JPH0569900B2 - - Google Patents

Info

Publication number
JPH0569900B2
JPH0569900B2 JP27162084A JP27162084A JPH0569900B2 JP H0569900 B2 JPH0569900 B2 JP H0569900B2 JP 27162084 A JP27162084 A JP 27162084A JP 27162084 A JP27162084 A JP 27162084A JP H0569900 B2 JPH0569900 B2 JP H0569900B2
Authority
JP
Japan
Prior art keywords
ceramic
ceramic particles
composite material
particle
dispersed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP27162084A
Other languages
Japanese (ja)
Other versions
JPS61149456A (en
Inventor
Kazuo Okamura
Yoshasu Morita
Manabu Seguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP27162084A priority Critical patent/JPS61149456A/en
Publication of JPS61149456A publication Critical patent/JPS61149456A/en
Publication of JPH0569900B2 publication Critical patent/JPH0569900B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 この発明は、耐摩耗性等の表面特性と引張強
度・加圧成形性等の内部特性の両方に優れたセラ
ミツク粒子分散型複合材に関し、更に詳しくは耐
摩耗性等に優れた表面特性重視型の複合材および
その製造方法に関する。 〔従来の技術〕 スラリー状流体の輸送管または撹拌機ドラムな
どの内壁には、従来単一の鋼材が用いられてきた
が、摩耗による損傷が大きいため、より耐摩耗性
にすぐれた材料が要求されてきた。耐摩耗性にす
ぐれた材料としてはセラミツクがあるが、セラミ
ツクは靭性に乏しいためセラミツク単体での使用
は強度的に問題がある。そこでセラミツク粒子を
金属マトリツクス中に分散させ、セラミツクと金
属の両方の利点を生かした複合材が考えられ、こ
れに関するさまざまな開発が進められてきてい
る。最近提案された前記複合材あるいはその製造
方法の主な例を挙げれば次の通りである。 Alをマトリツクスとしたセラミツク粒子分
散型複合材および溶湯鍛造法による製造法(中
田栄一、複合化技術としての溶湯鍛造、金属、
1982−2、P19〜22) 水素吸蔵性活性金属をセラミツク粒子に被覆
させこれに水素吸蔵させた複合粒子を溶湯中に
混合する製造法(特開昭59−93846) マトリツクス金属材料を裏金として、該裏金
とマトリツクス金属材料を含みあるいは含まぬ
強化粒子分散層とを、マトリツクス金属材料の
半溶融温度域で加圧成形する製造法(特開昭58
−153706) 〔発明が解決しようとする問題点〕 従来の複合材または製造方法にはいずれも次の
ような問題点がある。 (イ) の技術では、複合材の製作例としてAlを
金属マトリツクスとした溶造鍛造法による例が
ある。これはAlの比重が小さくセラミツク粒
子と大差ないことと、Al溶融温度が鋼に比し
て低いので鍛造時に粒子が熱衝撃により割れる
心配が少ないことを利用したものであり、した
がつてこの方法は基本的に普通鋼をマトリツク
スとする複合材の製造等には適用不可能であ
る。またこの溶造鍛造法では、分散すべき粒子
の上方からマトリツクス用溶湯を注入するた
め、粒子間に存在するガスまたは鋳込の際に生
じるガス等が抜け難いので製品中に空洞が形成
されて品質が低下するという欠点がある。 (ロ) の技術では、水素吸蔵性金属としてTi、
Zr、Ta、Nb等を用いるものであるが、セラミ
ツク粒子にそのような金属を被覆させ、その被
覆金属に水素を吸蔵させるという複雑な工程を
必要とする。またこの方法では粒子と金属マト
リツクスとの濡れ性は向上するが、方法の性質
上セラミツク粒子が粉末状でなければならない
ので、セラミツク単体に相当するほど良好な耐
摩耗性を得ることな望めない。 (ハ) 前記の製造方法は、共にセラミツク粒子
をマトリツクス金属全体に均一に分散させるこ
とをねらいとしたものであるが、このためこれ
らの方法で製造された複合材は、圧縮に強く耐
摩耗性にはすぐれているが引張強度が弱いとい
う欠点を有している。また圧延、プレス等によ
る成形加工が困難であるので、必要な寸法精度
を出すためには切削、研削を施さねばならない
が、この工程はコストが高く、また切削、研削
中に複合材表面からセラミツク粒子が剥離脱落
することが多い。このプロセスは、加圧成形で
代替できれば可成りのコスト削減、品質の向上
が見込まれる。 (ニ) の技術では、粒子分散複合材料としての耐
摩耗性を損なわずに引張強度を増し、加圧成形
性をも高める方法として、セラミツク粒子を含
む層を表層にのみ存在させることを提案したも
のである。しかしこの方法ではセラミツク粒子
の体積充填率の高い表層を形成するのは困難
で、セラミツクス本来の耐摩耗性能を生かすこ
とは難しい。 本発明の目的はこれらの問題点を解決するマト
リツクス粒子分散型複合材とその製造方法を提供
することにある。 〔問題点を解決するための手段〕 本発明者らは、耐摩耗性等の表面特性と引張強
度・加圧成形性等の内部特性とを兼ね備えた高品
質の複合材を得るべく種々実験研究を重ねた結
果、鋳造工程でセラミツクス粒子を適正な体積充
填率でマトリツクスの表面層にのみ集中して存在
させることが、上記の目的達成に極めて有効であ
ることを見出し本発明を完成させるに至つた。 すなわち本発明は、金属をマトリツクスとし、
該マトリツクス金属中にセラミツクス粒子が分散
した複合材であつて、マトリツクスが表面から裏
面まで一体的に鋳造された金属からなり、そのマ
トリツクス金属の表面を含む一方の側にセラミツ
クス粒子が分散して粒子分散層を形成し、他方の
側がセラミツク粒子を含まない金属単体層とさ
れ、粒子分散層におけるセラミツクス粒子の充填
率が45〜85vol%であることを特徴とするセラミ
ツク粒子分散型複合材を要旨とする。 第1図に本発明の複合材の構成を模式的に示
す。 1がマトリツクス金属中にセラミツク粒子が分
散した粒子分散層である。 本発明の複合材は、かかる構成により耐摩耗性
と引張強度・圧縮加工性の両方に優れ、とりわけ
耐摩耗性に優れ、更に経済性にも優れる。 耐摩耗性について:適正な粒子径を有するセラ
ミツク粒子を表面側にのみ適正充填率で存在させ
ることにより耐摩耗性は鋼材単体の場合に比較し
て著しく向上する。特に、本発明の複合材はその
粒子分散層に比較的多くのセラミツク粒子を含ん
でいるので、特に高い耐摩耗性を示す。一般に耐
摩耗性用部材としては、例えばスラリー状流体の
輸送管のようにその内壁の一面だけに耐摩耗性が
要求されるものが多い。このような部位の素材と
して本発明の複合材を用いれば非常に満足の行く
結果が得られる。 引張強度・加圧成形性について:一般のセラミ
ツク粒子分散型複合材は、引張時の金属マトリツ
クスの変形量に比してセラミツク粒の変形量は少
ない。従つてセラミツク粒子の存在する部分には
空洞ができ応力集中が起るという弊害が発生す
る。このため、セラミツク粒子を全厚に亘つて均
一に分散して含むようにした複合材は、引張強度
が劣ることになる。本発明の複合材はセラミツク
粒子を含む粒子分散層が表面側にのみ存在し、そ
れに接してマトリツクス金属(例えば鋼)のみの
金属単体層を有しているので、大きな引張力に耐
えるこ挙とができる。 同様の理由から、加圧成形性も良好である。例
えばCo基耐熱合金をマトリツクスとし、平均粒
径2mmのアルミナ粒子を充填率74vol%で表面側
に厚さ10mmに分散させた厚さ40mmの複合材につい
