JPH0570237A - Production of silicon nitride sintered body - Google Patents

Production of silicon nitride sintered body

Info

Publication number
JPH0570237A
JPH0570237A JP4043964A JP4396492A JPH0570237A JP H0570237 A JPH0570237 A JP H0570237A JP 4043964 A JP4043964 A JP 4043964A JP 4396492 A JP4396492 A JP 4396492A JP H0570237 A JPH0570237 A JP H0570237A
Authority
JP
Japan
Prior art keywords
silicon nitride
partial pressure
sintered body
equilibrium
silica
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4043964A
Other languages
Japanese (ja)
Inventor
Tatsuto Takahashi
達人 高橋
Kazuya Yabuta
和哉 薮田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Publication of JPH0570237A publication Critical patent/JPH0570237A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To solve the problem that the strength of a sintered body is lowered in service environment by the formation of a liq. phase and to obtain a sintered body having high strength at high temp. as a high temp. structural material. CONSTITUTION:When a molded body consisting of silicon nitride powder with a silica coating film formed on at least the surface and a sintering aid is sintered, the silica coating film is removed immediately before sintering and a silicon nitride sintered body is produced. The film removal is carried out by heat treatment in the temp. range of 1,200-1,700 deg.C in a nonoxidizing atmosphere.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高温構造用材料の分野
において有用な窒化珪素焼結体の製造方法に関する。さ
らに詳しくは、高温強度を改善しうる窒化珪素焼結体の
製造工程の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a silicon nitride sintered body useful in the field of high temperature structural materials. More specifically, the present invention relates to improvement of a manufacturing process of a silicon nitride sintered body which can improve high temperature strength.

【0002】[0002]

【従来の技術】窒化珪素(Si34)焼結体は耐熱性、耐
衝撃性、破壊靭性及び強度に優れており、ガスタービン
部品やディーゼルエンジンの部品など高温での強度を要
求される部位に使用されている。この焼結体の高温強度
を発現、維持向上させるために種々の検討がなされてい
る。
2. Description of the Related Art Sintered silicon nitride (Si 3 N 4 ) is excellent in heat resistance, impact resistance, fracture toughness and strength, and is required to have high strength at high temperatures such as gas turbine parts and diesel engine parts. Used in parts. Various studies have been made to develop, maintain and improve the high temperature strength of this sintered body.

【0003】窒化珪素は共有結合性が高いため容易に固
相焼結できず助剤を加え、焼成温度で液相を生成させ緻
密化する液相焼結法が一般に行われている。そのため、
得られる焼結体は粒界に液相がガラス化したガラス相を
持ち、高温強度をはじめ高温クリープはこの粒界に存在
するガラス相に依存していた。これに対し、このガラス
相の組成を制御し、あるいは熱処理によりガラス相を結
晶化することあるいはガラス相そのものの耐熱性をあげ
ることが提案されている。しかしながら、添加する助剤
の種類や量の検討だけではガラス相の結晶化や耐熱性の
向上による高温高強度化には限界があった。
Since silicon nitride has a high covalent bond and cannot be easily solid-phase sintered, a liquid-phase sintering method in which an auxiliary agent is added and a liquid phase is generated at a firing temperature for densification is generally used. for that reason,
The obtained sintered body had a glass phase in which the liquid phase was vitrified at the grain boundary, and the high temperature creep including high temperature strength depended on the glass phase existing at this grain boundary. On the other hand, it has been proposed to control the composition of the glass phase, to crystallize the glass phase by heat treatment, or to increase the heat resistance of the glass phase itself. However, there is a limit to the high temperature and high strength due to the crystallization of the glass phase and the improvement of heat resistance, only by examining the kind and amount of the additive to be added.

【0004】この窒化珪素焼結体内のガラス相の量を除
去もしくは低減させるために、窒化珪素原料粉末を1400
℃〜1800℃の温度で30分〜2時間、非酸化性雰囲気中で
熱処理することによりシリカ及び酸素を取り除き、この
窒化珪素粉末を用いて焼結体を得る方法が知られている
(特公平2-47426号)。さらに、この熱処理した窒化珪
素粉末並びに窒化珪素粉末と焼結用添加物との混合物を
熱処理し、粉砕したものを使用する方法も提案されてい
る(特公平2-47427号公報)。また、窒化珪素の原料製
造工程において直接窒化法より得られた窒化珪素のイン
ゴットを1500℃〜1800℃で熱処理し、その後、粉砕し粉
末を得る方法も提案されている(特開平2−248308号公
報)。目的は異なるが、窒化珪素粉末の表面シリカ層を
積極的にアンモニアやアンモニアと炭化水素の混合ガス
を用いて還元処理を行い、窒化珪素粉末の表面改質を行
う方法も提示されている(特開平1−226768号公報)。
In order to remove or reduce the amount of glass phase in this silicon nitride sintered body, 1400 silicon nitride raw material powder was added.
A method is known in which silica and oxygen are removed by heat treatment in a non-oxidizing atmosphere at a temperature of ℃ to 1800 ℃ for 30 minutes to 2 hours, and a sintered body is obtained by using this silicon nitride powder (Japanese Patent Publication No. 2-47426). Further, a method has also been proposed in which the heat-treated silicon nitride powder and a mixture of the silicon nitride powder and a sintering additive are heat-treated and pulverized (Japanese Patent Publication No. 2-47427). Further, a method has also been proposed in which a silicon nitride ingot obtained by a direct nitriding method in a silicon nitride raw material manufacturing step is heat-treated at 1500 ° C. to 1800 ° C. and then pulverized to obtain a powder (JP-A-2-248308). Bulletin). Although the purpose is different, a method has also been proposed in which the surface silica layer of the silicon nitride powder is positively subjected to a reduction treatment using ammonia or a mixed gas of ammonia and hydrocarbon to modify the surface of the silicon nitride powder (special feature. Kaihei 1-226768).

【0005】なお、窒化珪素粉末と焼結助剤とを添加、
混合し成形後、予備加熱処理することにより高強度化す
る方法が提案されている(特公昭58-15463)。この予備
加熱処理は成形体を窒化アルミニウム、窒化ホウ素、窒
化珪素などの粉末中に埋めて1500℃〜1850℃で10分〜5
時間、非酸化雰囲気中で行なわれるものでは、その後は
1500℃〜1900℃で焼結を行う。予備加熱処理の有無で焼
結体の強度が変化するのは、添加物が結晶相中に存在す
ることができるためとしている。
In addition, silicon nitride powder and a sintering aid are added,
A method of increasing the strength by mixing and molding and then preheating is proposed (Japanese Patent Publication No. 58-15463). In this preheating treatment, the compact is embedded in powder of aluminum nitride, boron nitride, silicon nitride or the like, and the temperature is 1500 ° C to 1850 ° C for 10 minutes to 5 minutes.
If performed in a non-oxidizing atmosphere for a period of time, then
Sintering is performed at 1500 ℃ ~ 1900 ℃. The reason why the strength of the sintered body changes depending on the presence or absence of the preheating treatment is that the additive can exist in the crystal phase.

【0006】[0006]

【発明が解決しようとする課題】上述のように、従来の
窒化珪素焼結体中のシリカの低減は原料処理レベルで行
われていたものの、それ以降の焼結体になるまでの各工
程において増加するシリカに対しては、その除去及び低
減させることは考えられていなかった。
As described above, the reduction of silica in the conventional silicon nitride sintered body has been carried out at the raw material processing level, but in each step until the subsequent sintered body is obtained. For increasing silica, its removal and reduction was not considered.

【0007】窒化珪素自体、天然界には存在しないこと
からもわかるように、熱力学的にも大気雰囲気中で安定
ではなく、窒化珪素は常に酸化してシリカになる特性を
有している。特に、セラミックス焼結体の原料として用
いる窒化珪素粉末はサブミクロン(10-4mmオーダー)の
大きさであり、空気中の水分や酸素で容易に酸化してし
まう。そのため原料を熱処理した後も、焼結体になるま
での各製造工程における窒化珪素の再酸化に対して、非
酸化雰囲気での粉体操作等、格段の注意が必要となり、
そのような環境下でのプロセッシングは実用的でないと
いう問題があった。さらに、何等かの操作により工程の
半ばで窒化珪素が酸化した場合は、そのバッチすべてが
不良となる可能性が大であった。
As can be seen from the fact that silicon nitride itself does not exist in the natural world, it is not thermodynamically stable in the atmosphere, and silicon nitride has a characteristic that it is always oxidized into silica. In particular, the silicon nitride powder used as a raw material for the ceramics sintered body has a size of submicron (10 −4 mm order) and is easily oxidized by moisture and oxygen in the air. Therefore, even after the heat treatment of the raw material, re-oxidation of silicon nitride in each manufacturing process until it becomes a sintered body requires great care such as powder operation in a non-oxidizing atmosphere.
There is a problem that processing under such an environment is not practical. Furthermore, when silicon nitride is oxidized in the middle of the process by some operation, there is a high possibility that all the batches will be defective.

【0008】焼結前の予備加熱処理を行うという考案は
特公昭58-15463号公報において、提示されているものシ
リカおよび酸素の除去には言及しておらず、また焼結工
程との差も明確でない。
The idea of performing preheat treatment before sintering does not mention the removal of silica and oxygen, which is proposed in Japanese Patent Publication No. S58-15463, and is different from the sintering process. Not clear.

【0009】本発明は、かかる事態に鑑みてなされたも
のであり、窒化珪素の原料中に含まれるシリカを除去す
るだけでなく、原料混合以降焼結体になるまでの各工程
において増加するシリカに対してもこれを除去し、高温
での強度の低下の少ない優れた窒化珪素を提供すること
を目的とする。
The present invention has been made in view of the above circumstances, and not only removes silica contained in the raw material of silicon nitride, but also increases silica in each step from mixing the raw materials to forming a sintered body. It is also an object of the present invention to eliminate this and provide an excellent silicon nitride with little reduction in strength at high temperatures.

【0010】[0010]

【課題を解決するための手段】上記目的は、表面にシリ
カ被膜が形成されている窒化珪素粉末と焼結助剤よりな
る成形体を焼結する直前に、該シリカ被膜を除去するこ
とを特徴とする窒化珪素焼結体の製造方法によって達成
された。
The above object is to remove the silica coating just before sintering a molded body composed of a silicon nitride powder having a silica coating formed on its surface and a sintering aid. Was achieved by the method for producing a silicon nitride sintered body.

【0011】窒化珪素焼結体の製造に使用される原料の
窒化珪素粉末は四窒化三珪素であり、セラミック焼結体
の製造に使用される通常の原料を使用することができ
る。窒化珪素には、非晶質のほかα型及びβ型があるが
そのいずれであってもよい。この窒化珪素粉末は、表面
にシリカ被膜を有するものである。ここで窒化珪素粒表
面のシリカとは珪素酸化物(SiO2、SiO)の非晶
質、結晶相(クリストバライト等)をいう。被膜は全体
に形成されるほか、破砕物のように部分的に形成される
ものであってもよい。一般に窒化珪素原料粉末における
窒化珪素粒に存在する酸素は、粉末表面に吸着した水
分、酸素の他、表面層を形成している珪素酸化物(Si
2、SiO)等、ここではシリカと呼んでいるものでフ
ッ酸で加熱処理することにより除くことができるもの及
び窒化珪素粒内に固溶ないし閉じこめられているものの
3つに分けられる。これらの割合は、表面吸着した酸素
は0.01wt%から0.1wt%、表面層のシリカは0.1wt%から
3.0wt%、粒内に固溶した酸素はシリカに換算して0.1wt
%から2.5wt%である。窒化珪素粉末は、シリカを除く
ことによる高温強度化の目的から原料中の酸素量が少な
い方が望ましい。粒径は5nm〜1μm程度、通常0.1〜
0.8μm程度のものでよい。
The raw material silicon nitride powder used in the production of the silicon nitride sintered body is trisilicon tetranitride, and the usual raw materials used in the production of the ceramic sintered body can be used. Silicon nitride includes α-type and β-type in addition to amorphous, but any of them may be used. This silicon nitride powder has a silica coating on the surface. Here, the silica on the surface of the silicon nitride grains is an amorphous or crystalline phase of silicon oxide (SiO 2 , SiO) (cristobalite, etc.). The coating film may be formed entirely, or may be partially formed like a crushed material. In general, oxygen present in silicon nitride grains in a silicon nitride raw material powder is not only water and oxygen adsorbed on the powder surface but also silicon oxide (Si) forming the surface layer.
O 2, SiO) or the like, where is divided into three although the solid solution or trapped is possible ones and silicon nitride grains be removed by heating with hydrofluoric acid which is called silica. These ratios range from 0.01 wt% to 0.1 wt% for surface adsorbed oxygen and 0.1 wt% for surface layer silica.
3.0wt%, oxygen dissolved in the grains is 0.1wt% converted to silica
% To 2.5 wt%. The silicon nitride powder preferably has a small amount of oxygen in the raw material for the purpose of strengthening at high temperature by removing silica. Particle size is about 5 nm to 1 μm, usually 0.1 to
It may be about 0.8 μm.

【0012】焼結助剤も慣用のものであることができ
る。代表的な焼結助剤としては、アルミナ、マグネシ
ア、カルシア、スピネル、イットリア、希土類酸化物な
どの酸化物、窒化アルミニウムなどの窒化物、さらにこ
れらの前駆体となるアルコキシド、ゾルを用いることが
できる。助剤の量も常法に従うことができ、一般に0.1
重量%〜35重量%、通常は2重量%〜12重量%の範囲で
ある。
The sintering aid can also be conventional. As typical sintering aids, alumina, magnesia, calcia, spinel, yttria, oxides such as rare earth oxides, nitrides such as aluminum nitride, and alkoxides or sols that are precursors thereof can be used. .. The amount of auxiliaries can also follow conventional methods, generally 0.1
% By weight, typically 35% by weight, usually 2% by weight to 12% by weight.

【0013】原料粉末を所定形状に成形する成形法に
は、一般に用いられる射出成形、押し出し成形、泥漿鋳
込み、一軸プレス、CIP等適当な方法が利用される。
As a molding method for molding the raw material powder into a predetermined shape, generally used appropriate methods such as injection molding, extrusion molding, sludge casting, uniaxial pressing, CIP and the like are used.

【0014】成形体を形成している窒化珪素粒子のシリ
カ被膜の除去方法としては、非酸化雰囲気下で1200〜17
00℃に加熱することによってシリカをSiOガスとして
除去する方法、成形体に予め炭素粉末を添加しておい
て、非酸化雰囲気中で加熱することによってシリカを還
元して窒化珪素に変える方法、上記の方法において炭素
粉末の代わりに加熱によって炭素を生成するフェノール
樹脂等を用いる方法等を利用することができる。
As a method of removing the silica coating of the silicon nitride particles forming the molded body, 1200 to 17 in a non-oxidizing atmosphere is used.
A method of removing silica as SiO 2 gas by heating at 00 ° C., a method of previously adding carbon powder to a molded body and reducing the silica to silicon nitride by heating in a non-oxidizing atmosphere, In the above method, a method of using a phenol resin or the like that produces carbon by heating in place of the carbon powder can be used.

【0015】シリカ被膜を加熱によって除去する場合
は、加熱温度の下限値はシリカを除去の媒体になるSi
Oガスの蒸気圧が非酸化性ガス流下あるいは減圧下で適
切かどうかによって決まる。一方、加熱温度の上限は、
助剤とシリカ及び窒化珪素とが反応し、液相生成を開始
する温度より低いことが望ましい。液相が生成するとこ
の液相を介した焼結が進行し、かつ熱処理により連続的
にこの液相からシリカ成分が除去することになる。つま
り、一度始まった焼結が中途で止まることを意味する。
これは最終的に焼結体を不均質なものにする。したがっ
て、助剤及びガス流量によって異なるが1200℃から1700
℃の温度範囲で、好ましくは1350〜1650℃が望ましい。
加熱温度が1200℃未満であると、図1に示したようにS
iOガスの蒸気圧が低くなりすぎ処理時間が現実的でな
くなり、1700℃以上ではシリカと焼結助剤と窒化珪素と
が反応し、液相が生成する。
When the silica coating is removed by heating, the lower limit of the heating temperature is Si as a medium for removing silica.
It depends on whether the vapor pressure of O 2 gas is appropriate under flowing non-oxidizing gas or under reduced pressure. On the other hand, the upper limit of the heating temperature is
It is desirable that the temperature is lower than the temperature at which the auxiliary agent reacts with silica and silicon nitride to start liquid phase formation. When the liquid phase is generated, sintering through the liquid phase proceeds, and the silica component is continuously removed from the liquid phase by the heat treatment. In other words, it means that the sintering that started once stops halfway.
This finally makes the sintered body inhomogeneous. Therefore, it varies from 1200 ℃ to 1700 depending on the auxiliary agent and gas flow rate.
In the temperature range of ℃, preferably 1350 to 1650 ℃.
If the heating temperature is less than 1200 ° C, as shown in Fig. 1, S
The vapor pressure of iO gas becomes too low and the treatment time becomes unrealistic. At 1700 ° C. or higher, silica reacts with the sintering aid and silicon nitride to form a liquid phase.

【0016】非酸化雰囲気ガスとしては、例えば窒素ガ
ス以外、アルゴン(Ar)、アンモニア(NH3)ガス等が
あげられる。この非酸化雰囲気において、窒素ガス分圧
を窒化珪素と金属シリコンとが平衡に存在するときの平
衡分圧以上、すなわち図1において窒素ガスの線より上
に保つことが好ましい。窒素ガス分圧がこの平衡分圧未
満になると、窒化珪素の分解が起こるからである。次
に、非酸化雰囲気中のSiOガス分圧を非酸化雰囲気中
の窒素ガス分圧下での分圧より低く、例えば窒素ガス分
圧が平衡分圧の場合は、図1においてSiOガスの線よ
り下に保つことが好ましい。SiOガス分圧がこの分圧
以上になると、シリカが分解してSiOガスを生成する
反応が円滑に進行しなくなるからである。
Examples of the non-oxidizing atmosphere gas include argon (Ar), ammonia (NH 3 ) gas and the like, in addition to nitrogen gas. In this non-oxidizing atmosphere, it is preferable to maintain the nitrogen gas partial pressure at or above the equilibrium partial pressure when silicon nitride and metal silicon are in equilibrium, that is, above the nitrogen gas line in FIG. This is because when the partial pressure of nitrogen gas is less than this equilibrium partial pressure, decomposition of silicon nitride occurs. Next, the partial pressure of SiO gas in the non-oxidizing atmosphere is lower than the partial pressure under the partial pressure of nitrogen gas in the non-oxidizing atmosphere. For example, when the partial pressure of nitrogen gas is the equilibrium partial pressure, the line of SiO gas in FIG. It is preferable to keep it down. This is because if the partial pressure of SiO gas becomes equal to or higher than this partial pressure, the reaction of decomposing silica to generate SiO gas does not proceed smoothly.

【0017】シリカの分解反応生成物であるSiOガス
を被処理体から積極的に除去するには、SiOガスが不
飽和な非酸化性ガス流中に被処理体にさらすことが望ま
しいが、ガス流量が多すぎると被処理体の固定、経済面
から望ましくなく、したがって非酸化雰囲気ガスの速度
は0.0001〜200cm/秒が望ましい。
In order to positively remove the SiO gas, which is a decomposition reaction product of silica, from the object to be treated, it is desirable to expose the object to be treated to a non-oxidizing gas flow in which the SiO gas is unsaturated. If the flow rate is too high, it is not desirable from the standpoint of fixing the object to be treated and economically. Therefore, the velocity of the non-oxidizing atmosphere gas is preferably 0.0001 to 200 cm / sec.

【0018】SiOガスを被処理体から積極的に除去す
るための他の方法として、雰囲気を大気圧により減圧下
におくことも効果が顕著である。雰囲気の窒素ガスを平
衡分圧値よりも高く、かつその窒素分圧でSiOガスの
分圧より低く減圧のレベルを保つことにより窒化珪素を
分解させず、かつSiOガスを効果的に除くことができ
る。この減圧のレベルは、図1において1700℃以下の温
度範囲で、少なくともSiOガスと窒素ガスの飽和曲線
に囲まれる領域に相当する。
As another method for positively removing the SiO gas from the object to be treated, the effect is remarkable when the atmosphere is depressurized by the atmospheric pressure. By keeping the nitrogen gas in the atmosphere at a pressure higher than the equilibrium partial pressure value and lower than the partial pressure of SiO gas at the nitrogen partial pressure, the silicon nitride is not decomposed and the SiO gas can be effectively removed. it can. The level of this pressure reduction corresponds to at least the region surrounded by the saturation curve of SiO 2 gas and nitrogen gas in the temperature range of 1700 ° C. or lower in FIG.

【0019】ただし、ガスを流す構造でない処理装置の
場合、静止雰囲気下でもSiOガスが飽和に達しないに
十分な処理容積を持つ場合、処理時間はかかるがシリカ
の除去は可能である。
However, in the case of a processing apparatus which does not have a gas flow structure, if the processing volume is sufficient so that the SiO 2 gas does not reach saturation even in a stationary atmosphere, it is possible to remove silica although the processing time is long.

【0020】熱処理時間は加熱温度、被処理体の形状と
大きさ、その他種々の条件によって大きく変わるが、通
常10分間〜50時間程度である。
The heat treatment time is generally 10 minutes to 50 hours, though it varies greatly depending on the heating temperature, the shape and size of the object to be treated and various other conditions.

【0021】被膜をどの程度除去するかは窒化珪素焼結
体の用途等によって決定される。シリカ被膜の除去は焼
結の直前に行なう。この直前とは、その後にシリカ被膜
を形成されないよう取計らわれていれば足りる。また、
シリカ被膜除去処理が行なわれる成形体は原則としてそ
のまま焼結工程にはいり、該成形体の形状は焼結される
ものの形状と同一である。
The extent to which the coating film is removed is determined by the application of the silicon nitride sintered body and the like. The silica coating is removed immediately before sintering. Just before this, it is sufficient if it is arranged so that a silica film is not formed thereafter. Also,
As a general rule, the molded body on which the silica coating is removed is directly subjected to the sintering step, and the shape of the molded body is the same as that of the sintered body.

【0022】焼結は、公知の方法から適宜選択して行な
えばよく、通常は非酸化性雰囲気で行なわれるが、その
際、窒素ガス分圧を炭素と窒化珪素と炭化珪素が平衡に
存在するときの平衡分圧以上に保つことが好ましい。ま
た、焼結後の降温中も非酸化性雰囲気中の窒素ガス分圧
を炭素と窒化珪素と炭化珪素が平衡に存在するときの平
衡分圧以上に保つことが好ましい。シリカ被膜を除去し
た後、窒素分圧を炭素と窒化珪素と炭化珪素が平衡に存
在する圧より高く設定することにより、窒化珪素焼結体
の発熱体、ルツボからの汚染を防止することができる。
Sintering may be carried out by appropriately selecting from known methods. Usually, it is carried out in a non-oxidizing atmosphere. At this time, the partial pressure of nitrogen gas is such that carbon, silicon nitride and silicon carbide are in equilibrium. It is preferable to maintain at least the equilibrium partial pressure. Also, it is preferable to maintain the partial pressure of nitrogen gas in the non-oxidizing atmosphere at the equilibrium partial pressure when carbon, silicon nitride and silicon carbide are in equilibrium even during the temperature reduction after sintering. After removing the silica coating, the nitrogen partial pressure is set to be higher than the pressure at which carbon, silicon nitride, and silicon carbide are in equilibrium to prevent contamination of the silicon nitride sintered body from the heating element and crucible. ..

【0023】図3に、珪素、窒素、炭素及び酸素の共存
系における凝縮相の1400℃での熱力学的安定図を示す。
図の横軸は酸素分圧、縦軸が窒素分圧である。図中に
は、面で表せる窒化珪素(Si34)、シリカ(Si
2)、炭化珪素(SiC)の三つの凝縮相安定領域があ
り、面を作る境界線、図中のab、bc、bd線はそれぞれの
二つの凝縮相が安定なところで窒素分圧が決まれば酸素
分圧が決まり、またその逆に酸素分圧が決まれば窒素分
圧が決まる。三つの凝縮相が一点で交わるところ、図3
中のb点では窒素分圧、酸素分圧は一義的に決まる。S
i34(s)/SiO2(s)の平衡を表す式は(1)式で表され
る。一方、Si34(s)/SiC(s)の平衡を表す式は(2)式
で表される。 3SiO2(s, l)+2N2(g)=Si34(s)+3O2(g) (1) Si34(s)+3C(s)=3SiC(s)+2N2(g) (2)
FIG. 3 shows a thermodynamic stability diagram at 1400 ° C. of the condensed phase in the coexisting system of silicon, nitrogen, carbon and oxygen.
The horizontal axis of the figure is the oxygen partial pressure, and the vertical axis is the nitrogen partial pressure. In the figure, silicon nitride (Si 3 N 4 ) and silica (Si
O 2 ), silicon carbide (SiC) have three condensed phase stable regions, and the nitrogen partial pressure is determined at the boundary lines that form the surface, ab, bc, and bd lines in the figure where the two condensed phases are stable. If the oxygen partial pressure is determined, and vice versa, the nitrogen partial pressure is determined. Figure 3 where the three condensed phases meet at one point
At point b, the nitrogen partial pressure and oxygen partial pressure are uniquely determined. S
The equation representing the equilibrium of i 3 N 4 (s) / SiO 2 (s) is represented by the equation (1). On the other hand, the equation representing the equilibrium of Si 3 N 4 (s) / SiC (s) is represented by the equation (2). 3SiO 2 (s, l) + 2N 2 (g) = Si 3 N 4 (s) + 3O 2 (g) (1) Si 3 N 4 (s) + 3C (s) = 3SiC (s) + 2N 2 (g) ( 2)

【0024】1400℃では、窒素分圧が0.56atm以下にな
ると(2)式の反応が右へ進み、炭化珪素が生成する。図
2にこの平衡窒素分圧と温度の関係を示す。従って、非
酸化性雰囲気中で窒素ガス分圧を図2に示すこの分圧よ
り高く保って焼結又は降温する。
At 1400 ° C., when the nitrogen partial pressure becomes 0.56 atm or less, the reaction of the formula (2) proceeds to the right and silicon carbide is produced. FIG. 2 shows the relationship between the equilibrium nitrogen partial pressure and temperature. Therefore, the nitrogen gas partial pressure is kept higher than this partial pressure shown in FIG.

【0025】[0025]

【作用】本発明の方法においては、原理的にシリカの除
去は(1)式に示すようにシリカの分解により生成する高
い蒸気圧を持つSiOガスを除去することにより行われ
る。 2SiO2(s, l) =2SiO(g)+O2(g) (1)
In the method of the present invention, silica is removed in principle by removing the SiO gas having a high vapor pressure generated by the decomposition of silica as shown in the formula (1). 2SiO 2 (s, l) = 2SiO (g) + O 2 (g) (1)

【0026】一方、窒化珪素の分解反応は(2)式で表せ
る。この(2)式の窒素の平衡分圧を図1に示すが、この
窒素の平衡分圧は温度の上昇に伴って大きくなる。窒化
珪素の分解を抑制するためには、非酸化性雰囲気中の窒
素ガス分圧をこの平衡分圧以上に保つことが必要であ
る。 Si34(s)=3Si(s, l) +2N2(g)↑ (2)
On the other hand, the decomposition reaction of silicon nitride can be expressed by equation (2). The equilibrium partial pressure of nitrogen in the equation (2) is shown in FIG. 1, and this equilibrium partial pressure of nitrogen increases as the temperature rises. In order to suppress the decomposition of silicon nitride, it is necessary to maintain the partial pressure of nitrogen gas in the non-oxidizing atmosphere at or above this equilibrium partial pressure. Si 3 N 4 (s) = 3Si (s, l) + 2N 2 (g) ↑ (2)

【0027】窒化珪素とシリカの固相共存下では(3)式
が成り立つ。(2)式で求めた分圧以下に非酸化性雰囲気
中の窒素ガス分圧がなると(3)式で右方向の反応が起こ
り、SiOガスによりシリカも除かれるが同時に窒化珪
素も減少してしまうことになる。 Si34(s)+3SiO2(s)=6SiO(g)+2N2(g)↑ (3)
Equation (3) is established in the coexistence of silicon nitride and silica in the solid phase. When the partial pressure of nitrogen gas in the non-oxidizing atmosphere becomes equal to or lower than the partial pressure obtained by the equation (2), a reaction in the right direction occurs in the equation (3), and silica is removed by SiO gas, but at the same time, silicon nitride also decreases. Will end up. Si 3 N 4 (s) + 3 SiO 2 (s) = 6 SiO (g) + 2N 2 (g) ↑ (3)

【0028】窒化珪素が分解しない最低の窒素ガス分圧
のもとで、(1)式で表される反応により生成するSiOガ
スの蒸気圧を図1に示す。SiOガスも温度上昇に伴い
分圧が高くなる。平衡窒素ガス分圧より高い窒素圧は、
(3)式からわかるようにシリカを取り除くための媒体と
なるSiOガスの蒸気圧を抑制することから窒素の分圧
が平衡分圧より高すぎるとシリカを取り除くための処理
時間が長くなる問題がある。
FIG. 1 shows the vapor pressure of SiO gas produced by the reaction represented by the equation (1) under the lowest nitrogen gas partial pressure at which silicon nitride is not decomposed. The partial pressure of SiO gas also increases as the temperature rises. Nitrogen pressure higher than the equilibrium nitrogen gas partial pressure is
As can be seen from the equation (3), since the vapor pressure of SiO gas, which is a medium for removing silica, is suppressed, there is a problem that the treatment time for removing silica becomes long if the partial pressure of nitrogen is higher than the equilibrium partial pressure. is there.

【0029】本発明に係わる窒化珪素焼結体は、従来原
料やその後の焼結までに至る各工程において不可避的に
起こる窒化珪素原料粉末の酸化により生成したシリカを
焼結直前で除去、低減することにより液相生成温度が上
昇し、焼結温度を高めている。これにより従来では、焼
結体の使用環境下で液相の生成により強度が低下すると
いう問題を解決し、高温構造用材料として高い高温強度
を持つ材料を得ている。
The silicon nitride sintered body according to the present invention removes and reduces, just before sintering, silica produced by the oxidation of the silicon nitride raw material powder which is inevitable in each step up to the conventional raw material and the subsequent sintering. As a result, the liquid phase formation temperature rises and the sintering temperature is raised. Thus, conventionally, the problem that the strength is lowered due to the formation of a liquid phase in the environment where the sintered body is used is solved, and a material having high high temperature strength is obtained as a high temperature structural material.

【0030】[0030]

【実施例】 実施例1 表面にシリカ被膜が形成されている窒化珪素粉末95重量
%及び酸化イットリウム粉末5重量%からなる原料粉末
を混合し、20×80×15mmの棒状の試料を40MPaで一軸
プレス後、300MPaのCIP(冷間等方加圧)して成形
した。これを1400℃の窒素ガスの大気圧、SiOガスの
存在しない0.1cm/秒のガス流中で1時間加熱処理した。
これを1400℃で60atmまで加圧し、その後1950℃、80atm
の窒素雰囲気中で2時間焼結し、冷却も昇温と同じ圧力
に徐々に圧力を下げ冷却し、焼結体を得た。この焼結体
をアルキメデス法により密度を求め、理論密度との比か
ら相対密度(%TD)を求めた。さらに、この焼結体より
JISに定められた試験法に準じ3×4×40mmの試験片
を複数作製し、1400℃において4点曲げ試験を行った。
表1にこれらの試験の結果を示す。
Example 1 A raw material powder consisting of 95% by weight of silicon nitride powder having a silica coating on its surface and 5% by weight of yttrium oxide powder was mixed, and a rod-shaped sample of 20 × 80 × 15 mm was uniaxially at 40 MPa. After pressing, CIP (cold isotropic pressing) of 300 MPa was performed for molding. This was heat-treated for 1 hour in a nitrogen gas atmosphere of 1400 ° C. in a gas flow of 0.1 cm / sec in the absence of SiO gas.
Pressurize this at 1400 ℃ to 60atm, then 1950 ℃, 80atm
Sintering was carried out for 2 hours in the nitrogen atmosphere, and the pressure was gradually lowered to the same pressure as the temperature was raised to be cooled to obtain a sintered body. The density of this sintered body was obtained by the Archimedes method, and the relative density (% TD) was obtained from the ratio with the theoretical density. Further, a plurality of 3 × 4 × 40 mm test pieces were produced from this sintered body according to the test method defined in JIS, and a 4-point bending test was performed at 1400 ° C.
Table 1 shows the results of these tests.

【0031】[0031]

【表1】 [Table 1]

【0032】比較例1 実施例1において、焼結前に熱処理を施していない他
は、すべて同様の操作にて同じ形状の焼結体を作成し
た。これらの焼結体についても、実施例1と同様に密度
測定と1400℃における4点曲げ強度を実施した。結果を
表1に示す。熱処理を行うことにより1400℃の熱間強度
が上昇することが明らかに分かる。
Comparative Example 1 A sintered body having the same shape was prepared by the same procedure as in Example 1, except that the heat treatment was not performed before sintering. With respect to these sintered bodies, the density measurement and the 4-point bending strength at 1400 ° C. were carried out in the same manner as in Example 1. The results are shown in Table 1. It is clearly seen that the heat treatment increases the hot strength at 1400 ° C.

【0033】比較例2 実施例1において熱処理後、これを1950℃、30atmの窒
素雰囲気中で2時間焼結した。その結果、実施例1にお
いては見られない焼結体切断面における発熱体、ルツボ
からのカーボンの汚染による染みが観察された。
Comparative Example 2 After the heat treatment in Example 1, this was sintered for 2 hours at 1950 ° C. in a nitrogen atmosphere of 30 atm. As a result, stains due to carbon contamination from the heating element and crucible on the cut surface of the sintered body, which were not found in Example 1, were observed.

【0034】比較例3 実施例1において焼成後、ガス圧力を下げ1500℃で大気
圧まで減圧しながら冷却した。焼結体切断面は変色は認
められなかったが、焼結体表面は発熱体、ルツボから蒸
気及びガスの給排気によるカーボン粉の飛沫により窒化
珪素と反応し、一部淡黄緑色に変色していた。なお、実
施例1ではこのような焼結体表面の変色は観察されなか
った。
Comparative Example 3 After firing in Example 1, the gas pressure was lowered and cooling was performed at 1500 ° C. while reducing the pressure to atmospheric pressure. No discoloration was observed on the cut surface of the sintered body, but the surface of the sintered body reacted with silicon nitride due to the splash of carbon powder generated by the supply and exhaust of steam and gas from the heating element and crucible, and partly changed to a pale yellow-green color. Was there. In addition, in Example 1, such discoloration on the surface of the sintered body was not observed.

【0035】実施例2〜8 表2に示した組成、熱処理条件にて実施例1とすべて同
様の操作にて同じ形状の焼結体を作成した。ただし、熱
処理後にそれぞれの被処理体を実施例2では53atm、実
施例3では64atm、実施例4では71atm、実施例5では60
atm、実施例6では63atm、実施例7では67atm、実施例
8では60atmまで加圧し、その後焼成した。実施例8で
は熱処理後の被処理体を1850℃で2時間焼結し、冷却も
昇温と同じ圧力に徐々に圧力を下げ冷却し焼結体を得
た。これらの焼結体についても、実施例1と同様に密度
測定と1400℃における4点曲げ強度を実施した。結果を
表3に示す。
Examples 2 to 8 Sinters of the same shape were prepared by the same operations as in Example 1 under the composition and heat treatment conditions shown in Table 2. However, after heat treatment, the respective objects to be treated were 53 atm in Example 2, 64 atm in Example 3, 71 atm in Example 4, and 60 in Example 5.
Atm, 63 atm in Example 6, 67 atm in Example 7, and 60 atm in Example 8 were pressurized and then fired. In Example 8, the target object after the heat treatment was sintered at 1850 ° C. for 2 hours, and the cooling was gradually reduced to the same pressure as the temperature rising to be cooled to obtain a sintered body. With respect to these sintered bodies, the density measurement and the 4-point bending strength at 1400 ° C. were carried out in the same manner as in Example 1. The results are shown in Table 3.

【0036】[0036]

【表2】 [Table 2]

【0037】[0037]

【表3】 [Table 3]

【0038】比較例4 実施例8において、焼結前に熱処理を施していない他
は、すべて同様の操作にて同じ形状の焼結体を作成し
た。これらの焼結体についても、実施例1と同様に密度
測定と1400℃における4点曲げ強度を実施した。結果を
表4に示す。熱処理を行うことにより1400℃の熱間強度
が上昇することが明らかに分かる。
Comparative Example 4 In Example 8, a sintered body having the same shape was prepared by the same operation except that the heat treatment was not performed before sintering. With respect to these sintered bodies, the density measurement and the 4-point bending strength at 1400 ° C. were carried out in the same manner as in Example 1. The results are shown in Table 4. It is clearly seen that the heat treatment increases the hot strength at 1400 ° C.

【0039】[0039]

【表4】 [Table 4]

【0040】[0040]

【発明の効果】以上のように、本発明によれば焼結工程
前の成形体中に存在するシリカを熱処理により除去もし
くは低減することにより1400℃というような高温におい
ても高強度に優れた窒化珪素焼結体が得られる。従っ
て、セラミックガスタービンエンジンのように、耐熱性
と高強度を要求される部位の構造用材料を提供でき、従
来の高温での強度低下という問題が解消する。
As described above, according to the present invention, by removing or reducing the silica present in the compact before the sintering step by heat treatment, nitriding excellent in high strength even at a high temperature of 1400 ° C. A silicon sintered body is obtained. Therefore, it is possible to provide a structural material for a portion that requires high heat resistance and high strength, such as a ceramic gas turbine engine, and solves the conventional problem of strength reduction at high temperatures.

【図面の簡単な説明】[Brief description of drawings]

【図1】窒化珪素の分解を抑制するための平衡窒素ガス
分圧平衡窒素分圧とこの平衡窒素ガス分圧下で発生する
SiOガスの分圧を示す図である。
FIG. 1 is a diagram showing an equilibrium nitrogen gas partial pressure for suppressing decomposition of silicon nitride and an equilibrium nitrogen gas partial pressure and a partial pressure of SiO 2 gas generated under the equilibrium nitrogen gas partial pressure.

【図2】炭素共存下において、窒化珪素と炭化珪素が平
衡関係にある時の平衡窒素ガス分圧を示す図である。
FIG. 2 is a diagram showing an equilibrium nitrogen gas partial pressure when silicon nitride and silicon carbide are in an equilibrium relationship in the presence of carbon.

【図3】図3は、炭素が存在する時のシリカの還元窒化
処理に関与する凝集相の1400℃での熱力学的安定図であ
る。
FIG. 3 is a thermodynamic stability diagram at 1400 ° C. of an aggregate phase involved in a reduction nitriding treatment of silica in the presence of carbon.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも表面にシリカ被膜が形成され
ている窒化珪素粉末と焼結助剤よりなる成形体を焼結す
る直前に、非酸化性雰囲気中で加熱して該シリカ被膜を
除去することを特徴とする窒化珪素焼結体の製造方法
1. Removal of the silica coating by heating in a non-oxidizing atmosphere immediately before sintering of a compact comprising a silicon nitride powder having a silica coating formed on at least the surface thereof and a sintering aid. Of producing a silicon nitride sintered body
【請求項2】 該シリカ被膜の除去が1200〜1700℃の温
度範囲において、非酸化性雰囲気下で熱処理することに
よって行なわれる請求項1に記載の製造方法
2. The method according to claim 1, wherein the silica coating is removed by heat treatment in a temperature range of 1200 to 1700 ° C. in a non-oxidizing atmosphere.
【請求項3】 非酸化性雰囲気中の窒素ガス分圧を窒化
珪素と金属シリコンとが平衡に存在するときの平衡分圧
以上に保つことを特徴とする請求項2に記載の製造方法
3. The manufacturing method according to claim 2, wherein the partial pressure of nitrogen gas in the non-oxidizing atmosphere is maintained at the equilibrium partial pressure when silicon nitride and metallic silicon exist in equilibrium.
【請求項4】 非酸化性雰囲気が非酸化性ガス流中にお
くことである請求項3に記載の製造方法
4. The method according to claim 3, wherein the non-oxidizing atmosphere is placed in a non-oxidizing gas flow.
【請求項5】 非酸化性雰囲気中のSiOガス分圧を前
記の窒素ガス分圧下での分圧より低く保つ請求項3に記
載の製造方法
5. The manufacturing method according to claim 3, wherein the partial pressure of SiO gas in the non-oxidizing atmosphere is kept lower than the partial pressure under the partial pressure of nitrogen gas.
【請求項6】 シリカ被膜を除去した後、窒素ガス分圧
を炭素と窒化珪素と炭化珪素が平衡に存在するときの平
衡分圧以上に保ち非酸化性雰囲気中で焼結すること特徴
とする請求項1に記載の窒化珪素焼結体の製造方法
6. The method is characterized in that after the silica film is removed, the nitrogen gas partial pressure is kept at a value equal to or higher than the equilibrium partial pressure when carbon, silicon nitride and silicon carbide are in equilibrium, and sintering is carried out in a non-oxidizing atmosphere. The method for manufacturing a silicon nitride sintered body according to claim 1.
【請求項7】 焼結後、非酸化性雰囲気中の窒素ガス分
圧を炭素と窒化珪素と炭化珪素が平衡に存在するときの
平衡分圧以上に保ち降温することを特徴とする請求項1
又は6に記載の窒化珪素焼結体の製造方法
7. The temperature is lowered after sintering by maintaining the partial pressure of nitrogen gas in a non-oxidizing atmosphere at a pressure equal to or higher than the equilibrium partial pressure when carbon, silicon nitride and silicon carbide are in equilibrium.
Or the method for manufacturing a silicon nitride sintered body according to item 6.
JP4043964A 1991-02-28 1992-02-28 Production of silicon nitride sintered body Pending JPH0570237A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP3-34525 1991-02-28
JP3452591 1991-02-28

Publications (1)

Publication Number Publication Date
JPH0570237A true JPH0570237A (en) 1993-03-23

Family

ID=12416692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4043964A Pending JPH0570237A (en) 1991-02-28 1992-02-28 Production of silicon nitride sintered body

Country Status (1)

Country Link
JP (1) JPH0570237A (en)

Similar Documents

Publication Publication Date Title
JP3270792B2 (en) Method for producing silicon nitride based sintered body
JPH0570237A (en) Production of silicon nitride sintered body
JP2002513374A (en) Gas pressure sintered silicon nitride with high strength and stress rupture resistance
JP2007320778A (en) High-denseness silicon carbide ceramic and its production method
JP3124865B2 (en) Silicon nitride sintered body and method for producing the same
JPH0570239A (en) Production of silicon nitride sintered body
JPH1179848A (en) Silicon carbide sintered compact
JPH0570238A (en) Production of silicon nitride sintered body
JPH0570235A (en) Production of silicon nitride sintered body
JP2694369B2 (en) Silicon nitride sintered body
JP3124867B2 (en) Silicon nitride sintered body and method for producing the same
JP3318466B2 (en) Silicon nitride sintered body and method for producing the same
JPH0570240A (en) Production of silicon nitride sintered body
JPH06287066A (en) Silicon nitride sintered compact and its production
JPH10279360A (en) Silicon nitride structural parts and its production
JPH04275978A (en) Production of silicon nitride sintered body
JP3005650B2 (en) Chemically modified silicon carbide ceramic powder and method for producing silicon carbide ceramic
JPH08508458A (en) Heat treatment of nitrogen ceramics
JPS5934676B2 (en) Method for producing a reaction fired product containing β′-Sialon as the main component
JPH06100376A (en) Sintered beta-sialon and its production
JP3667145B2 (en) Silicon nitride sintered body
JP2736427B2 (en) Silicon nitride sintered body and method for producing the same
JPH10182237A (en) Silicon nitride-base composite sintered compact and its production
JPH0559073B2 (en)
JPS60239360A (en) Silicon carbide ceramic sintered body