JPH056948A - Method of manufacturing radiator made of ceramic - Google Patents

Method of manufacturing radiator made of ceramic

Info

Publication number
JPH056948A
JPH056948A JP3157209A JP15720991A JPH056948A JP H056948 A JPH056948 A JP H056948A JP 3157209 A JP3157209 A JP 3157209A JP 15720991 A JP15720991 A JP 15720991A JP H056948 A JPH056948 A JP H056948A
Authority
JP
Japan
Prior art keywords
radiator
ceramic
manufacturing
cut
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3157209A
Other languages
Japanese (ja)
Other versions
JP2912732B2 (en
Inventor
Motohide Arayama
元秀 荒山
Yasuhiro Goto
泰宏 後藤
Naotada Tani
直嗣 谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP3157209A priority Critical patent/JP2912732B2/en
Publication of JPH056948A publication Critical patent/JPH056948A/en
Application granted granted Critical
Publication of JP2912732B2 publication Critical patent/JP2912732B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73253Bump and layer connectors

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PURPOSE:To simplify a manufacturing processing of a radiator made of ceramics for use in a semiconductor package or the like and elevate processing efficiency. CONSTITUTION:A ceramic material is so molded as to be of a shape having a plurality of through holes 12 in the same direction and the obtained mold is calcined, and thereafter a partition wall 13 of the through hole 12 is cut and the cut partition wall 13 is set as a fin 11.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体パッケージなど
に空冷機能を持たせるために用いられるセラミック製放
熱体の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a ceramic heat radiator used for providing a semiconductor package with an air cooling function.

【0002】[0002]

【従来の技術】従来より、高速、高密度LSIなどの半
導体パッケージにおいて、チップに発生する熱を逃が
し、冷却するための放熱体が用いられていた。例えば、
図1(B)に示すように、チップを収納した半導体パッ
ケージ20のキャップ21に放熱体10が取り付けられ
ていた。この放熱体10は図1(A)に示すように、複
数のフィン11を持った櫛形形状であり、その材質とし
て、従来はアルミニウムなどの金属が用いられていた
が、近年は軽量化や、パッケージを構成するセラミック
スとの熱膨張率を一致させるために、熱伝導率に優れた
窒化アルミニウム質焼結体が用いられてきた。
2. Description of the Related Art Conventionally, in a semiconductor package such as a high-speed and high-density LSI, a heat radiator for radiating heat generated in a chip and cooling it has been used. For example,
As shown in FIG. 1 (B), the radiator 10 was attached to the cap 21 of the semiconductor package 20 accommodating the chip. As shown in FIG. 1 (A), this radiator 10 has a comb shape having a plurality of fins 11, and conventionally, as a material thereof, a metal such as aluminum was used. In order to match the coefficient of thermal expansion with that of the ceramics constituting the package, an aluminum nitride sintered body having excellent thermal conductivity has been used.

【0003】このように放熱体10をセラミックスで形
成する場合の製造方法は、図2(B)に工程図を示す通
りであった。まず、セラミック原料をゴム型に充填して
ラバープレスし、この成形体の周囲に切削加工を施して
ブロック形状とする。次に、このブロック状成形体を焼
成した後、図6に示すように焼結体30に対しダイヤモ
ンドカッター31で複数の溝を切削加工し、さらに外
周、下面を切削加工することによって、図1に示すよう
な複数のフィン11を持った放熱体10を形成してい
た。
The manufacturing method for forming the radiator 10 with ceramics in this way is as shown in the process diagram of FIG. First, a ceramic raw material is filled in a rubber mold, rubber-pressed, and the periphery of this molded body is cut into a block shape. Next, after firing this block-shaped molded body, as shown in FIG. 6, a plurality of grooves are cut on the sintered body 30 by a diamond cutter 31, and further the outer periphery and the lower surface are cut, whereby The radiator 10 having the plurality of fins 11 as shown in FIG.

