JPH0568875B2 - - Google Patents

Info

Publication number
JPH0568875B2
JPH0568875B2 JP58057849A JP5784983A JPH0568875B2 JP H0568875 B2 JPH0568875 B2 JP H0568875B2 JP 58057849 A JP58057849 A JP 58057849A JP 5784983 A JP5784983 A JP 5784983A JP H0568875 B2 JPH0568875 B2 JP H0568875B2
Authority
JP
Japan
Prior art keywords
pps
sheet
temperature
heat treatment
printed wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58057849A
Other languages
Japanese (ja)
Other versions
JPS59184588A (en
Inventor
Keijiro Yamada
Minoru Kitanaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP5784983A priority Critical patent/JPS59184588A/en
Publication of JPS59184588A publication Critical patent/JPS59184588A/en
Publication of JPH0568875B2 publication Critical patent/JPH0568875B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は耐屈曲被労性に代表される機械的性質
および半田耐熱性に代表される耐熱性のすぐれた
フレキシブルプリント配線板に関するものであ
る。 絶縁基材上に銅箔などの金属箔からなる導体を
平面的に貼り合せて構成したいわゆるプリント配
線板は各種家電製品、電子計算機、通信機および
各種計器類などの電気電子産業の分野において大
量に使用されている。 フレキシブルプリント配線板用絶縁基材として
は、たとえばポリイミドフイルム、ポリエステル
フイルムおよび“テフロン”フイルムなどが用い
られているが、ポリイミドフイルムは製造時に樹
脂を溶解するための溶剤の使用を必要とし、溶媒
の回収や処理が繁雑で公害衛生上好ましくないと
いう問題があるばかりか高価で吸湿時の寸法およ
び電気特性の変化が大きく、ポリエステルフイル
ムは半田耐熱性などの耐熱性が劣り、また“テフ
ロン”フイルムは高価で金属箔との接着性および
加工性が劣るという欠点がある。また最近ポリフ
エニレンスルフイド樹脂(以下PPSと略称する。)
がそのすぐれた耐薬品性、耐熱性、電気特性およ
び不燃性などの点で注目され、プリント配線板用
絶縁基材としての応用(例えば特開昭54−85380
号公報)も提案されている。しかしながらPPSは
上記の如きすぐれた性能を持ちながら、そのフイ
ルムまたはシートは結晶化により、その靭性が著
しく低下し、ガラス繊維などの繊維状強化剤を含
有させたとしても耐衝撃性などは改善されるもの
の、耐屈曲被労性や耐折損性は全く発現せず、フ
レキシブルなプリント配線板を与えるのが難かし
いという問題がある。 そこで本発明者らは従来のPPSを絶縁基材とす
るプリント配線板の屈曲疲労性や耐折損性に代表
される機械的性質および半田耐熱性に代表される
耐熱性を改良することを目的として鋭意検討した
結果、素材たるPPSを特定の条件で熱処理してそ
の結晶化ピーク温度を160℃以下とし、これの絶
縁基材として用いることにより、PPSのすぐれた
性能を保持し、しかも上記目的に合致したプリン
ト配線板が得られることを見出し本発明に到達し
た。 すなわち本発明はPPS粉粒体または実質的に無
配向のPPSシート状物を、その結晶化ピーク温度
が160℃以下になるように酸素の存在下、樹脂の
融点以上の温度で熱処理し、次いで必要に応じて
圧縮成形して得たシートを絶縁基材とし、その少
なくとも一面に金属箔を接合してなるプリント配
線板を提供するものである。 本発明に用いるPPSとは構造式
The present invention relates to a flexible printed wiring board that has excellent mechanical properties such as bending resistance and heat resistance such as solder heat resistance. So-called printed wiring boards, which are constructed by laminating conductors made of metal foil such as copper foil on an insulating base material, are used in large quantities in the electrical and electronic industry fields, such as various home appliances, computers, communication equipment, and various instruments. used in For example, polyimide film, polyester film, and "Teflon" film are used as insulating base materials for flexible printed wiring boards, but polyimide film requires the use of a solvent to dissolve the resin during manufacturing, and the solvent Not only is it complicated to collect and dispose of, making it undesirable in terms of pollution and hygiene, but it is also expensive and its dimensions and electrical properties change significantly when moisture is absorbed.Polyester film has poor heat resistance such as soldering heat resistance, and "Teflon" film has It has the drawbacks of being expensive and having poor adhesion to metal foil and poor processability. In addition, recently polyphenylene sulfide resin (hereinafter abbreviated as PPS)
It has attracted attention for its excellent chemical resistance, heat resistance, electrical properties, and non-flammability, and has been used as an insulating base material for printed wiring boards (for example, Japanese Patent Application Laid-Open No. 54-85380
Publication No. 2) has also been proposed. However, although PPS has the above-mentioned excellent performance, the toughness of the film or sheet deteriorates significantly due to crystallization, and impact resistance etc. cannot be improved even if a fibrous reinforcing agent such as glass fiber is included. However, there is a problem in that it does not exhibit any bending resistance or breakage resistance, and it is difficult to provide a flexible printed wiring board. Therefore, the present inventors aimed to improve the mechanical properties such as bending fatigue resistance and breakage resistance, and the heat resistance such as soldering heat resistance of conventional printed wiring boards using PPS as an insulating base material. As a result of extensive research, we have found that by heat-treating the material PPS under specific conditions to bring its crystallization peak temperature to 160℃ or less, and using it as an insulating base material, we can maintain the excellent performance of PPS and still achieve the above purpose. The present invention was achieved by discovering that it is possible to obtain a printed wiring board that matches the above. That is, in the present invention, a PPS powder or a substantially non-oriented PPS sheet is heat-treated in the presence of oxygen at a temperature higher than the melting point of the resin so that its crystallization peak temperature is 160°C or lower, and then The present invention provides a printed wiring board in which a sheet obtained by compression molding as required is used as an insulating base material, and a metal foil is bonded to at least one surface of the insulating base material. What is the structural formula of PPS used in the present invention?

【式】で示される繰り返し単位を90 モル%以上、好ましくは95モル%以上含む重合体
であり、温度300℃、みかけの剪断速度200sec-1
の条件下で測定した溶融粘度が50〜50000ポイズ、
とくに100〜20000ポイズの範囲にあるものが適当
である。なお使用するPPSはタルク、溶融シリ
カ、マイカ、ガラスビーズなどの粒状充填剤、滑
剤、結晶核剤、着色剤および離型剤などの通常の
添加剤や可撓性を有する全芳香族ポリアミド繊維
等、本発明の基材の耐折性を低下させない有機繊
維および本発明の熱処理効果を促進するための過
酸化物などの助剤を含有することができ、また本
発明の目的を阻害しない範囲で他種ポリマを少割
合ブレンドすることもできる。 本発明でいうPPS粉粒体とは粉末、チツプ、ペ
レツトなどであり、PPSシート状物とは実質的に
無配向のPPSからなる厚さ1mm以下の板状ないし
はフイルム状物である。このPPSシート状物は押
出成形、圧縮成形などで成形できるが、押出成形
により製造するのが適当である。またこのシート
状物の実質的に無配向とは積極的な延伸、圧延な
どの分子鎖を配向させる操作を加えていないこと
を意味する。 本発明の絶縁基材は上記PPS粉粒体または実質
的に無配向のPPSシート状物を、酸素の存在下に
PPSの融点以上、とくに280〜450℃の温度で、
PPSの結晶化ピーク温度が160℃以下になるよう
熱処理し、次いで必要に応じ圧縮成形することに
より得られる。 ここでいうPPSの融点および結晶化ピーク温度
とは次の方法で測定した値を意味する。すなわち
示差走査熱量計(パーキンエルマー社製、DSC
−IB型)を用い、約10mgのPPSを試料として窒
素ガス雰囲気中、昇温速度20℃/分で加熱し、
360℃になつた時点で5分間保持した後、冷却速
度20℃/分で降温する際の昇温時に現われる吸熱
ピークの頂点を融点とし、降温時に現われる発熱
ピークの頂点を結晶化ピーク温度とする。PPSの
熱処理温度はPPSの融点以上が必須要件であり、
融点以下の温度で熱処理する場合にはPPSの結晶
化ピーク温度を160℃以下にすることができず、
耐屈曲疲労性などの機械的性質がすぐれたプリン
ト配線板を得ることができない。なお熱処理温度
の上限は450℃程度であり、必要以上に高く設定
するのは適当でない。また熱処理を酸素の存在下
に行なうことも必須要件であり、減圧下や窒素な
どの不活性ガス雰囲気下で熱処理する場合には
PPSの結晶化ピーク温度を160℃以下に低下せし
めることができず、本発明の目的は達成されな
い。 熱処理時間は熱処理温度により変化し、処理温
度が高いほど短時間でよいが、処理温度と処理時
間の組合せはPPSの結晶化ピーク温度が160℃以
下になるように設定すべきであり、結晶化ピーク
温度が160℃以上の段階で熱処理を中止する場合
には、耐屈曲疲労性の改善効果が十分でない。な
お本発明でいう結晶化ピーク温度が160℃以下と
は、熱処理の進行により、結晶化ピーク温度が実
質的に観測されなくなつた場合をも包含する。 絶縁基材たるPPSシートを得るための具体的な
手段としては次の(1)〜(3)法などが例示される。 (1) PPS粉粒体を上部を開放した底部の平坦な容
器に均一に散布し、これを熱処理装置に入れ、
上記条件で熱処理した後、これを一担冷却した
後再加熱するか、またはそのまま融点以上に保
持して圧縮成形に供し、シートを得る方法。 (2) PPS粉粒体を金属製コンベアベルト上に均一
散布し、これをPPSの融点以上に設定した加熱
装置中へ連続的に通過させて熱処理した後、加
熱装置直後の一対の金属ベルト間に粉粒体を導
き、金属ベルトに両側から圧力を加えながら連
続的に圧縮成形し、シートを得る方法。 (3) PPSシート状物の周辺部の少くとも一部をク
ランプ等で支持してこれを加熱装置に入れ、熱
処理する方法。 上記(1)および(2)法においては熱処理後のPPS粉
粒体は、熱処理によりその溶融粘度が著しく上昇
したものであるため、シートを得るために通常の
射出成形や押出成形などの溶融成形に供すること
は困難であり、圧縮成形法を用いる必要がある。
また上記(3)法においては熱処理後のシート状物を
そのまま絶縁基材に供することもできるが、必要
に応じてこれを再度圧縮成形して表面平滑性など
を調整した後絶縁基材にすることも可能である。
ただし上記(3)法において平面性良好なシート状物
を得るには、何らかの支持体を用いるか、または
シート状物自体が自己支持性を持つように、予め
PPSの融点以下の温度、例えば250℃程度で熱処
理を開始し、しかる後PPSの融点以上の温度での
熱処理を行なうのが好ましい。なお(3)法において
もPPSシートをステンレスステイール製ベルト上
などにおき、これを加熱装置中へ通過させること
などにより連続化が可能である。 熱処理に用いる装置としては熱風オーブン、赤
外線加熱炉およびそれらの組合せなどが挙げられ
る。 このように熱処理して得られるPPSシートは、
従来のPPSフイルムおよびシートに比し、結晶化
ピーク温度が160℃以下で、極めて結晶化しにく
い特性を有しており、かつその屈曲疲労回数が20
回以上というすぐれた性能を有している。すなわ
ち従来の押出成形などにより得られるPPSシート
はたとえば1回の折り曲げで折損するほど耐折損
性が劣るが、本発明の上記熱処理を得たPPSシー
トは20回以上折り曲げても折損することがなく、
ガラス繊維などの繊維状強化剤を含有せしめるこ
となく、機械的性質およびフレキシブル性のすぐ
れたプリント配線板用絶縁基板となり得る。 本発明のプリント配線板に絶縁基材として用い
る上記PPSシートの厚さには特に制限がなく、通
常は0.05〜5.0mmの範囲が選択される。なお場合
によつてはシートの厚みを増量するためにその一
面にさらに他樹脂からなるシートを積層して実用
に供することも可能である。 本発明のプリント配線板において、絶縁基板上
に設ける金属箔としては銅箔、アルミニウム箔、
銀箔などが挙げられるが、なかでも銅箔が代表的
である。金属箔の絶縁基板上への接合は上記(1)お
よび(2)法においては圧縮成形と同時に行なうこと
ができ、また(3)法においては熱処理後の任意の時
期に行なうことができる。金属箔の接合、形成の
具体的手段としてはとくに制限がなく、たとえば
銅箔などの金属箔を絶縁基材に貼り合せた後、金
属箔をパターンエツチングするいわゆるサブトラ
クテイブ法、絶縁基材上に銅等をパターン状にメ
ツキするアデイテイブ法、パターン状に打ち抜い
た銅箔等を絶縁基材に貼り合せるスタンピングホ
イル法などを利用することができる。また本発明
において絶縁基材と金属箔を接合する際には接着
剤を用いることなく、すぐれた接着強度を期待す
ることができるが、必要に応じて接着剤を使用す
れば一層すぐれた接着性が得られる。 かくしてなる本発明のプリント配線板は耐半田
性に代表される耐熱性、耐薬品性、電気特性およ
び不燃性などのすぐれた特性を保持し、しかも従
来のPPSを絶縁基材とするプリント配線板よりも
フレキシブルで耐屈曲疲労性、耐折損性および耐
熱半田性がすぐれており、各種電子、電機用途に
適用が期待される。 以下に実施例を挙げ本発明をさらに説明する。 なお実施例における屈曲疲労回数はJISP8115
に準じてMIT型試験機により測定した値である。 実施例1〜6および比較例1〜4 オートクレーブに、硫化ナトリウム32.6Kg
(250モル、結晶水40wt%を含む)、水酸化ナトリ
ウム100g、安息香酸ナトリウム36.1Kg(250モ
ル)、およびN−メチル−2−ピロリドン(以下
NMPと略称する)79.2Kgを仕込み、かく拌しな
がら徐々に205℃まで、昇温し、水6.9Kgを含む留
出液7.0を除去した。 残留混合物に、1,4−ジクロルベンゼン37.5
Kg(255モル)およびNMP20.0Kgを加え、265℃
で4時間加熱した。反応生成物を熱湯で8回洗浄
し、真空乾燥機を用いて、80℃で24時間乾燥し
て、溶融粘度2900ポイズ、融点277℃の粉末状高
重合度PPS21.1Kgを得た。 上記PPSを用い、押出成形により厚さ200mμ
のフイルムを作成した。 該フイルムの周辺を治具により支持し、大気圧
でオーブンを用いて第1表の条件で熱処理した。 ただし本発明における処理は、前処理として、
あらかじめ270℃、1時間処理したのち、段階的
に昇温した。 一方、ブチレンテレフタレート単位40重量%、
ブチレンイソフタレート単位27重量%、ドデカン
アミド単位33重量%からなるポリエステルアミド
樹脂70部とビスフエノール型エポキシ樹脂30部か
らなる接着剤(モノクロルベンゼン/メタノール
系混合溶媒に溶解したもの)を、市販のプリント
配線用電解銅箔(厚さ35μ)に塗布乾燥して接着
剤付き銅箔を作製した。 次に上記フイルムと接着剤付き銅箔とを重ね合
せて、130℃で加熱、圧着しさらに接着剤を熱硬
化させて銅張積層フイルム(プリント配線板)を
作つた。 得られた銅張積層フイルムの特性を評価した結
果を第1表に示す。
A polymer containing 90 mol% or more, preferably 95 mol% or more of repeating units represented by the formula, at a temperature of 300°C and an apparent shear rate of 200sec -1
Melt viscosity measured under the conditions of 50 to 50000 poise,
Particularly suitable is one in the range of 100 to 20,000 poise. The PPS used includes granular fillers such as talc, fused silica, mica, and glass beads, normal additives such as lubricants, crystal nucleating agents, colorants, and mold release agents, and flexible wholly aromatic polyamide fibers. , organic fibers that do not reduce the bending durability of the base material of the present invention, and auxiliary agents such as peroxides that promote the heat treatment effect of the present invention, and within a range that does not impede the purpose of the present invention. It is also possible to blend small proportions of other types of polymers. The PPS powder or granules in the present invention are powders, chips, pellets, etc., and the PPS sheet-like material is a plate-like or film-like material having a thickness of 1 mm or less and made of substantially non-oriented PPS. This PPS sheet-like product can be formed by extrusion molding, compression molding, etc., but it is appropriate to manufacture it by extrusion molding. Further, the term "substantially non-oriented" in this sheet-like material means that no operations such as active stretching or rolling to orient the molecular chains are applied. The insulating base material of the present invention is made by preparing the above-mentioned PPS powder or granular material or substantially non-oriented PPS sheet material in the presence of oxygen.
At temperatures above the melting point of PPS, especially between 280 and 450℃,
It can be obtained by heat-treating PPS so that its crystallization peak temperature is 160°C or less, and then compression molding if necessary. The melting point and crystallization peak temperature of PPS herein mean values measured by the following method. That is, a differential scanning calorimeter (manufactured by PerkinElmer, DSC
-IB type), approximately 10 mg of PPS was heated as a sample in a nitrogen gas atmosphere at a heating rate of 20°C/min.
When the temperature reaches 360°C, hold it for 5 minutes and then lower the temperature at a cooling rate of 20°C/min. The peak of the endothermic peak that appears when the temperature rises is the melting point, and the peak of the exothermic peak that appears when the temperature falls is the crystallization peak temperature. . The heat treatment temperature of PPS must be higher than the melting point of PPS.
If heat treatment is performed at a temperature below the melting point, the peak crystallization temperature of PPS cannot be lowered to 160℃ or less,
It is not possible to obtain a printed wiring board with excellent mechanical properties such as bending fatigue resistance. Note that the upper limit of the heat treatment temperature is about 450°C, and it is not appropriate to set it higher than necessary. It is also essential that the heat treatment be performed in the presence of oxygen, and when heat treatment is performed under reduced pressure or in an inert gas atmosphere such as nitrogen,
The crystallization peak temperature of PPS cannot be lowered to 160° C. or lower, and the object of the present invention is not achieved. The heat treatment time varies depending on the heat treatment temperature, and the higher the treatment temperature, the shorter the time. However, the combination of treatment temperature and treatment time should be set so that the PPS crystallization peak temperature is 160°C or less, and the crystallization If the heat treatment is stopped when the peak temperature is 160°C or higher, the effect of improving bending fatigue resistance will not be sufficient. Note that the crystallization peak temperature of 160° C. or lower as used in the present invention includes a case where the crystallization peak temperature is substantially no longer observed as the heat treatment progresses. Specific methods for obtaining a PPS sheet as an insulating base material include the following methods (1) to (3). (1) Spread PPS powder evenly into a flat container with an open top and place it in a heat treatment device.
After heat treatment under the above conditions, the product is cooled and then reheated, or the product is maintained above the melting point and subjected to compression molding to obtain a sheet. (2) After uniformly scattering PPS powder onto a metal conveyor belt and heat-treating it by continuously passing it through a heating device set at a temperature higher than the melting point of PPS, the powder is placed between a pair of metal belts immediately after the heating device. A method in which powder and granules are introduced into a metal belt and continuously compression-molded while applying pressure from both sides to obtain a sheet. (3) A method in which at least a portion of the periphery of a PPS sheet is supported with clamps, etc., and then placed in a heating device and heat treated. In methods (1) and (2) above, the PPS powder after heat treatment has a markedly increased melt viscosity, so it is melt-molded by ordinary injection molding or extrusion molding to obtain a sheet. However, it is difficult to subject the product to compression molding, and a compression molding method must be used.
In addition, in method (3) above, the sheet-like material after heat treatment can be used as an insulating base material as it is, but if necessary, it can be compression molded again to adjust the surface smoothness etc. before being used as an insulating base material. It is also possible.
However, in order to obtain a sheet with good flatness in method (3) above, it is necessary to use some kind of support or to prepare the sheet in advance so that it has self-supporting properties.
It is preferable to start the heat treatment at a temperature below the melting point of PPS, for example about 250° C., and then perform the heat treatment at a temperature above the melting point of PPS. Note that method (3) can also be made continuous by placing the PPS sheet on a stainless steel belt and passing it through a heating device. Equipment used for heat treatment includes hot air ovens, infrared heating furnaces, and combinations thereof. The PPS sheet obtained by heat treatment in this way is
Compared to conventional PPS films and sheets, it has a crystallization peak temperature of 160℃ or less, which makes it extremely difficult to crystallize, and the number of bending fatigue cycles is 20.
It has excellent performance of more than 10 times. In other words, PPS sheets obtained by conventional extrusion molding have such poor breakage resistance that they break after being bent once, but the PPS sheets obtained through the above heat treatment of the present invention do not break even after being folded 20 times or more. ,
An insulating substrate for printed wiring boards with excellent mechanical properties and flexibility can be obtained without containing a fibrous reinforcing agent such as glass fiber. There is no particular restriction on the thickness of the above-mentioned PPS sheet used as an insulating base material in the printed wiring board of the present invention, and a range of 0.05 to 5.0 mm is usually selected. In some cases, in order to increase the thickness of the sheet, it is also possible to further laminate a sheet made of another resin on one side of the sheet for practical use. In the printed wiring board of the present invention, the metal foil provided on the insulating substrate may include copper foil, aluminum foil,
Examples include silver foil, but copper foil is the most representative. Bonding of the metal foil onto the insulating substrate can be performed simultaneously with compression molding in methods (1) and (2), and can be performed at any time after heat treatment in method (3). There are no particular restrictions on the specific means for bonding and forming metal foils. An additive method in which copper foil etc. are plated in a pattern, a stamping foil method in which copper foil etc. punched out in a pattern are bonded to an insulating base material, etc. can be used. In addition, in the present invention, excellent adhesive strength can be expected without using an adhesive when joining the insulating base material and the metal foil, but even better adhesive strength can be obtained if an adhesive is used as necessary. is obtained. The printed wiring board of the present invention thus obtained retains excellent properties such as heat resistance represented by solder resistance, chemical resistance, electrical properties, and nonflammability, and is also a printed wiring board using conventional PPS as an insulating base material. It is more flexible and has excellent bending fatigue resistance, breakage resistance, and heat solder resistance, and is expected to be applied to various electronic and electrical applications. The present invention will be further explained with reference to Examples below. In addition, the number of bending fatigue times in the examples is JISP8115.
This is a value measured using an MIT type testing machine in accordance with . Examples 1 to 6 and Comparative Examples 1 to 4 32.6 kg of sodium sulfide was added to the autoclave.
(250 mol, including 40 wt% water of crystallization), 100 g of sodium hydroxide, 36.1 Kg (250 mol) of sodium benzoate, and N-methyl-2-pyrrolidone (hereinafter
79.2 kg of NMP (abbreviated as NMP) was charged, and the temperature was gradually raised to 205°C while stirring, and 7.0 kg of distillate containing 6.9 kg of water was removed. In the residual mixture, 1,4-dichlorobenzene 37.5
Add Kg (255 mol) and NMP20.0Kg, 265℃
It was heated for 4 hours. The reaction product was washed 8 times with hot water and dried at 80°C for 24 hours using a vacuum drier to obtain 21.1 kg of powdered highly polymerized PPS having a melt viscosity of 2900 poise and a melting point of 277°C. Using the above PPS, the thickness is 200mμ by extrusion molding.
created a film. The periphery of the film was supported by a jig, and heat treated under the conditions shown in Table 1 using an oven at atmospheric pressure. However, the treatment in the present invention includes, as a pretreatment,
After processing in advance at 270°C for 1 hour, the temperature was raised stepwise. Meanwhile, 40% by weight of butylene terephthalate units,
An adhesive (dissolved in a monochlorobenzene/methanol mixed solvent) consisting of 70 parts of a polyesteramide resin consisting of 27% by weight of butylene isophthalate units and 33% by weight of dodecane amide units and 30 parts of a bisphenol type epoxy resin was used as a commercially available adhesive. Copper foil with adhesive was prepared by coating it on electrolytic copper foil (thickness 35μ) for printed wiring and drying it. Next, the above film and copper foil coated with adhesive were laminated, heated and pressed at 130°C, and the adhesive was further heat-cured to produce a copper-clad laminate film (printed wiring board). Table 1 shows the results of evaluating the properties of the obtained copper-clad laminated film.

【表】 第1表から明らかなように、PPSの融点(277
℃)以下で処理したフイルム(比較例1〜4)
は、屈曲疲労回数も小さく、半田耐熱性も悪い
が、PPSの融点以上で処理したフイルム(実施例
1〜6)は、屈曲疲労回数が、極めて高くすぐれ
た半田耐熱性を有することが判る。また、接着は
くり強さについても、非常に良好な値が得られて
いる。 実施例7〜9および比較例5〜6 実施例1と同様のPPSフイルムを、用いて、第
2表の条件でオーブン中で熱処理したフイルム
に、プリント配線板用電解銅箔(厚さ35μ)を、
重ね合せて、330℃に加熱された金型内に挿入し
て、圧縮成形機で20Kg/cm2の圧力で加圧し、ポリ
マを銅箔に熱融着せしめたのち、冷却し、銅張積
層フイルムを得た。 得られた銅張積層フイルムの特性を評価した結
果を第2表に示す。
[Table] As is clear from Table 1, the melting point of PPS (277
℃) or less (Comparative Examples 1 to 4)
It can be seen that the number of bending fatigue cycles is small and the soldering heat resistance is poor, but the films treated at temperatures above the melting point of PPS (Examples 1 to 6) have extremely high bending fatigue cycles and have excellent soldering heat resistance. Also, very good values were obtained for adhesive peel strength. Examples 7 to 9 and Comparative Examples 5 to 6 The same PPS film as in Example 1 was used, and the film was heat-treated in an oven under the conditions shown in Table 2. Electrolytic copper foil for printed wiring boards (thickness: 35μ) was applied to the film. of,
They are stacked one on top of the other, inserted into a mold heated to 330°C, and pressurized with a pressure of 20 kg/cm 2 using a compression molding machine to heat-fuse the polymer to the copper foil, then cooled and laminated with copper clad. I got the film. Table 2 shows the results of evaluating the properties of the obtained copper-clad laminate film.

【表】 第2表から明らかなように、銅箔をポリマーの
熱融着により接着しても本発明における銅張積層
フイルムは、非常に高い接着力を有し、半田耐熱
性に優れていることが判る。 実施例 10 実施例9と同様にして作成した銅張積層フイル
ムの銅箔をエツチングにより除去して、室温、相
対湿度RH80%における吸水による寸法変化を測
定した。 比較として、ポリイミドフイルム(“カプトン”
200H)について同様に寸法変化を測定した結果、
ポリイミドフイルムの0.17%に対し、本発明にお
けるPPSフイルムでは、0.015%であり吸湿時の
寸法安定性が極めて優れていた。 実施例11および比較例7〜8 実施例1と同様にして得られた粉末状のPPSを
用い平坦な鉄板上に均一に散布し、酸素の存在下
(大気中、オーブン)、減圧下(真空中、30mmHg)
窒素雰囲気下(窒素ブロー)でおのおの300℃、
1時間熱処理したのち、このPPSの上部にプリン
ト配線板用電解銅箔(厚さ35μ)を重ね合せて
330℃に加熱された金型を有する圧縮成形機に挿
入し、圧力20Kg/cm2で、加圧し、PPSと銅箔とを
熱融着せしめたのち、冷却し、銅張積層フイルム
を作成した。 得られた銅張積層フイルムの特性を、評価した
結果を第3表に示す。
[Table] As is clear from Table 2, the copper-clad laminate film of the present invention has extremely high adhesive strength and excellent solder heat resistance even when copper foil is bonded by thermal fusion of polymer. I understand that. Example 10 The copper foil of a copper-clad laminate film prepared in the same manner as in Example 9 was removed by etching, and dimensional changes due to water absorption at room temperature and relative humidity 80% were measured. For comparison, polyimide film (“Kapton”)
As a result of measuring the dimensional change in the same way for 200H),
Compared to 0.17% for polyimide film, the PPS film of the present invention had an extremely excellent dimensional stability when absorbing moisture, with a content of 0.015%. Example 11 and Comparative Examples 7 to 8 Powdered PPS obtained in the same manner as in Example 1 was uniformly spread on a flat iron plate and heated in the presence of oxygen (in the air, in an oven) and under reduced pressure (vacuum). Medium, 30mmHg)
300℃ under nitrogen atmosphere (nitrogen blow),
After heat treatment for 1 hour, electrolytic copper foil for printed wiring boards (thickness 35μ) was layered on top of this PPS.
It was inserted into a compression molding machine with a mold heated to 330°C, and pressurized at a pressure of 20 kg/cm 2 to thermally fuse the PPS and copper foil, and then cooled to create a copper-clad laminate film. . Table 3 shows the results of evaluating the properties of the obtained copper-clad laminated film.

【表】 第3表から明らかなように、真空中、窒素雰囲
気中での熱処理では屈曲疲労性の向上は全く認め
られなかつた。本発明の酸素の存在下で熱処理し
たものは結晶化ピーク温度も低く、屈曲疲労回数
も著しく向上しており、半田耐熱性も優れている
ことが判る。
[Table] As is clear from Table 3, no improvement in bending fatigue properties was observed in the heat treatment in vacuum or nitrogen atmosphere. It can be seen that the products heat-treated in the presence of oxygen of the present invention have a low crystallization peak temperature, a significantly improved number of bending fatigue cycles, and excellent soldering heat resistance.

Claims (1)

【特許請求の範囲】[Claims] 1 ポリフエニレンスルフイド樹脂粉粒体または
実質的に無配向のポリフエニレンスルフイド樹脂
シート状物を、その結晶化ピーク温度が160℃以
下となるように酸素の存在下、樹脂の融点以上の
温度で熱処理し、次いで必要に応じ圧縮成形して
得たシートを絶縁基材とし、その少なくとも一面
に金属箔を接合してなるプリント配線板。
1 Polyphenylene sulfide resin powder or a substantially non-oriented polyphenylene sulfide resin sheet is heated in the presence of oxygen to a temperature higher than the melting point of the resin so that its crystallization peak temperature is 160°C or lower. 1. A printed wiring board comprising a sheet obtained by heat treatment at a temperature of , followed by compression molding if necessary, as an insulating base material, and a metal foil bonded to at least one surface of the sheet.
JP5784983A 1983-04-04 1983-04-04 Printed circuit board Granted JPS59184588A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5784983A JPS59184588A (en) 1983-04-04 1983-04-04 Printed circuit board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5784983A JPS59184588A (en) 1983-04-04 1983-04-04 Printed circuit board

Publications (2)

Publication Number Publication Date
JPS59184588A JPS59184588A (en) 1984-10-19
JPH0568875B2 true JPH0568875B2 (en) 1993-09-29

Family

ID=13067424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5784983A Granted JPS59184588A (en) 1983-04-04 1983-04-04 Printed circuit board

Country Status (1)

Country Link
JP (1) JPS59184588A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54146867A (en) * 1978-05-11 1979-11-16 Toshiba Corp Production of heat-resistant insulator
JPS5634426A (en) * 1979-08-31 1981-04-06 Toray Ind Inc Preparation of polyphenylene sulphide film
JPS57205118A (en) * 1981-06-12 1982-12-16 Toray Ind Inc Manufacture of poly-p-phenylenesulfide
JPH022410A (en) * 1987-12-18 1990-01-08 Hill Rom Co Inc Computer cart

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54146867A (en) * 1978-05-11 1979-11-16 Toshiba Corp Production of heat-resistant insulator
JPS5634426A (en) * 1979-08-31 1981-04-06 Toray Ind Inc Preparation of polyphenylene sulphide film
JPS57205118A (en) * 1981-06-12 1982-12-16 Toray Ind Inc Manufacture of poly-p-phenylenesulfide
JPH022410A (en) * 1987-12-18 1990-01-08 Hill Rom Co Inc Computer cart

Also Published As

Publication number Publication date
JPS59184588A (en) 1984-10-19

Similar Documents

Publication Publication Date Title
WO2000061658A1 (en) Polyimide resin, resin composition with improved moisture resistance comprising the same, adhesive solution, filmy bonding member, layered adhesive film, and processes for producing these
KR101558621B1 (en) Polyimide film
JP2004176046A (en) Low-temperature polyimide adhesive composition and relating method thereto
US20050124781A1 (en) Poly amic acid system for polyimides
CN101754856A (en) Multilayer polyimide film, laminate and metal-clad laminate
JPH04261466A (en) Polyimide film and its manufacture
JP2008248067A (en) Polyimide film and flexible circuit board
WO1993014157A1 (en) Process for preparing a strengthened polyimide film containing organometallic compounds for improving adhesion
JP5362752B2 (en) Polyamic acid composition, polyimide, polyimide film and method for producing them
CN107189066A (en) Polyimide, polyimide film, and flexible copper foil substrate
JP4974068B2 (en) Polyimide film, method for producing the same, and flexible circuit board
KR102617724B1 (en) Polyimide film WITH HIGH DIMENSIONAL STABILTY and manufacturing method thereof
JP2023547673A (en) Polyimide film with high dimensional stability and method for producing the same
JPH0568875B2 (en)
JP3531082B2 (en) Flexible copper clad laminate
JP2606390B2 (en) Polyimide adhesive sheet and method for producing the same
JP2002317159A (en) Adhesive film, its manufacturing method and laminate of metal foil provided with the adhesive film
JPH04188792A (en) Flexible printed board and its manufacture
KR100522003B1 (en) Flexible copper-clad laminate and manufacturing method thereof
JPH04162491A (en) Flexible printed board and its manufacture
JPS593991A (en) Printed circuit board
JP3805546B2 (en) Manufacturing method of heat-resistant bonding sheet
JP3270378B2 (en) Metal / resin composite, method for producing the same, and substrate for flexible circuit wiring board
JPH11310769A (en) Adhesive for heat-resistant bonding sheet, heat-resistant bondig sheet, and production of heat-resistant flexible copper-clad laminate prepared by using them
EP0429985A2 (en) Process for producing flexible printed circuit board