て、1200℃で熱間圧延を行つたところ、圧下率43
%の圧延が可能であつた。従つて本発明複合材は
圧延加工用として使用できる。 また本発明の複合材は、粒子分散層に圧縮応力
が働くような曲げに対しても、鋼のみからなる材
料の場合と同様な強度を有する。すなわち、第2
図に示すように、物体Pにより耐摩耗面である粒
子分散層1の表面に垂直接触力Nが働く場合に、
曲げの状態が現出する。すると、この粒子分散層
1のセラミツク粒子の部分では圧縮応力が、また
鋼のみの金属単体層2の部分では引張応力がかか
る。このような状態は部材と部材の接触する部
分、すなわち耐摩耗性を問題とする箇所では縷々
経験されるところである。全体にセラミツク粒子
を均一分散させた部材では、このような曲げによ
り生じた引張応力がセラミツク粒子を含む部分に
も働くので、先に述べた理由による応力集中によ
つて部材が破壊する危険性があるが、本発明の複
合材では、引張応力は鋼のみの部分で、圧縮応力
はセラミツク粒子を含む層の部分で各々受けるこ
とになるので、従来問題となつていた上記の曲げ
に対しても十分耐え得ることができる。 経済性について:本発明の複合材は表面側の所
要厚さのみにセラミツク粒子を分散させたもので
あるから、必要最少限のセラミツク使用で必要な
性能を満足せしめ得るので、高価なセラミツクの
使用量節減を通して原料コストが低減できる。ま
た、接合等の余分な工程が不要となる。 本発明の複合材において、粒子分散層における
セラミツク粒子の体積充填率を45〜85vol%に限
定したのは以下の理由による。 粒子分散層におけるセラミツク粒子の充填率が
上がると、耐摩耗性、断熱性は向上するが、粒子
分散層の引張強度、加圧成形性は低下する。この
ようにセラミツク粒子の充填率に対し、得られる
複合材の性質はかなり変化する。本発明者らの調
査によれば、セラミツク本来の耐摩耗性を生かす
には、セラミツク粒子分散層における粒子充填率
は15vol%以上必要であり、この下限15vol%と一
定形状粒子を用いた場合の最密充填率74vol%と
の中間点である45vol%を、用途上の観点から粒
子分散層の性質の臨界点と把えることができる。
本発明の複合材では、セラミツク粒子分散層にお
ける粒子充填率を45vol%以上とすることにより、
特に高い耐摩耗性が確保され、しかも実用上十分
な引張強度、加圧成形性が得られる。ただし、
85vol%を超えると、圧延性の低下が著しくなる
と共に、数種の大きさの粒子を用いて充填率を高
めた場合に、鋳込みにおける粒子間への湯入りが
困難となるので、85vol%以下とする。 本発明の複合材に使用するマトリツクス金属と
しては、必要な引張強度を有するものであれば特
に制限されず、普通鋼をはじめ、用途に応じて耐
熱合金、ステンレス鋼等を使用することができ
る。 セラミツク粒子としては、例えば、Al2O3
3Al2O3・2SiO2、ZrO2等の酸化物系セラミツク、
SiC、TiC等の炭化物系セラミツクあるいは、
Si3N2、AlN等の窒化物系セラミツクなどが挙げ
られる。 次にセラミツク粒子の大きさについて述べる。
セラミツクの平均粒子径については、熱衝撃によ
る割れの心配がないこと、鋳込時にマトリツクス
溶融金属がセラミツク粒子間の間〓に侵入し易い
大きさであること、耐摩耗性の効果を十分に発揮
し得る大きさであることおよび製造部材の加圧成
形加工性等を考慮すると1〜10mm、更には1〜5
mmが好ましい。 次に比重について述べる。本発明に用いられる
代表的セラミツクの比重を第1表に示す。
[Industrial Application Field] This invention relates to a ceramic particle-dispersed composite material that is excellent in both surface properties such as abrasion resistance and internal properties such as tensile strength and pressure moldability. This invention relates to a composite material that emphasizes surface properties and a method for producing the same. [Prior art] A single steel material has traditionally been used for the inner walls of slurry fluid transport pipes or agitator drums, but because of the large amount of damage caused by wear, materials with better wear resistance are required. It has been. Ceramic is a material with excellent wear resistance, but since ceramic lacks toughness, there are problems with its strength when used alone. Therefore, a composite material that takes advantage of the advantages of both ceramic and metal by dispersing ceramic particles in a metal matrix has been considered, and various developments related to this have been carried out. Main examples of recently proposed composite materials and methods for producing the same are as follows. Ceramic particle-dispersed composite material with Al matrix and manufacturing method by molten metal forging method (Eiichi Nakata, molten metal forging as a composite technology, metal,
1982-2, P19-22) A manufacturing method in which composite particles in which ceramic particles are coated with a hydrogen-absorbing active metal and are made to absorb hydrogen are mixed into a molten metal (Japanese Patent Application Laid-Open No. 59-93846) Using a matrix metal material as a backing metal, A manufacturing method in which the backing metal and a reinforcing particle dispersion layer containing or not containing a matrix metal material are pressure-formed in the half-melting temperature range of the matrix metal material (Japanese Patent Laid-Open No. 58