【0004】[0004]

【発明が解決しようとする課題】ところが、上記のよう
な従来の製造方法では、ブロック状の焼結体に複数の溝
切削加工を施していたため、極めて加工効率の悪いもの
であった。また、切削加工を施す部分が多いため原料の
無駄が多く、コストの高いものであった。
However, in the conventional manufacturing method as described above, since the block-shaped sintered body is subjected to a plurality of groove cutting processes, the processing efficiency is extremely low. Further, since many parts are subjected to cutting work, a large amount of raw material is wasted and the cost is high.

【0005】さらに、焼結体に切削加工を行うため、放
熱体10を構成する窒化アルミニウム質焼結体に窒化硼
素(BN)を添加するなどして、切削性を高める必要が
あり、放熱体10自体の熱伝導率を向上させることに限
界があった。
Further, in order to perform cutting on the sintered body, it is necessary to improve the machinability by adding boron nitride (BN) to the aluminum nitride sintered body forming the heat radiator 10. There was a limit to improving the thermal conductivity of 10 itself.

【0006】そこで、あらかじめ複数のフィン11を持
った形状に成形し、焼成することが考えられていたが、
焼成時に各フィンが変形するなどの問題点があった。
[0006] Therefore, it has been considered to preliminarily form a shape having a plurality of fins 11 and to fire it.
There was a problem that each fin was deformed during firing.

【0007】[0007]

【課題を解決するための手段】上記に鑑みて本発明は、
複数のフィンを持ったセラミック製放熱体の製造にあた
って、同一方向に複数の貫通孔を有するセラミック成形
体を焼成した後、上記貫通孔の隔壁部を切断し、切断後
の隔壁部をフィンとしてセラミック放熱体を得るように
したものである。
In view of the above, the present invention provides:
In manufacturing a ceramic heat radiator having a plurality of fins, after firing a ceramic molded body having a plurality of through holes in the same direction, the partition wall portions of the through holes are cut, and the cut partition wall portions are used as fins for the ceramic. It is intended to obtain a radiator.

【0008】[0008]

【実施例】以下本発明実施例を説明する。EXAMPLES Examples of the present invention will be described below.

【0009】図1(A)に示すように、本発明による放
熱体10は複数のフィン11をもった櫛形形状である。
そして、図1(B)に示すように、キャップ21、ベー
ス22、ピン23からなる半導体パッケージ20のキャ
ップ21に、上記放熱体10を接合することによって、
チップに発生する熱を逃がし、冷却できるようになって
いる。また、図1(C)に示すように、放熱体10自体
をキャップとして半導体パッケージ20を構成すること
もできる。さらに、この放熱体10は、半導体パッケー
ジ20だけではなく、冷却を必要とするさまざまな半導
体装置に用いることができる。
As shown in FIG. 1A, a radiator 10 according to the present invention has a comb shape having a plurality of fins 11.
Then, as shown in FIG. 1B, the heat radiator 10 is bonded to the cap 21 of the semiconductor package 20 including the cap 21, the base 22, and the pin 23.
The heat generated in the chip can be dissipated and cooled. Further, as shown in FIG. 1C, the semiconductor package 20 can be configured by using the radiator 10 itself as a cap. Further, the heat radiator 10 can be used not only for the semiconductor package 20 but also for various semiconductor devices that require cooling.

【0010】また、この放熱体10は、窒化アルミニウ
ム(AlN)、酸化ベリリウム(BeO)、炭化珪素
(SiC)等を主成分とする熱伝導率100W/m・K
以上のセラミックスからなるが、特に、AlNを主成分
とし、希土類元素やアルカリ土類元素の酸化物、窒化
物、フッ化物などの焼結助剤を含有する窒化アルミニウ
ム質焼結体が、熱伝導率の点で最も優れている。さら
に、図1(B)のように放熱体10とキャップ21を接
合する場合は、メタライズ、ガラス接合などにより接合
する。さらに、この場合は、放熱体10とキャップ21
を同じ種類のセラミックスで形成すれば、熱膨張差によ
る不都合をなくすことができる。
The heat radiator 10 has a thermal conductivity of 100 W / m · K, which is mainly composed of aluminum nitride (AlN), beryllium oxide (BeO), silicon carbide (SiC) and the like.
Of the above ceramics, in particular, an aluminum nitride-based sintered body containing AlN as a main component and a sintering aid such as an oxide, a nitride, or a fluoride of a rare earth element or an alkaline earth element has a high thermal conductivity. Most excellent in terms of rate. Further, when the radiator 10 and the cap 21 are joined as shown in FIG. 1B, they are joined by metallization, glass joining, or the like. Further, in this case, the radiator 10 and the cap 21
By forming the same type of ceramics, it is possible to eliminate the inconvenience caused by the difference in thermal expansion.

【0011】このようなセラミック製放熱体10の製造
方法は、図2(A)に工程図を示す通りである。まず、
窒化アルミニウムなどのセラミック粉末に所定の焼結助
剤およびバインダーを添加して原料を調合し、この原料
を金型中に充填してプレス成形するが、このとき、図3
(A)に示すように、放熱体10は、同一方向に複数の
長穴状の貫通孔12を持った形状となるように成形す
る。しかも、上下パンチによるプレス成形の加圧方向
は、図3(A)中の矢印方向、即ち各貫通孔12と同一
方向となるように成形することによって、加圧方向の成
形体厚みが等しくなることから、密度を均一にできる。
The manufacturing method of such a ceramic radiator 10 is as shown in the process diagram of FIG. First,
A raw material is prepared by adding a predetermined sintering aid and a binder to ceramic powder such as aluminum nitride, and the raw material is filled in a mold and press-molded.
As shown in (A), the radiator 10 is molded so as to have a shape having a plurality of elongated hole-shaped through holes 12 in the same direction. Moreover, the pressurizing direction of the press forming by the upper and lower punches becomes the same as the direction of the arrow in FIG. Therefore, the density can be made uniform.

【0012】次に、得られた成形体を所定温度で焼成し
た後、得られた焼結体に対し、図3(B)に示すよう
に、隔壁部13中の切断線Xで切断することによって、
図3(C)に示すように、残された隔壁部13を放熱体
10のフィン11とすることができる。
Next, after firing the obtained molded body at a predetermined temperature, the obtained sintered body is cut along a cutting line X in the partition wall portion 13 as shown in FIG. 3 (B). By
As shown in FIG. 3C, the remaining partition wall portion 13 can be used as the fin 11 of the radiator 10.

【0013】このような本発明の製造方法によれば、放
熱体10の各フィン11の先端が連結した状態で焼成す
るため、焼成時のフィン11(隔壁13)の変形を防止
できる。また、図2に従来の製造方法と比較した工程図
を示すように、本発明の製造方法(図2(A))は、プ
レス成形して、焼成後切断するだけであって、従来例
(図2(B))のように焼成後の溝加工、下面加工など
が必要ないことから、製造工程が簡略化され、加工効率
が極めて高い。また、本発明の製造方法によれば、焼結
体の切削加工が必要ないため、原料の無駄が少なく、し
かも焼結体の切削性を高める必要がないため、より熱伝
導率に優れた材質を用いることもできる。
According to the manufacturing method of the present invention as described above, the fins 11 (partition walls 13) can be prevented from being deformed during firing because the fins 11 of the radiator 10 are fired in a connected state. Further, as shown in FIG. 2 which is a process diagram comparing with the conventional manufacturing method, the manufacturing method of the present invention (FIG. 2 (A)) only involves press forming, firing and cutting. As shown in FIG. 2B, groove processing and bottom surface processing after firing are not required, so that the manufacturing process is simplified and the processing efficiency is extremely high. Further, according to the manufacturing method of the present invention, since the cutting of the sintered body is not required, the waste of the raw material is small, and further, it is not necessary to enhance the machinability of the sintered body. Can also be used.

【0014】また、上記実施例では放熱体10のフィン
11の先端を連結した形状のものを示したが、本発明は
必ずしもこの実施例に限るものではない。例えば、図4
(A)に示すように、最終製品の2倍の大きさで、かつ
線対称形状となるような形状にプレス成形しておいて、
焼成した後、中央の切断線Xで切断することによって、
図4(B)に示すように2個の放熱体10を得ることも
できる。この場合は、切断して捨てる部分がないため、
原料の無駄を極めて少なくできる。
Further, in the above embodiment, the shape in which the tips of the fins 11 of the radiator 10 are connected is shown, but the present invention is not necessarily limited to this embodiment. For example, in FIG.
As shown in (A), press-molded into a shape that is twice the size of the final product and has a line-symmetrical shape,
After firing, by cutting along the central cutting line X,
It is also possible to obtain two radiators 10 as shown in FIG. In this case, there is no part to cut and discard,
The waste of raw materials can be extremely reduced.

【0015】また、以上の実施例では、プレス成形によ
り成形したものを示したが、この他に図5に示すように
押し出し成形を行うこともできる。この場合も、圧力の
加わる押し出し方向(矢印方向)は各貫通孔12と同一
方向にしてあり、押し出された成形体を所定寸法となる
ように、各切断線Yで切断し、得られた成形体を焼成し
た後、各隔壁部13を切断することによって、複数のフ
ィン11を持ったセラミック製放熱体10を得ることが
できる。さらに、本発明の製造方法では、これらの他に
射出成形、鋳込成形などさまざまな成形方法をとること
ができる。
Further, in the above-mentioned embodiments, the one formed by press molding is shown, but in addition to this, extrusion molding can be performed as shown in FIG. Also in this case, the extrusion direction to which pressure is applied (arrow direction) is the same as that of each through hole 12, and the extruded compact is cut along each cutting line Y so as to have a predetermined dimension, and the obtained compact After firing the body, the partition walls 13 are cut to obtain the ceramic radiator 10 having a plurality of fins 11. Further, in the manufacturing method of the present invention, various molding methods such as injection molding and cast molding can be used in addition to these.

【0016】ここで、本発明実施例として、図4に示す
方法で放熱体10を製造した。まず、原料として、主成
分のAlNと、焼結助剤としてEr2 3 とバインダー
を添加混合した。次にこの原料を金型に充填し、プレス
成形した。得られた成形体を、1750℃で焼成した
後、ダイヤモンドカッターを用いて中央の切断線Xを切
断し、2個のセラミック製放熱体10を得た。最終的な
大きさは、外形が34×34×21mmで、各フィン1
1の厚みは1.3mm、各フィン11の隙間は1.3m
mとし、フィン11の数は14枚とした。
Here, as an example of the present invention, the radiator 10 was manufactured by the method shown in FIG. First, as a raw material, AlN as a main component, Er 2 O 3 as a sintering aid, and a binder were added and mixed. Next, this raw material was filled in a mold and press-molded. The obtained molded body was fired at 1750 ° C., and then the central cutting line X was cut using a diamond cutter to obtain two ceramic radiators 10. The final size is 34 x 34 x 21 mm, and each fin 1
The thickness of 1 is 1.3 mm, the gap between each fin 11 is 1.3 m
m, and the number of fins 11 was 14.

【0017】これに対し、比較例として、全く同一形
状、同一大きさのセラミック製放熱体10を従来の方法
で製造した。即ち、上記と同様のセラミック原料に、切
削性を高めるために窒化硼素(BN)を添加し、この原
料をラバープレスによりブロック状に成形した後、周囲
を切削加工し、焼成した後、溝および外周、下面の切削
加工を施し、セラミック製放熱体10を形成した。
On the other hand, as a comparative example, a ceramic radiator 10 having exactly the same shape and size was manufactured by a conventional method. That is, boron nitride (BN) was added to the same ceramic raw material as described above to improve the machinability, this raw material was molded into a block shape by a rubber press, the periphery was cut, and after firing, grooves and The outer periphery and the lower surface were cut to form a ceramic radiator 10.

【0018】これらの本発明および比較例の製造方法に
ついて、それぞれの工程に要する時間、原料ロス、およ
び得られた放熱体の熱伝導率を比較したところ、結果は
表1に示す通りであった。なお、表1中、加工時間は比
較例を1とした時の比であり、また原料ロスは、出発原
料に対する割合で表した。この表1より明らかなよう
に、本発明は比較例に比べ加工時間が1/5と短く、し
かも原料ロスが1%と少極めて少ないことがわかる。し
かも、本発明の製造方法によって得られた放熱体10
は、切削性を高めるための添加物を含有していないた
め、熱伝導率を高くでき、放熱体10としての放熱特性
を高めることができる。
With respect to these manufacturing methods of the present invention and the comparative example, the time required for each step, the raw material loss, and the thermal conductivity of the obtained radiator were compared, and the results are shown in Table 1. .. In Table 1, the processing time is the ratio when Comparative Example 1 is 1, and the raw material loss is expressed as a ratio to the starting raw material. As is clear from Table 1, the processing time of the present invention is 1/5 that of the comparative example, and the material loss is 1%, which is extremely small. Moreover, the radiator 10 obtained by the manufacturing method of the present invention
Does not contain an additive for improving the machinability, so that the thermal conductivity can be increased and the heat dissipation characteristics of the radiator 10 can be improved.

【0019】[0019]

【表1】 [Table 1]

【0020】[0020]

【発明の効果】このように、本発明のセラミック製放熱
体の製造方法によれば、同一方向に複数の貫通孔を有す
るセラミック成形体を焼成した後、上記貫通孔の隔壁部
を切断し、切断後の隔壁部をフィンとすることによっ
て、極めて簡単な工程で櫛形形状のセラミック製放熱体
を製造することができる。また切削工程が少ないため、
原料のムダが少なく、低コストに製造できる。さらに、
焼結体の切削工程が少ないため、放熱体を形成するセラ
ミックスの切削性を高くする必要はなく、熱伝導率の高
い材質を用いることができる。
As described above, according to the method for manufacturing a ceramic heat radiator of the present invention, after firing a ceramic molded body having a plurality of through holes in the same direction, the partition walls of the through holes are cut, By using the fins as the partition walls after cutting, it is possible to manufacture a comb-shaped ceramic heat radiator by an extremely simple process. Also, because there are few cutting processes,
There is little waste of raw material, and it can be manufactured at low cost. further,
Since the number of steps for cutting the sintered body is small, it is not necessary to enhance the machinability of the ceramics forming the radiator, and a material having high thermal conductivity can be used.

【0021】したがって、優れた特性のセラミック製放
熱体を安価に得ることができ、超高速LSI等に好適に
用いることができる。
Therefore, a ceramic radiator having excellent characteristics can be obtained at a low cost and can be suitably used for an ultra-high speed LSI or the like.

【図面の簡単な説明】[Brief description of drawings]

【図1】(A)はセラミック製放熱体を示す斜視図であ
る。(B)(C)はそれぞれセラミック製放熱体を取り
付けた半導体パッケージを示す側面図である。
FIG. 1A is a perspective view showing a ceramic radiator. (B) and (C) are side views showing a semiconductor package to which a ceramic heat radiator is attached.

【図2】(A)は本発明の製造方法を示す工程図、
(B)は従来の製造方法を示す工程図である。
FIG. 2A is a process drawing showing the manufacturing method of the present invention,
(B) is a process diagram showing a conventional manufacturing method.

【図3】(A)(B)(C)は、それぞれ本発明のセラ
ミック製放熱体の製造方法を説明するための図である。
3 (A), (B) and (C) are views for explaining a method for manufacturing a ceramic radiator according to the present invention.

【図4】(A)(B)は、それぞれ本発明の他の実施例
を説明するための図である。
4A and 4B are views for explaining another embodiment of the present invention.

【図5】本発明のさらに他の実施例を説明するための図
である。
FIG. 5 is a diagram for explaining still another embodiment of the present invention.

【図6】従来のセラミック製放熱体の製造方法を説明す
るための図である。
FIG. 6 is a diagram for explaining a conventional method for manufacturing a ceramic radiator.

