treated in the same way.
After forming a 250 Å n-type Si X C 1-X layer,
When we fabricated solar cells by depositing ITO films by electron beam evaporation and measured the conversion effect, we found that
It showed a value of 7.1%. Note that when the X value of this Si X C 1-X layer was measured in the same manner as in Example 1, it was 0.56. Examples 10 to 13 The organosilicon compound in Example 9 was separated and purified by distillation into tetramethyldisilane (mentioned above), pentamethyltrisilane (mentioned above), and methyldisilane (stated above), and the amount introduced and the amount of carrier gas The composition and amount introduced were changed as shown in Table 2, and processed in the same manner to form a stainless steel plate - p-type Si layer - i-type Si layer - n-type.
Create a solar cell consisting of Si X C 1-X layer - transparent electrode layer,
When these conversion efficiencies were examined, the results shown in Table 2 were obtained.

【表】【table】 【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図は本発明方法で作つたSiXC1-X
層を有する太陽電池の縦断面要図で、第1図はp
型層を受光面とするもので、第2図はn型層を受
光面とするものであり、第3図は本発明方法を実
施するためのプラズマ反応装置の縦断面要図を示
したものである。 1……ガラス層、2,15……透明電極層、3
……p型SiXC1-X層、4,13……i型Si層、5
……n型Si層、6,11……電極層、12……p
型Si層、14……n型SiXC1-X層、31……プラ
ズマ反応器、32……真空ポンプ、38……基
体、39……ヒーター、40……高周波電源、4
1,44,46……容器。
Figures 1 and 2 show Si X C 1-X produced by the method of the present invention.
Fig. 1 is a longitudinal cross-sectional diagram of a solar cell having layers, and
The type layer serves as the light-receiving surface, and FIG. 2 shows the n-type layer as the light-receiving surface. FIG. 3 shows a longitudinal cross-sectional view of a plasma reactor for carrying out the method of the present invention. It is. 1... Glass layer, 2, 15... Transparent electrode layer, 3
... p-type Si X C 1-X layer, 4, 13 ... i-type Si layer, 5
... n-type Si layer, 6, 11 ... electrode layer, 12 ... p
type Si layer, 14... n-type Si X C 1-X layer, 31... plasma reactor, 32... vacuum pump, 38... substrate, 39... heater, 40... high frequency power supply, 4
1, 44, 46...container.

Claims (1)

【特許請求の範囲】 1 非晶質シリコン光電素子のp層、n層の少な
くとも一方を、分子中に少なくとも1ケの≡SiH
結合をもち、かつSi原子が2〜3ケからなる有機
けい素化合物のプラズマ気相沈積法で得た式 SiXC1-X(ここにXは0.2〜0.8)で示される非晶質
炭化けい素としてなることを特徴とする太陽電池
用窓枠材の製造方法。 2 有機けい素化合物が一般式(CH3aSibHc(こ
こにb=2〜3、2b+1≧a≧1、2b+1≧C
≧1、a+c=2b+2)で示されるメチルハイ
ドロジエンジシラン、トリシランである特許請求
の範囲の第1項記載の太陽電池用窓枠材の製造方
法。
[Claims] 1. At least one of the p-layer and n-layer of an amorphous silicon photoelectric device is composed of at least one ≡SiH in the molecule.
Amorphous carbonization with the formula Si A method for producing a window frame material for solar cells, characterized in that it is made of silicon. 2 Organosilicon compounds have the general formula (CH 3 ) a Si b H c (where b=2 to 3, 2b+1≧a≧1, 2b+1≧C
≧1, a+c=2b+2) The method for producing a window frame material for a solar cell according to claim 1, wherein the methylhydrodienedisilane or trisilane is represented by 1, a+c=2b+2).
JP58039471A 1983-03-10 1983-03-10 Manufacture of window frame material for solar battery Granted JPS59165468A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58039471A JPS59165468A (en) 1983-03-10 1983-03-10 Manufacture of window frame material for solar battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58039471A JPS59165468A (en) 1983-03-10 1983-03-10 Manufacture of window frame material for solar battery

Publications (2)

Publication Number Publication Date
JPS59165468A JPS59165468A (en) 1984-09-18
JPH0572739B2 true JPH0572739B2 (en) 1993-10-12

Family

ID=12553976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58039471A Granted JPS59165468A (en) 1983-03-10 1983-03-10 Manufacture of window frame material for solar battery

Country Status (1)

Country Link
JP (1) JPS59165468A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3041659U (en) * 1997-03-19 1997-09-22 わかばプランニング株式会社 Mail order envelope set

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62113482A (en) * 1985-11-12 1987-05-25 Sanyo Electric Co Ltd Photovoltaic device
JP4730678B2 (en) * 2000-04-05 2011-07-20 Tdk株式会社 Photovoltaic element manufacturing method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5892217A (en) * 1981-11-28 1983-06-01 Semiconductor Energy Lab Co Ltd Manufacture of semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5892217A (en) * 1981-11-28 1983-06-01 Semiconductor Energy Lab Co Ltd Manufacture of semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3041659U (en) * 1997-03-19 1997-09-22 わかばプランニング株式会社 Mail order envelope set

Also Published As

Publication number Publication date
JPS59165468A (en) 1984-09-18

Similar Documents

Publication Publication Date Title
JP2539916B2 (en) Photovoltaic element
US4683147A (en) Method of forming deposition film
JP2533639B2 (en) Method for producing amorphous silicon doped with P-type carbon
JPH0513347A (en) Formation of deposited film
JP2000031066A (en) Method for forming silicon film and manufacture of solar battery
JPH06103667B2 (en) Method for producing hydrogenated amorphous silicon alloy, semiconductor device and method for producing the same
JP2692091B2 (en) Silicon carbide semiconductor film and method for manufacturing the same
JPH0572739B2 (en)
JPH0544198B2 (en)
JPH0142125B2 (en)
US4826778A (en) Process for the preparation of a PIN opto-electric conversion element
JPH07130661A (en) Method of forming amorphous silicon oxide thin film
JP2575397B2 (en) Method for manufacturing photoelectric conversion element
JP3040247B2 (en) Manufacturing method of silicon thin film
JPH0639702B2 (en) Deposited film formation method
JPH03284882A (en) Semiconductor thin film and manufacture thereof
JPH0815220B2 (en) Method for manufacturing photoelectric conversion element
JP2723548B2 (en) Formation method of carbon-containing silicon microcrystalline thin film
JP2547741B2 (en) Deposition film manufacturing equipment
JP2726676B2 (en) Formation method of silicon carbide microcrystalline thin film
JPH0612835B2 (en) Manufacturing method of photoelectric conversion element
JP2543498B2 (en) Semiconductor thin film
Pernisz et al. Preparation of solar-grade amorphous silicon from fluorinated silanes
JPH0612836B2 (en) Method for manufacturing photoelectric conversion element
JPH0815219B2 (en) Method for manufacturing photoelectric conversion element