-153706) [Problems to be solved by the invention] All conventional composite materials and manufacturing methods have the following problems. With technology (a), there is an example of composite material production using a melting forging method using Al as a metal matrix. This method takes advantage of the fact that the specific gravity of Al is small and is not much different from ceramic particles, and the melting temperature of Al is lower than that of steel, so there is less risk of the particles breaking due to thermal shock during forging. Basically, it cannot be applied to the production of composite materials using ordinary steel as a matrix. In addition, in this melt forging method, the molten metal for the matrix is injected from above the particles to be dispersed, so it is difficult for the gas existing between the particles or the gas generated during casting to escape, resulting in the formation of cavities in the product. The disadvantage is that the quality deteriorates. In the technology (b), Ti and Ti are used as hydrogen storage metals.
Although it uses Zr, Ta, Nb, etc., it requires a complicated process of coating ceramic particles with such metals and allowing the coated metals to absorb hydrogen. Furthermore, although this method improves the wettability between the particles and the metal matrix, because the nature of the method requires that the ceramic particles be in powder form, it is not possible to obtain wear resistance as good as that of ceramic alone. (c) Both of the above manufacturing methods aim to uniformly disperse ceramic particles throughout the matrix metal, and for this reason, composite materials manufactured by these methods have high compression resistance and wear resistance. Although it has excellent properties, it has the disadvantage of low tensile strength. In addition, since forming by rolling, pressing, etc. is difficult, cutting and grinding must be performed to achieve the required dimensional accuracy, but this process is expensive, and the ceramic material is removed from the surface of the composite material during cutting and grinding. Particles often peel off and fall off. If this process can be replaced by pressure molding, considerable cost reductions and quality improvements are expected. In technology (d), we proposed that a layer containing ceramic particles be present only in the surface layer as a way to increase the tensile strength and pressure formability without impairing the wear resistance of the particle-dispersed composite material. It is something. However, with this method, it is difficult to form a surface layer with a high volumetric filling rate of ceramic particles, and it is difficult to take advantage of the wear resistance inherent in ceramics. An object of the present invention is to provide a matrix particle-dispersed composite material and a method for manufacturing the same, which solves these problems. [Means for solving the problem] The present inventors conducted various experimental studies in order to obtain a high-quality composite material that has both surface properties such as wear resistance and internal properties such as tensile strength and pressure formability. As a result of repeated studies, the inventors discovered that it is extremely effective to achieve the above objective by allowing ceramic particles to exist concentrated only in the surface layer of the matrix at an appropriate volumetric filling rate during the casting process, leading to the completion of the present invention. Ivy. That is, the present invention uses metal as a matrix,
It is a composite material in which ceramic particles are dispersed in the matrix metal, and the matrix is made of metal that is integrally cast from the front surface to the back surface, and the ceramic particles are dispersed on one side including the surface of the matrix metal. The subject matter is a ceramic particle-dispersed composite material, which forms a dispersed layer, and the other side is a single metal layer that does not contain ceramic particles, and the ceramic particle filling rate in the particle-dispersed layer is 45 to 85 vol%. do. FIG. 1 schematically shows the structure of the composite material of the present invention. 1 is a particle dispersion layer in which ceramic particles are dispersed in a matrix metal. Due to this structure, the composite material of the present invention has excellent wear resistance, tensile strength, and compression workability, particularly excellent wear resistance, and is also excellent in economical efficiency. Regarding abrasion resistance: By having ceramic particles having an appropriate particle size present at an appropriate filling rate only on the surface side, the abrasion resistance is significantly improved compared to the case of steel alone. In particular, the composite material of the present invention exhibits particularly high wear resistance because it contains a relatively large number of ceramic particles in its particle dispersion layer. In general, many wear-resistant members, such as slurry fluid transport pipes, require wear resistance on only one surface of their inner walls. If the composite material of the present invention is used as a material for such parts, very satisfactory results can be obtained. Regarding tensile strength and pressure moldability: In general ceramic particle dispersed composite materials, the amount of deformation of the ceramic particles is smaller than the amount of deformation of the metal matrix during tension. Therefore, cavities are formed in the area where the ceramic particles are present, causing stress concentration. For this reason, a composite material containing ceramic particles uniformly dispersed throughout its thickness will have poor tensile strength. The composite material of the present invention has a particle dispersion layer containing ceramic particles only on the surface side, and a single metal layer consisting of only a matrix metal (for example, steel) in contact with it, so it can withstand large tensile forces. I can do it. For the same reason, the pressure moldability is also good. For example, a composite material with a thickness of 40 mm in which the matrix is made of a Co-based heat-resistant alloy and alumina particles with an average grain size of 2 mm are dispersed on the surface side to a thickness of 10 mm at a filling rate of 74 vol% is hot rolled at 1200°C. , reduction rate 43
% rolling was possible. Therefore, the composite material of the present invention can be used for rolling processing. Furthermore, the composite material of the present invention has a strength similar to that of a material made only of steel, even when subjected to bending in which compressive stress is applied to the particle dispersed layer. That is, the second
As shown in the figure, when a vertical contact force N is exerted by an object P on the surface of the particle dispersion layer 1, which is a wear-resistant surface,
A state of bending appears. Then, a compressive stress is applied to the ceramic particle portion of the particle dispersion layer 1, and a tensile stress is applied to the portion of the metal single layer 2 consisting only of steel. Such a situation is often experienced in areas where parts come into contact, that is, where wear resistance is a problem. In a member in which ceramic particles are uniformly dispersed throughout, the tensile stress generated by such bending also acts on the parts containing the ceramic particles, so there is a risk that the member will break due to stress concentration for the reasons mentioned above. However, in the composite material of the present invention, the tensile stress is received only in the steel part, and the compressive stress is received in the layer part containing the ceramic particles, so the above-mentioned bending, which has been a problem in the past, can be avoided. It can withstand enough. Regarding economic efficiency: Since the composite material of the present invention has ceramic particles dispersed only in the required thickness on the surface side, it is possible to satisfy the required performance with the minimum amount of ceramic required, thus eliminating the need for the use of expensive ceramics. Raw material costs can be reduced through volume savings. Further, extra steps such as bonding are not required. In the composite material of the present invention, the volumetric filling rate of ceramic particles in the particle dispersion layer is limited to 45 to 85 vol% for the following reason. When the filling rate of ceramic particles in the particle dispersed layer increases, the wear resistance and heat insulation properties improve, but the tensile strength and pressure moldability of the particle dispersed layer decrease. As described above, the properties of the resulting composite vary considerably depending on the filling rate of the ceramic particles. According to the research conducted by the present inventors, in order to take advantage of the inherent wear resistance of ceramic, the particle filling rate in the ceramic particle dispersion layer needs to be 15 vol% or more, and when using this lower limit of 15 vol% and constant-shaped particles, 45 vol%, which is the middle point between the closest packing rate of 74 vol%, can be understood as the critical point of the properties of the particle dispersed layer from the viewpoint of use.
In the composite material of the present invention, by setting the particle filling rate in the ceramic particle dispersion layer to 45 vol% or more,
Particularly high abrasion resistance is ensured, and practically sufficient tensile strength and pressure moldability are obtained. however,
If it exceeds 85 vol%, the rollability will drop significantly, and if the filling rate is increased by using particles of several sizes, it will be difficult to get hot water between the particles during casting, so it should be 85 vol% or less. shall be. The matrix metal used in the composite material of the present invention is not particularly limited as long as it has the necessary tensile strength, and common steel, heat-resistant alloys, stainless steel, etc. can be used depending on the purpose. Examples of ceramic particles include Al 2 O 3 ,
Oxide ceramics such as 3Al 2 O 3・2SiO 2 and ZrO 2 ,
Carbide ceramics such as SiC, TiC,
Examples include nitride ceramics such as Si 3 N 2 and AlN. Next, we will discuss the size of ceramic particles.
Regarding the average particle size of the ceramic, there is no need to worry about cracking due to thermal shock, the size is such that the molten metal in the matrix can easily penetrate between the ceramic particles during casting, and the ceramic has sufficient wear resistance. 1 to 10 mm, more preferably 1 to 5 mm, considering the possible size and pressure molding processability of manufacturing parts.
mm is preferred. Next, let's talk about specific gravity. Table 1 shows the specific gravity of typical ceramics used in the present invention.

〔実施例〕〔Example〕

次に本発明の複合材に関する実施例を説明す
る。
Next, examples relating to the composite material of the present invention will be described.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように、本発明の複合
材は耐摩耗性と引張強度・加圧成形性の両方に優
れ、とりわけ耐摩耗性に優れる。また、高価なセ
ラミツクの使用量の節減を可能とする上、製造が
容易で、加圧成形による加工も可能であるので、
経済性にも優れる。従つて、耐衝撃性と合わせ高
い耐摩耗性を要求される部材や、更に断熱性、軽
量化が要求される部材など、種々の用途の部材に
適用できる。 また、本発明の製造方法は、一体のマトリツク
ス金属の表面側に多量のセラミツク粒子が存在す
る高性能の複合材を簡単に製造できる。また、溶
湯を鋳込型下部から注入し、鋳込型内に存在する
各種のガスを鋳込の進行とともに効率よく外部へ
排出するので、粒子分散層に空洞などのない緻密
な複合材を製造できる。
As is clear from the above description, the composite material of the present invention is excellent in both abrasion resistance, tensile strength, and pressure moldability, and is particularly excellent in abrasion resistance. In addition, it is possible to reduce the amount of expensive ceramic used, and it is easy to manufacture and can be processed by pressure molding.
It is also highly economical. Therefore, it can be applied to members for a variety of purposes, such as members that require high abrasion resistance in addition to impact resistance, and members that require further insulation and weight reduction. Further, the manufacturing method of the present invention can easily manufacture a high-performance composite material in which a large amount of ceramic particles are present on the surface side of an integral matrix metal. In addition, the molten metal is injected from the bottom of the casting mold, and the various gases present in the casting mold are efficiently discharged to the outside as the casting progresses, producing a dense composite material with no cavities in the particle dispersion layer. can.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の複合材の構成を模式的に示す
斜視図、第2図はセラミツク粒子分散層に外力が
働いて現出した曲げの状態を示す説明図、第3図
第4図は本発明の複合材を製造する装置の一例を
概略的に示した断面図、第5図はピニオンデイス
ク方式による延べ摺動距離と摩耗による減量の関
係を示したグラフ、第6図は粒子径と耐摩耗率お
よび粒子径と圧延率の関係を示したグラフ、第7
図はアルミナ粒子分散層の厚さと引張強度および
同厚さと耐摩耗性の関係を示したグラフ、第8図
はアルミナ粒子分散層の厚さと圧延率の関係を示
したグラフである。 1:粒子分散層、2:金属単体層、3:高周波
炉、4:スタンプ炉、5:容器、6:セラミツク
粒子、7:鋳込型、8:注湯孔、9:溶融金属、
10:天蓋、11,12:ガス抜き孔、13:落
し蓋、14:押えレンガ、15:高周波コイル、
16:湯道、17:通気性耐火物、18:ガス吸
引管。
Fig. 1 is a perspective view schematically showing the structure of the composite material of the present invention, Fig. 2 is an explanatory drawing showing the bending state that appears when an external force is applied to the ceramic particle dispersion layer, Fig. 3, and Fig. 4 are A cross-sectional view schematically showing an example of the apparatus for manufacturing the composite material of the present invention, FIG. 5 is a graph showing the relationship between the total sliding distance and the weight loss due to wear using the pinion disk method, and FIG. 6 is a graph showing the relationship between the particle size and Graph showing the relationship between wear resistance rate, particle size and rolling rate, No. 7
The figure is a graph showing the relationship between the thickness of the alumina particle dispersed layer and the tensile strength, and the thickness and abrasion resistance. FIG. 8 is a graph showing the relationship between the thickness of the alumina particle dispersed layer and rolling ratio. 1: particle dispersion layer, 2: metal single layer, 3: high frequency furnace, 4: stamp furnace, 5: container, 6: ceramic particles, 7: casting mold, 8: pouring hole, 9: molten metal,
10: Canopy, 11, 12: Gas vent hole, 13: Drop lid, 14: Holding brick, 15: High frequency coil,
16: Runway, 17: Breathable refractory, 18: Gas suction pipe.

Claims (1)

【特許請求の範囲】 1 金属をマトリツクスとし、該マトリツクス金
属中にセラミツク粒子が分散した複合材であつ
て、マトリツクスが表面から裏面まで一体的に鋳
造された金属からなり、そのマトリツクス金属の
表面を含む一方の側にセラミツク粒子が分散して
粒子分散層を形成し、他方の側がセラミツク粒子
を含まない金属単体層とされ、粒子分散層におけ
るセラミツク粒子の充填率が45〜85vol%である
ことを特徴とするセラミツク粒子分散型複合材。 2 セラミツク粒子の平均粒子径が1mm以上であ
ることを特徴とする特許請求の範囲第1項記載の
セラミツク粒子分散型複合材。 3 加圧成形用であることを特徴とする特許請求
の範囲第1項または第2項記載のセラミツク粒子
分散型複合材。 4 セラミツク粒子の比重がマトリツクス金属の
1/2以下であることを特徴とする特許請求の範囲
第1〜第3項のいずれかに記載のセラミツク粒子
分散型複合材。 5 セラミツク粒子の熱伝導率がマトリツクス金
属の1/2以下であることを特徴とする特許請求の
範囲第1〜第4項のいずれかに記載のセラミツク
粒子分散型複合材。 6 セラミツク粒子がメツキされていることを特
徴とする特許請求の範囲第1〜第5項のいずれか
に記載のセラミツク粒子分散型複合材。 7 下部に少なくとも1つの注湯孔を有しかつガ
ス抜き孔あるいは通気性を備えた天蓋を有する鋳
込型の内部に上方に空間を残してセラミツク粒子
を堆積、装入しておき、前記下部の注湯孔より溶
融金属を流入させて前記堆積セラミツク粒子を溶
融金属で押し上げるようにしながら鋳込を行い、
最終的に鋳込型内に充満した溶融金属の上層部に
セラミツク粒子を45〜85vol%の充填率で存在さ
せ、このままの状態で鋳込み金属を凝固させるこ
とを特徴とするセラミツク粒子分散型複合材の製
造方法。 8 鋳込型内に堆積、装入されたセラミツク粒子
の堆積面を水平状にすることを特徴とする特許請
求の範囲第7項に記載のセラミツク粒子分散型複
合材の製造方法。 9 鋳込型内に堆積、装入されたセラミツク粒子
の堆積面を水平状にしその上に平盤状の落し蓋を
載せ置くことを特徴とする特許請求の範囲第7項
に記載のセラミツク粒子分散型複合材の製造方
法。 10 鋳込型内に堆積、装入されたセラミツク粒
子を鋳込に先立つて予熱することを特徴とする特
許請求の範囲第7〜第9項の何れかに記載のセラ
ミツク粒子分散型複合材の製造方法。
[Scope of Claims] 1 A composite material in which a metal is used as a matrix and ceramic particles are dispersed in the matrix metal, wherein the matrix is made of metal that is integrally cast from the front surface to the back surface, and the surface of the matrix metal is Ceramic particles are dispersed on one side to form a particle-dispersed layer, and the other side is a single metal layer that does not contain ceramic particles, and the filling rate of ceramic particles in the particle-dispersed layer is 45 to 85 vol%. A ceramic particle-dispersed composite material with special characteristics. 2. The ceramic particle-dispersed composite material according to claim 1, wherein the average particle diameter of the ceramic particles is 1 mm or more. 3. The ceramic particle-dispersed composite material according to claim 1 or 2, which is used for pressure molding. 4. The ceramic particle dispersed composite material according to any one of claims 1 to 3, wherein the specific gravity of the ceramic particles is 1/2 or less of that of the matrix metal. 5. The ceramic particle dispersed composite material according to any one of claims 1 to 4, characterized in that the thermal conductivity of the ceramic particles is 1/2 or less of that of the matrix metal. 6. The ceramic particle dispersed composite material according to any one of claims 1 to 5, characterized in that the ceramic particles are plated. 7 Ceramic particles are deposited and charged into a casting mold having at least one pouring hole in the lower part and a canopy with a gas vent or ventilation, leaving a space above. Casting is performed by flowing molten metal through the pouring hole and pushing up the deposited ceramic particles with the molten metal,
A ceramic particle-dispersed composite material characterized by having ceramic particles present at a filling rate of 45 to 85 vol% in the upper layer of the molten metal that finally fills the casting mold, and solidifying the cast metal in this state. manufacturing method. 8. The method for manufacturing a ceramic particle dispersed composite material according to claim 7, characterized in that the deposition surface of the ceramic particles deposited and charged in the casting mold is made horizontal. 9. Ceramic particle dispersion according to claim 7, characterized in that the deposition surface of the ceramic particles deposited and charged in the casting mold is made horizontal and a flat plate-shaped drop lid is placed on it. Method of manufacturing mold composites. 10. The ceramic particle dispersed composite material according to any one of claims 7 to 9, characterized in that the ceramic particles deposited and charged in the casting mold are preheated prior to casting. Production method.
JP27162084A 1984-12-22 1984-12-22 Ceramic particle dispersion type composite material and its production Granted JPS61149456A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27162084A JPS61149456A (en) 1984-12-22 1984-12-22 Ceramic particle dispersion type composite material and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27162084A JPS61149456A (en) 1984-12-22 1984-12-22 Ceramic particle dispersion type composite material and its production

Publications (2)

Publication Number Publication Date
JPS61149456A JPS61149456A (en) 1986-07-08
JPH0569900B2 true JPH0569900B2 (en) 1993-10-04

Family

ID=17502606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27162084A Granted JPS61149456A (en) 1984-12-22 1984-12-22 Ceramic particle dispersion type composite material and its production

Country Status (1)

Country Link
JP (1) JPS61149456A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5168157B2 (en) * 2009-01-09 2013-03-21 富士通株式会社 Housing material and manufacturing method thereof
JP5892873B2 (en) * 2012-06-19 2016-03-23 株式会社東芝 Steam turbine

Also Published As

Publication number Publication date
JPS61149456A (en) 1986-07-08

Similar Documents

Publication Publication Date Title
CA1325706C (en) Process for obtaining a metallurgical bond between a metal material, or a composite material having a metal matrix, and a metal casting or a metal-alloy casting
US7776255B1 (en) Hollow shell and method of manufacture
CN100439279C (en) Formula of caput of composition type stopper
US5595622A (en) Method of making a boron carbide cermet with an aluminum oxide layer
US5791397A (en) Processes for producing Mg-based composite materials
JPS6022676B2 (en) Silicon nitride/boron nitride composite sintered body and its manufacturing method
CN109128005B (en) Metal framework toughened ceramic composite material and preparation method and application thereof
CN102676956B (en) Method for preparing iron-based surface composite material by virtue of in-situ synthesis
JPH0569900B2 (en)
JPH0569901B2 (en)
JPH0625386B2 (en) Method for producing aluminum alloy powder and sintered body thereof
CN111304482B (en) Method for improving elastic modulus of particle reinforced aluminum matrix composite
JPS61143547A (en) Cylinder for plastic molding apparatus
JP3260210B2 (en) Die casting injection sleeve and method of casting aluminum or aluminum alloy member
CN111113633A (en) Novel special-shaped blank tundish turbulence controller and preparation method thereof
JP2599729B2 (en) Ingot making method for alloy articles
JPS6051669A (en) Continuous casting refractories
CN111113634A (en) Combined plate blank continuous casting tundish turbulence controller and preparation method thereof
JP2688729B2 (en) Aluminum corrosion resistant material
JP5582813B2 (en) Manufacturing method of ceramic member for molten metal
US5697421A (en) Infrared pressureless infiltration of composites
KR0180104B1 (en) Method of manufacturing aluminum alloy composite materials
JPS62142705A (en) Production of cylinder for plastic molding device
JP2547331B2 (en) Surface coating member
JP4217279B2 (en) Method for producing metal-ceramic composite material