【符号の説明】[Explanation of symbols]

10・・・放熱体 11・・・フィン 12・・・貫通孔 13・・・隔壁部 20・・・半導体パッケージ 21・・・キャップ 22・・・ベース 23・・・ピン 10 ... Radiator 11 ... Fin 12 ... Through hole 13 ... Partition part 20 ... Semiconductor package 21 ... Cap 22 ... Base 23 ... Pin

Claims (1)

【特許請求の範囲】 【請求項1】セラミック原料粉末を、同一方向に複数の
貫通孔を有するような成形体と成し、得られた成形体を
焼成した後、上記貫通孔の隔壁部を切断して、切断後の
隔壁部をフィンとすることを特徴とするセラミック製放
熱体の製造方法。
Claim: What is claimed is: 1. A ceramic raw material powder is formed into a compact having a plurality of through holes in the same direction, the obtained compact is fired, and then the partition wall of the through hole is removed. A method for manufacturing a ceramic radiator, which is characterized in that the partition wall after cutting is used as a fin.
JP3157209A 1991-06-27 1991-06-27 Manufacturing method of ceramic radiator Expired - Fee Related JP2912732B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3157209A JP2912732B2 (en) 1991-06-27 1991-06-27 Manufacturing method of ceramic radiator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3157209A JP2912732B2 (en) 1991-06-27 1991-06-27 Manufacturing method of ceramic radiator

Publications (2)

Publication Number Publication Date
JPH056948A true JPH056948A (en) 1993-01-14
JP2912732B2 JP2912732B2 (en) 1999-06-28

Family

ID=15644599

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3157209A Expired - Fee Related JP2912732B2 (en) 1991-06-27 1991-06-27 Manufacturing method of ceramic radiator

Country Status (1)

Country Link
JP (1) JP2912732B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007103326A (en) * 2005-09-06 2007-04-19 Jimbo Electric Co Ltd Wiring fixture
JP2007128935A (en) * 2005-11-01 2007-05-24 Showa Denko Kk Manufacturing method of base for power module
US8371367B2 (en) 2005-08-11 2013-02-12 Mitsubishi Denki Kabushiki Kaisha Heat sink and fabricating method of the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8371367B2 (en) 2005-08-11 2013-02-12 Mitsubishi Denki Kabushiki Kaisha Heat sink and fabricating method of the same
JP2007103326A (en) * 2005-09-06 2007-04-19 Jimbo Electric Co Ltd Wiring fixture
JP2007128935A (en) * 2005-11-01 2007-05-24 Showa Denko Kk Manufacturing method of base for power module

Also Published As

Publication number Publication date
JP2912732B2 (en) 1999-06-28

Similar Documents

Publication Publication Date Title
JPH09157773A (en) Aluminum composite material having low thermal expandability and high thermal conductivity and its production
JP2000034172A (en) Highly thermoconductive silicon nitride sintered compact and its production
JP3960933B2 (en) High thermal conductive heat dissipation material and method for manufacturing the same
US5508240A (en) Aluminum nitride sintered body and method for manufacturing the same
EP0482812A2 (en) Method for manufacturing semiconductor-mounting heat-radiative substrates and semiconductor package using the same
JPH056948A (en) Method of manufacturing radiator made of ceramic
CA2560410C (en) Heat sink material, manufacturing method for the same, and semiconductor laser device
JP2577063Y2 (en) Semiconductor package
JP2003309232A (en) Heat sink
JP4755754B2 (en) Silicon nitride substrate, silicon nitride circuit substrate using the same, and manufacturing method thereof
JPH0661387A (en) Semiconductor device heat dissipating board
JPH06329474A (en) Sintered aluminum nitride and its production
JPS5918165A (en) Manufacture of silicon nitride sintered body
JP2003300788A (en) Method for producing aluminum alloy-silicon carbide- based composite and structure for producing the same
JP2019210536A (en) Method of manufacturing thin plate member having fin
EP4411810A1 (en) Heat dissipation member
JP2002047545A (en) Manufacturing method of composite material
JPH05330924A (en) Production of aluminum nitride base plate and sintering vessel
JP5289184B2 (en) Method for producing high thermal conductivity silicon nitride sintered body
JPH06151622A (en) Package for accommodation of semiconductor element and its manufacture
JP2003073756A (en) Composite material and manufacturing method therefor
JPH04144967A (en) Aluminum nitride sintered compact and production thereof
JP2006076812A (en) Aluminum-ceramic composite and method for producing the same
EP1130644A3 (en) Package and method of manufacturing the same
JPH06151637A (en) Insulating aluminum nitride heat-radiation plate provided with lead

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees