KR0180104B1 - Method of manufacturing aluminum alloy composite materials - Google Patents

Method of manufacturing aluminum alloy composite materials Download PDF

Info

Publication number
KR0180104B1
KR0180104B1 KR1019960002682A KR19960002682A KR0180104B1 KR 0180104 B1 KR0180104 B1 KR 0180104B1 KR 1019960002682 A KR1019960002682 A KR 1019960002682A KR 19960002682 A KR19960002682 A KR 19960002682A KR 0180104 B1 KR0180104 B1 KR 0180104B1
Authority
KR
South Korea
Prior art keywords
particles
aluminum alloy
composite material
reinforcing
alloy
Prior art date
Application number
KR1019960002682A
Other languages
Korean (ko)
Other versions
KR970062056A (en
Inventor
이경구
이도재
Original Assignee
이경구
이도재
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이경구, 이도재 filed Critical 이경구
Priority to KR1019960002682A priority Critical patent/KR0180104B1/en
Publication of KR970062056A publication Critical patent/KR970062056A/en
Application granted granted Critical
Publication of KR0180104B1 publication Critical patent/KR0180104B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1005Pretreatment of the non-metallic additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • B22F3/03Press-moulding apparatus therefor
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/4505Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements characterised by the method of application
    • C04B41/4535Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements characterised by the method of application applied as a solution, emulsion, dispersion or suspension
    • C04B41/4541Electroless plating
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/03Making non-ferrous alloys by melting using master alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0047Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents
    • C22C32/0052Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents only carbides
    • C22C32/0063Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents only carbides based on SiC
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/32Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/38Coating with copper
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/42Coating with noble metals

Abstract

본 발명은 알루미늄(Al) 합금기 복합재료의 제조방법 좀더 상세하게는 탄화실리콘(SiC) 입자나 알루미나(Al2O3) 입자를 보강재로 사용하여 알루미늄 합금기 복합재료를 제조함에 있어 상기 보강재의 입자표면에 금속층을 피복하여 성형한 후 가압주조한 보강입자를 알루미늄 합금기지 내에 균일하게 분산시켜서 보강입자와 기지금속간에 결합력을 부여함으로서 내마모성 재료로 사용할 수 있도록 한 보강재 표면에 금속층을 피복한 알루미늄 합금기 복합재료의 제조방법에 관한 것이다.The present invention relates to a method of manufacturing an aluminum (Al) alloy composite material. More specifically, in the manufacture of an aluminum alloy composite material using silicon carbide (SiC) particles or alumina (Al 2 O 3 ) particles as a reinforcing material, Aluminum alloy coated with a metal layer on the surface of the reinforcing material that can be used as a wear-resistant material by applying a bonding force between the reinforcing particles and the base metal by uniformly dispersing the press-cast reinforcement particles in the aluminum alloy base after forming the metal layer on the particle surface. The present invention relates to a method for producing a composite material.

알루미늄 금속기지에 보강재로서 내마모성 입자인 탄화실리콘(SiC) 또는 알루미나(Al2O3) 등을 보강입자로 사용할 경우 보강입자에 무전해 도금법으로 Ni-P, Ag, Cu 등의 금속도금의 표면처리를 함으로써 700℃ 정도의 저온에서 기지금속과의 젖음성을 개선토록하여 기지금속과 보강재간의 결합력을 향상시키고 보강입자가 균일하게 분산토록하여 보강입자의 분산성을 향상시키고 젖음성을 개선하도록 한 알루미늄 합금기 복합재료의 제조방법에 관한 것이다.Surface treatment of metal plating such as Ni-P, Ag, Cu by electroless plating on reinforcement particles when silicon carbide (SiC) or alumina (Al 2 O 3 ), which are wear-resistant particles, is used as reinforcement in aluminum metal base. Aluminum alloy to improve the wettability between base metal and reinforcing material at low temperature of about 700 ℃ to improve the bonding force between base metal and reinforcing material and to make the reinforcing particles uniformly dispersed to improve dispersibility of reinforcing particle and improve wettability A method for producing a composite material.

Description

알루미늄 합금기 복합재료의 제조방법Manufacturing Method of Aluminum Alloy Composite

본 발명은 알루미늄(Al) 합금기 복합재료의 제조방법 좀더 상세하게는 탄화 실리콘(SiC) 입자나 알루미나(Al2O3) 입자를 보강재로 사용하여 알루미늄(Al) 합금기 복합재료를 제조함에 있서 상기 보강재의 입자표면에 금속층을 피복하여 성형한 후 가압주조한 보강입자를 알루미늄(Al) 합금기지내에 균일하게 분산시켜 보강입자와 기지금속간에 결합력을 부여함으로서 내마모성 재료를 사용할 수 있도록 한 보강재 표면에 금속층을 피복한 알루미늄 합금기 복합재료의 제조방법에 관한 것이다.The present invention relates to a method of manufacturing an aluminum (Al) alloy composite material. More specifically, in the preparation of an aluminum (Al) alloy composite material using silicon carbide (SiC) particles or alumina (Al 2 O 3 ) particles as a reinforcing material. After coating the metal layer on the particle surface of the reinforcing material and molding, the pressure-reinforced reinforcing particles are uniformly dispersed in the aluminum (Al) alloy base to impart a bonding force between the reinforcing particles and the base metal so that the wear resistant material can be used. A method for producing an aluminum alloy base composite material coated with a metal layer.

복합재료는 기존 금속의 결점을 대폭 보완할 뿐만 아니라 금속재료가 갖지 못하는 새로운 기능을 부여할 수 있어 우주항공 및 정밀기계기구 등에 응용범위가 날로 확대되어 가고 있는 신소재이다. 이러한 입자 강화금속기 복합재료는 금속 기지의 연성과 보강입자의 고경도, 고강도 특성이 결합된 재료이므로 강화입자의 균일한 분산과 기지금속과의 젖음성(Wettability)이 재료의 성능을 결정하는 중요한 요인이 된다. 통상의 복합재료의 제조시 기지금속은 알루미늄(Al)이나 마그네슘(Mg) 합금 등이 주로 사용되고 있는바, 이러한 기지금속은 금속표면의 산화피막이 보강재와의 젖음성을 저해하는 문제가 있는 것으로 알려져 있다.Composite materials not only make up for the shortcomings of existing metals, but also can give new functions that metal materials do not have, and thus the application range of aerospace and precision machinery is expanding. Since the grain-reinforced metal-based composite material combines the ductility of the metal matrix with the high hardness and high strength characteristics of the reinforcement particles, uniform dispersion of the reinforcement particles and wettability with the matrix metal are important factors that determine the performance of the material. do. As a base metal in the manufacture of a conventional composite material, aluminum (Al) or magnesium (Mg) alloy is mainly used. Such a base metal is known to have a problem that the oxide film on the metal surface inhibits the wettability with the reinforcing material.

특히 알루미늄(Al) 합금기 복합재료에서 보강재로 탄화실리콘(SiC)을 사용한 경우 기지조직인 알루미늄 합금기와 보강재간의 원활한 결합은 충분한 젖음성(Wettability)을 전제로 하지만 실제로는 액상 알루미늄 또는 고상 알루미늄의 표면에 존재하는 산화 피막 때문에 탄화실리콘(SiC)과 잘 젖음되지 않거나 접촉되지 못하는 문제점이 있어 개선을 위한 여러가지 방법이 제안되었다. 일례로 알루미늄 기지금속과 탄화실리콘 보강입자간의 적절한 계면접촉과 충분한 젖음을 위하여 고온에서 장시간 유지하는 방법이 있으나, 이는 잠복시간이 길어지며 반응시간이 길어짐에 따라 계면반응에 의하여 계면에 불연속반응생성물인 탄화알루미늄(Al4C3)이 형성되고 이 생성물은 보강재의 물성을 저하시키는 단점이 있었다. 또, 기지금속과 보강재간의 과도한 반응을 피하면서 젖음성을 개선하기 위한 계면반응조절을 위하여 기지금속에 마그네슘(Mg), 티타늄(Ti), 리튬(Li) 등의 활성원소를 첨가함으로서 젖음성을 개선시키는 방법이 제안되었으나 공정의 추가라는 문제가 있었다.In particular, when silicon carbide (SiC) is used as a reinforcement in an aluminum (Al) alloy composite, the smooth coupling between the aluminum alloy and the reinforcement, which is known as a structure, is based on sufficient wettability, but it is actually present on the surface of liquid aluminum or solid aluminum. Due to the oxide film, there is a problem that the silicon carbide (SiC) is not wet or contact well, and various methods for improvement have been proposed. For example, there is a method of maintaining a long time at a high temperature for proper interfacial contact between the aluminum base metal and the silicon carbide reinforcement particles and sufficient wetness. However, as the incubation time becomes longer and the reaction time becomes longer, discontinuous reaction products are formed at the interface due to the interfacial reaction. Aluminum carbide (Al 4 C 3 ) is formed and this product has the disadvantage of lowering the physical properties of the reinforcing material. In addition, by adding active elements such as magnesium (Mg), titanium (Ti) and lithium (Li) to the base metal to control the interfacial reaction to improve the wettability while avoiding excessive reaction between the base metal and the reinforcing material, The method has been proposed but has the problem of adding a process.

한편으로는 제조방법의 개선으로 산화피막의 영향을 배제하여 젖음성을 개선하는 방법이 연구되고 있었는바, 이러한 제조방법을 살펴보면, 분말야금법, 주조법 및 복합주조법 등을 들 수 있다.On the other hand, a method of improving the wettability by removing the influence of the oxide film by the improvement of the manufacturing method has been studied. Looking at such a manufacturing method, powder metallurgy, casting and complex casting methods may be mentioned.

그러나 분말야금법의 경우 기지금속과 보강입자를 미리 혼합 성형함으로서 보강입자의 균일한 분산성을 꾀할 수 있으나, 원료분말 입자표면의 산화피막 등으로 인하여 물성의 저하가 문제시되며, 또한 제조과정의 복잡성으로 제조단가가 상승되는 문제점이 있었다. 또, 주조법이나 복합주조법의 경우에는 제조시 반응온도가 800℃ 이상으로 높기 때문에 보강재의 물성이 저하되며 기지금속의 응고시 보강입자가 국부적으로 몰려 복합재료의 물성을 결정짓는 균일한 분산이 이루어지지 않았고, 또 이를 감안하여 복합재료 제조후에 2차가공 즉 압연 및 압출을 행하여 분산성을 개선하기 위한 방법이 안출되었으나 이것 역시 2차가공에 따른 제조공정의 증가로 생산비가 증가하며 가공시 입자의 파괴에 따른 물성감소 요인이 발생하였다.However, in the case of powder metallurgy, it is possible to achieve uniform dispersibility of reinforcement particles by mixing and molding base metal and reinforcement particles in advance, but deterioration of physical properties due to oxide film on the surface of raw powder particles is also a problem. As a result, there was a problem that the manufacturing cost is increased. In the case of casting method or composite casting method, since the reaction temperature is higher than 800 ℃ during manufacturing, the properties of the reinforcing materials are lowered. In addition, in consideration of this, a method for improving dispersibility by performing secondary processing, that is, rolling and extrusion after manufacturing composite materials, was devised, but this also increased production cost due to the increase of manufacturing process according to secondary processing, and destroyed particles during processing. The decrease of physical property caused by.

제1도는 종래의 복합주조법에 의한 복합재료와 본 발명에 의한 복합재료의 미세 조직을 비교한 사진.1 is a photograph comparing the microstructure of a composite material according to the present invention and a composite material according to a conventional composite casting method.

제2도는 보강재에 금속층을 도금하여 제조한 복합재료의 인장강도가 개선됨을 나타내는 도표.2 is a diagram showing that the tensile strength of the composite material produced by plating a metal layer on the reinforcement is improved.

제3도는 보강재에 금속층을 도금하여 제조한 복합재료의 계면강도가 개선됨을 나타내는 도표.3 is a diagram showing that the interface strength of the composite material produced by plating a metal layer on the reinforcement is improved.

본 발명은 상기와 같은 문제점을 해결하기 위하여 안출한 것으로 보강재로서 내마모성 입자인 탄화실리콘(SiC) 또는 알루미나(Al2O3)등을 보강입자로 사용할 경우 보강입자에 무전해 도금법으로 금속도금의 표면처리를 함으로써 700℃정도의 저온에서 기지금속과의 젖음성을 개선토록 하여 알루미늄 기지금속과 보강재간의 결합력을 향상시키고 보강입자가 균일하게 분산토록하여 보강입자의 분산성을 향상시키는 젖음성을 개선하도록 한 알루미늄 합금기 복합재료의 제조방법에 관한 것으로 이를 상세히 설명하면 다음과 같다.The present invention has been made in order to solve the above problems, when using abrasion-resistant particles of silicon carbide (SiC) or alumina (Al 2 O 3 ) as the reinforcing particles as a reinforcing particle surface of the metal plating by electroless plating method to the reinforcing particles By improving the wettability with the base metal at the low temperature of about 700 ℃, the bonding strength between the aluminum base metal and the reinforcing material is improved and the reinforcing particles are uniformly dispersed to improve the wettability of the reinforcing particles. The present invention relates to a method for manufacturing an alloy-based composite material.

본 발명에서는 기지금속인 알루미늄 합금기는 Al, Al-Si합금, Al-Cu합금, Al-Cu-Si합금과 같은 것으로, 주로 Al-Si합금을 사용하고 보강재인 보강입자는 탄화실리콘(SiC) 또는 알루미나(Al2O3)를 사용하여 보강입자의 표면처리를 위한 금속도금은 Ni-p, Ag, Cu 등을 사용하게 된다.In the present invention, the aluminum alloy group as the base metal is Al, Al-Si alloy, Al-Cu alloy, Al-Cu-Si alloy, and the like, mainly using Al-Si alloy and the reinforcing particles as reinforcement are silicon carbide (SiC) or Ni-p, Ag, Cu, etc. are used for metal plating for surface treatment of reinforcing particles using alumina (Al 2 O 3 ).

[제1공정][Step 1]

[보강재인 보강입자의 표면처리][Surface Treatment of Reinforcement Particles as Reinforcements]

보강재인 탄화실리콘(SiC) 또는 알루미나(Al2O3)의 입자표면에 Ni-P, Ag, Cu 등을 일반적인 무전해 도금법을 사용하여 도금한다. 도금을 위한 탄화실리콘(SiC)입자는 표면의 이물질과 유기물질 제거를 위해 아세톤으로 10분간 초음파 세척한 후, 불산과 질산용액에 침지하여 표면을 거칠게 하고 (표면조화), 염화팔라듐으로 활성화 처리를 하여 사용한다. 도금에 사용되는 시약(도금액)의 조성은 다음 표와 같다. 특히 구리 도금의 경우에는 PH에 따른 석출속도 조절 및 자기분해 방지를 위해 수산화나트륨으로 PH를 항상 11.5~12.5 정도로 유지하였으며, 작업종료시에는 황산을 첨가하여 PH를 10.5 정도로 낮추어 Cu 석출을 최대한 억제한 상태를 유지한다.Ni-P, Ag, Cu, etc. are plated on the particle surface of silicon carbide (SiC) or alumina (Al 2 O 3 ), which is a reinforcing material, using a general electroless plating method. Silicon carbide (SiC) particles for plating are ultrasonically cleaned with acetone for 10 minutes to remove foreign matter and organic matter from the surface, and then immersed in hydrofluoric acid and nitric acid solution to roughen the surface (surface conditioning), and activated with palladium chloride. Use it. The composition of the reagent (plating solution) used for plating is shown in the following table. In particular, in the case of copper plating, the pH was always kept at about 11.5 to 12.5 with sodium hydroxide to control the precipitation rate according to the pH and to prevent self-decomposition. At the end of the work, the pH was reduced to about 10.5 by adding sulfuric acid to minimize Cu precipitation. Keep it.

상기 공정은 보강재가 탄화실리콘(SiC)인 경우나 알루미나(Al2O3)인 경우를 막론하고, 또 도금할 금속이 Ni-P, Ag, Cu 어느 것인 경우에나 거의 유사한 공정을 거쳐 금속층을 보강재표면에 도금할 수 있는 것이다.The process is similar to the case where the reinforcing material is silicon carbide (SiC) or alumina (Al 2 O 3 ). It can be plated on the surface of the reinforcement.

[제2공정][Step 2]

[예비 성형체 제조][Preliminary molded article manufacturing]

상기 금속층이 도금된 보강입자와 적당량의 알루미늄(Al) 합금분말을 혼합한 후 약 1MPa의 압력으로 성형한다. 즉, 탄화실리콘(SiC) 입자의 부피비를 달리하여 복합재료를 제조하기 위하여는 적정 조성비로 Al 합금 분말과 SiC 분말을 혼합한 후 이론 밀도의 40%로 성형하여 Al-8vo%SiC, Al-17vo%SiC, Al-25vo%SiC의 예비 성형체를 제작하였다. 또한 탄화실리콘(SiC) 입자의 크기를 10-100㎛로 달리하여 탄화실리콘(SiC) 입자만을 금형에 장입할 수도 있다. 이때의 Al합금분말의 양은 목적으로 하는 보강입자의 함량에 따라 적이하게 조절한다.The metal layer is plated at a pressure of about 1 MPa after mixing the reinforcing particles plated with an appropriate amount of aluminum (Al) alloy powder. That is, in order to manufacture composite materials by varying the volume ratio of silicon carbide (SiC) particles, Al alloy powder and SiC powder are mixed at an appropriate composition ratio, and then molded to 40% of the theoretical density to Al-8vo% SiC, Al-17vo. A preform of% SiC and Al-25vo% SiC was produced. In addition, only silicon carbide (SiC) particles may be charged into the mold by varying the size of the silicon carbide (SiC) particles to 10-100㎛. At this time, the amount of Al alloy powder is adjusted to the enemy according to the content of the reinforcing particles to the target.

[제3공정][Step 3]

[복합재료 제조를 위한 가압주조][Pressure Casting for Manufacturing Composite Materials]

예비 성형체를 공기가 빠져나갈 수 있는 금속재 몰드에 넣어 99.999%의 고순도 아르곤 분위기 중에서 약 400℃, 바람직하게는 350~450℃의 범위 내에서 예열하고 한편 기지금속인 Al-Si 합금은 아르곤 분위기에서 약 700℃, 바람직하게는 700~750℃의 범위 내에서 용해한 후 탈가스 처리하여 상기 예열중인 예비 성형체에 주입하고 기지금속이 예비 성형체에 잘 스며들도록 하기 위하여 65MPa, 바람직하게는 60~70MPa의 범위 내에서 가압한 후 3분동안 유지한다. 상기에서 60~70MPa로 한 이유는 가압력이 이보다 낮을 경우에는 용탕이 예비성형체 내로 스며들지 않으며, 그 이상이 되면 예비성형체 중의 보강입자가 파괴되어 물성의 저하를 나타내기 때문이다.The preform is placed in a metal mold through which air can escape and is preheated in a range of about 400 ° C., preferably 350 to 450 ° C., in a high purity argon atmosphere of 99.999%. After dissolving in the range of 700 ° C, preferably 700 ~ 750 ° C, degassing and injecting the preform in preheating, and in order to allow the base metal to penetrate the preform, it is within the range of 65MPa, preferably 60 ~ 70MPa. Pressurize at and hold for 3 minutes. The reason for the above 60 to 70MPa is that when the pressing force is lower than this, the molten metal does not penetrate into the preform, and if it exceeds, the reinforcing particles in the preform are destroyed, thereby deteriorating physical properties.

또, 상기에서 예비성형체의 예열조건을 350~450℃로 하는 이유는 가압주조시 용탕이 예비성형체 내로 쉽게 스며들도록 하기 위함이며, 온도가 낮을 경우에는 잘 스며들지 못하고 온도가 높으면 산화 등의 문제가 발생하기 때문이다. 용탕의 용해온도를 700~750℃로 하는 이유는 온도가 낮으면 가압 도중 예비성형체 상부에서 응고하여 성형체에 용탕이 스며들지 못하며, 온도가 높으면 용탕의 유동성 증가로 용탕이 성형체 하부로 빠져나가기 때문이다.In addition, the preheating condition of the preform is 350-450 ° C. in order to allow the molten metal to easily penetrate into the preform during press casting. When the temperature is low, the melt does not penetrate well. Because it occurs. The melting temperature of the molten metal is 700 ~ 750 ℃ because the low temperature causes solidification in the upper part of the preform during pressurization, so that the molten metal does not penetrate into the molded part. .

복합재료 완성체의 발췌를 용이하게 하기 위하여 금형의 벽면에는 고온 윤활제인 보론니트라이트를 도포한다.To facilitate the extraction of the finished composite, boronite, a high temperature lubricant, is applied to the wall of the mold.

상기의 공정을 거친 복합재료의 미세조직은 종래의 복합주조법으로 제조한 복합재료에 비하여 균일성이 월등히 향상되었음이 관찰되었다. (제1도 사진참조)It was observed that the microstructure of the composite material subjected to the above process was significantly improved in uniformity compared to the composite material prepared by the conventional composite casting method. (See Figure 1)

또한, 본 발명에 의하여 제조된 복합재료의 인장강도를 측정한 결과 제2도에 도시한 바와 같이 보강재에 금속층을 도금하지 않은 경우에 비하여 인장강도가 훨씬 개선되었음을 알 수 있었다. 또, 보강재의 표면에 Ni-P, Cu 등의 금속층을 피복하여 670℃에서 유지 시간을 달리하여 복합재료를 제조한 후 유지 시간에 따른 계면 강도를 푸시아우트(push out) 법에 의하여 측정하였는바, 제3도 본 발명에 의한 복합재료의 유지 시간의 변경에 따른 계면강도의 변화와 금속층을 도금하지 않은 경우를 대비한 그림에서 알 수 있듯이 본 발명에 의한 복합재료의 계면강도가 월등하게 개선되었음이 관찰되었다.In addition, as a result of measuring the tensile strength of the composite material prepared according to the present invention, it can be seen that the tensile strength is much improved compared to the case where the metal layer is not plated on the reinforcement as shown in FIG. In addition, by coating a metal layer such as Ni-P, Cu on the surface of the reinforcing material to produce a composite material by varying the holding time at 670 ℃, the interface strength according to the holding time was measured by the push out method. 3, the interfacial strength of the composite material according to the present invention is significantly improved, as can be seen in the case of the change in the interfacial strength according to the change of the holding time of the composite material according to the present invention and the case where the metal layer is not plated. This was observed.

상기와 같은 공정을 거쳐 제조된 알루미늄 합금기 복합재료는 금속피복층이 기지금속인 Al-Si 합금과 쉽게 반응하여 젖음성이 개선되어 이에 따른 결합력이 향상되며 보강입자가 균일한 분산을 보일 뿐만 아니라 제조온도가 낮고 제조시간이 짧아 보강입자와 기지금속간의 과도한 반응이 생기지 않기 때문에 물성이 좋은 복합재료를 제조할 수 있는 것이다.The aluminum alloy composite material prepared through the above process is easily reacted with Al-Si alloy, which is a metal coating layer, to improve the wettability. As a result, the bonding strength is improved and the reinforcing particles are uniformly dispersed. The low and short manufacturing time does not cause excessive reaction between the reinforcing particles and the base metal, thereby producing a composite material having good physical properties.

Claims (4)

알루미늄 합금기 복합재료에서 보강재로 사용되는 탄화실리콘(SiC) 입자표면에 염화니켈, 염화암모늄, 차아인산나트륨의 도금액을 이용하여 90℃에서 8~9PH 정도를 유지하는 무전해 도금법으로 Ni-P를 도금하는 제1공정과, 상기 금속층이 도금된 보강재입자와 적당량의 알루미늄(Al) 합금 분말을 1MPa로 가압하여 예비 성형하는 제2공정과, 상기 제2공정에 의하여 성형된 예비 성형체를 공기가 빠져나갈 수 있는 금속재 몰드에 넣어 아르곤 분위기 중에서 약 350~450℃로 예열하고 Al, Al-Si합금, Al-Cu합금, Al-Cu-Si합금에서 선택된 알루미늄 합금기를 아르곤 분위기 중에서 약 700~750℃로 용해한 후 탈가스 처리하여 상기 예열 중인 예비 성형체에 주입하고 60~70MPa로 가압주조함을 특징으로 하는 알루미늄 합금기 복합재료의 제조방법.Ni-P is an electroless plating method that maintains about 8-9 PH at 90 ° C by using a plating solution of nickel chloride, ammonium chloride, and sodium hypophosphite on the surface of silicon carbide (SiC) particles used as a reinforcing material in aluminum alloy composites. The first step of plating, the second step of preforming by pressing the reinforcing material particles plated with the metal layer and the appropriate amount of aluminum (Al) alloy powder at 1 MPa, and the preform molded by the second step Preheated to about 350 ~ 450 ℃ in argon atmosphere and put aluminum alloy group selected from Al, Al-Si alloy, Al-Cu alloy, Al-Cu-Si alloy into about 700 ~ 750 ℃ in argon atmosphere. Method of producing an aluminum alloy composite material, characterized in that the molten degassing process after injection into the preform being preheated and press-cast at 60 ~ 70MPa. 제1항에 있어서, 보강재로 알루미나(Al2O3)를 사용함을 특징으로 하는 알루미늄 합금기 복합재료의 제조방법.The method for producing an aluminum alloy composite material according to claim 1, wherein alumina (Al 2 O 3 ) is used as the reinforcing material. 제1항에 있어서, 보강재 입자표면에 Ag를, 초산은·암모니아수·주석산나트륨의 도금액을 이용하여 20℃에서 행하는 무전해 도금법으로 Ni-P를 대신하여 금속도금함을 특징으로 하는 알루미늄 합금기 복합재료의 제조방법.The aluminum alloy base composite material according to claim 1, wherein Ag is plated on the surface of the reinforcing material particle in place of Ni-P by an electroless plating method performed at 20 DEG C using a plating solution of silver acetate, ammonia water, and sodium tartrate. Manufacturing method. 제1항에 있어서, 보강재입자 표면에 Cu를, 황산구리·탄산나트륨·포르말린의 도금액을 이용하여 24℃에서 11.5~12.5PH 정도를 유지하는 무전해 도금법으로 Ni-P를 대신하여 금속 도금함을 특징으로 하는 알루미늄 합금기 복합재료의 제조방법.The metal plating is performed on the surface of the reinforcing material particles in place of Ni-P by electroless plating, which maintains about 11.5 to 12.5 PH at 24 ° C. using a plating solution of copper sulfate, sodium carbonate, and formalin. Method for producing an aluminum alloy base composite material.
KR1019960002682A 1996-02-05 1996-02-05 Method of manufacturing aluminum alloy composite materials KR0180104B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019960002682A KR0180104B1 (en) 1996-02-05 1996-02-05 Method of manufacturing aluminum alloy composite materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019960002682A KR0180104B1 (en) 1996-02-05 1996-02-05 Method of manufacturing aluminum alloy composite materials

Publications (2)

Publication Number Publication Date
KR970062056A KR970062056A (en) 1997-09-12
KR0180104B1 true KR0180104B1 (en) 1999-02-18

Family

ID=19450736

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019960002682A KR0180104B1 (en) 1996-02-05 1996-02-05 Method of manufacturing aluminum alloy composite materials

Country Status (1)

Country Link
KR (1) KR0180104B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100482534B1 (en) * 2001-04-19 2005-04-14 미츠비시 쥬고교 가부시키가이샤 Manufacturing method of radioactive subtance storage member and billet for extrusion

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101281794B1 (en) * 2011-03-28 2013-07-05 한국기계연구원 Fabrication method of aluminum matrix composites and aluminum matrix composite by the same
CN117418132A (en) * 2023-12-18 2024-01-19 阜新中孚轻金属科技有限公司 Al (aluminum) alloy 2 O 3 Preparation method of/A356 composite material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100482534B1 (en) * 2001-04-19 2005-04-14 미츠비시 쥬고교 가부시키가이샤 Manufacturing method of radioactive subtance storage member and billet for extrusion

Also Published As

Publication number Publication date
KR970062056A (en) 1997-09-12

Similar Documents

Publication Publication Date Title
KR0180769B1 (en) Diamond sintered body having strength and high wear-resistance and manufacturing method thereof
DE69734419T2 (en) Material for semiconductor carrier substrate and its production
EP0483190B1 (en) Method for the preparation of metal matrix composite materials
CA1325706C (en) Process for obtaining a metallurgical bond between a metal material, or a composite material having a metal matrix, and a metal casting or a metal-alloy casting
EP0223478A2 (en) Fibre-reinforced metal matrix composites
CN109022873B (en) 7XXX-SiC aluminum-based composite material and preparation method thereof
Chang et al. Processing copper and silver matrix composites by electroless plating and hot pressing
Nassef et al. Microstructure and mechanical behavior of hot pressed Cu-Sn powder alloys
JPS6341966B2 (en)
Gui M.-C. et al. Microstructure and mechanical properties of cast (Al–Si)/SiCp composites produced by liquid and semisolid double stirring process
KR0180104B1 (en) Method of manufacturing aluminum alloy composite materials
CN1244149A (en) Ambient temperature method for increasing the green strength of parts and articles made by consolidating powder, particulate, sheet or foil materials
JPH0413822A (en) Production of partially composite member
KR20100092055A (en) Magnesium-based composite material having ti particles dispersed therein, and method for production thereof
JPH0625386B2 (en) Method for producing aluminum alloy powder and sintered body thereof
Vanarotti et al. Surface modification of SiC reinforcements & its effects on mechanical properties of aluminium based MMC
CN100346903C (en) Method for improving quality of extrusion casting metal base composite
KR100547618B1 (en) Copper / amorphous composite material using copper-plated amorphous composite powder and its manufacturing method
JPS63286537A (en) Manufacture of grain dispersion-type composite material
JP3368178B2 (en) Manufacturing method of composite sintered alloy for non-ferrous metal melt
Hamid et al. Electroless Ni-Cr-B on Diamond Particles for Fabricated Copper/Diamond Composites as Heat Sink Materials
JPH0772315B2 (en) Highly wear-resistant alloy with excellent corrosion resistance to halogen gas and its manufacturing method
JPH0635630B2 (en) Method for producing aluminum borate whisker reinforced metal matrix composite material
Alizadeh et al. Microstructure, mechanical properties and wear behavior of ni-coated continuous carbon fiber-reinforced a356 aluminum matrix composites fabricated by squeeze casting
JP3396800B2 (en) Composite sintered alloy for non-ferrous metal melt and method for producing the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20031007

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee