JPH0568867B2 - - Google Patents

Info

Publication number
JPH0568867B2
JPH0568867B2 JP59204733A JP20473384A JPH0568867B2 JP H0568867 B2 JPH0568867 B2 JP H0568867B2 JP 59204733 A JP59204733 A JP 59204733A JP 20473384 A JP20473384 A JP 20473384A JP H0568867 B2 JPH0568867 B2 JP H0568867B2
Authority
JP
Japan
Prior art keywords
light
photoelectric conversion
conversion film
receiving surface
receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59204733A
Other languages
Japanese (ja)
Other versions
JPS6181675A (en
Inventor
Yukinori Kuwano
Shoichi Nakano
Tsugufumi Matsuoka
Soichi Sakai
Hirosato Yagi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP59204733A priority Critical patent/JPS6181675A/en
Publication of JPS6181675A publication Critical patent/JPS6181675A/en
Publication of JPH0568867B2 publication Critical patent/JPH0568867B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/20Optical components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S30/00Structural details of PV modules other than those related to light conversion
    • H02S30/10Frame structures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Description

【発明の詳細な説明】 (イ) 産業上の利用分野 本発明は光照射を受けると起電力を発生する光
起電力装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a photovoltaic device that generates an electromotive force when irradiated with light.

(ロ) 従来の技術 支持基板に光照射により光電変換動作する光電
変換膜を直接形成せしめた光起電力素子は例えば
米国特許第4281208号に開示された如く既に知ら
れている。斯る光起電力素子は現在電卓、ポケツ
トラジオ等小型民生用電子機器の電力源として実
用化されており、一方家庭用の電力源を目的とす
る所謂光発電用の太陽電池としては第6図の如く
上記構造の光起電力素子S1〜S20を複数個用意し、
それを屋根の庇や屋上に設置された架台への取付
を容易ならしめる金属製或いは樹脂製の非透光製
枠体20内に組み込みパネル化したものが試作さ
れている。
(b) Prior Art A photovoltaic element in which a photoelectric conversion film that performs photoelectric conversion upon irradiation with light is directly formed on a support substrate is already known as disclosed in, for example, US Pat. No. 4,281,208. Such photovoltaic elements are currently in practical use as power sources for small consumer electronic devices such as calculators and pocket radios, while solar cells for so-called photovoltaic power generation, which are intended as household power sources, are currently being used as shown in Figure 6. Prepare a plurality of photovoltaic elements S 1 to S 20 with the above structure,
A prototype panel has been manufactured in which it is incorporated into a non-light-transmitting frame 20 made of metal or resin, which makes it easy to attach it to a roof eave or a frame installed on a rooftop.

通常パネル化された光起電力装置を上記架台に
取付ける際、年間を通じて太陽光の有効利用を考
慮し、受光面の法線方向は春分(秋分)時の太陽
の南中方向と一致すべく南向きに地平線に対し傾
向せしめられている。この様に受光面が春分(秋
分)時の南向きに設置されると、春分(秋分)時
以外の季節に於いて両側或いは北側に位置する枠
対の影がパネル面に投影されることとなる。この
影は日の出或いは日没時最も長くなる。
When installing a panel-shaped photovoltaic device on the above-mentioned mount, the normal direction of the light-receiving surface should be set south to match the mid-south direction of the sun at the vernal equinox (autumn equinox), taking into consideration the effective use of sunlight throughout the year. oriented toward the horizon. If the light-receiving surface is installed facing south during the vernal (autumn) equinox in this way, the shadows of the pair of frames located on both sides or on the north side will be projected onto the panel surface in seasons other than the vernal (autumn) equinox. Become. This shadow is longest at sunrise or sunset.

一方、従来から、枠体20に光起電力素子S1
S20を組み込む際にはパネル面積中に於ける光起
電力素子の占める割合が高くなることのみ考慮さ
れている結果、第7図に示す如く光電変換膜21
の受光面方向に於ける光起電力素子S1〜S20の隣
接間隔長d及び枠体20との距離δは可及的に小
さく設定されている。
On the other hand, conventionally, photovoltaic elements S 1 to
When incorporating S 20 , the only consideration is that the proportion of the photovoltaic element in the panel area will be high. As a result, as shown in FIG. 7, the photoelectric conversion film 21
The length d of the adjacent photovoltaic elements S 1 to S 20 in the direction of the light receiving surface and the distance δ from the frame 20 are set as small as possible.

然し乍ら、上記光起電力素子S1〜S20と枠体2
0との距離δが小さくなると、第7図に示すよう
に、春分(秋分)時の太陽の方向より南側或いは
北側の方向から照射される太陽光は、光照射によ
り光電変換動作する光電変換膜21の受光面PS
に比して上記非透光性の枠体20の受光面側端面
PEが該受光面PSと直交する方向、即ち法線方向
に距離(高さ)Hだけ突出しているために、遮光
された受光面PSの南北方向の幅にしてWの範囲
の光電変換膜1の光電変換動作を阻害する。
However, the photovoltaic elements S 1 to S 20 and the frame 2
As the distance δ from 0 becomes smaller, as shown in Figure 7, sunlight irradiated from the direction south or north of the direction of the sun at the vernal (autumn) equinox will cause the photoelectric conversion film to perform photoelectric conversion upon light irradiation. 21 photosensitive surface PS
The light-receiving surface side end surface of the non-transparent frame 20
Since PE protrudes by a distance (height) H in the direction perpendicular to the light-receiving surface PS, that is, in the normal direction, the photoelectric conversion film 1 has a width W in the north-south direction of the light-shielded light-receiving surface PS. inhibits photoelectric conversion operation.

特に、1つの光起電力素子S1〜S20単独で高電
圧を得るべく複数の光電変換膜1,1…を多段に
直列接続せしめた形態であり、枠体11に最も近
い直列接続形態の1つの光電変換膜1のみが遮光
されると、遮光されていないその他多数の正常に
動作している光電変換膜1,1…の出力電流まで
も上記遮光により減少した光電変換膜1の出力電
流値に規制してしまう。しかも、この様な事態
は、パネル面への入射光密度の最も小さい冬至或
いは夏至の時期に起りやすく、太陽電池の有効な
通年利用を妨げることとなる。
In particular, in order to obtain a high voltage with one photovoltaic element S 1 to S 20 alone, a plurality of photoelectric conversion films 1, 1 . . . are connected in series in multiple stages. When only one photoelectric conversion film 1 is shielded from light, the output current of the photoelectric conversion film 1 that is not shielded and that is operating normally also decreases due to the above-mentioned light shielding. It is regulated by the value. Moreover, such a situation is likely to occur during the winter solstice or summer solstice, when the density of light incident on the panel surface is lowest, which hinders the effective use of solar cells throughout the year.

(ハ) 発明が解決しようとする問題点 本発明は光電変換膜の受光面に対し小さな入射
角を持つて照射される光を枠体が遮光する点、特
に受光面に対して南北方向から傾いて照射される
太陽光を枠体が遮光する点を解決し、季節に左右
されることなく斯る小さな入射角の照射光であつ
ても有効に光電変換に利用することを目的とする
と共に、上記光電変換膜の受光面を、上記遮光等
に因る光入射量の低下を解消しつつ、十分に大き
くすることを目的とするものである。
(C) Problems to be Solved by the Invention The present invention solves the problem in that the frame blocks light that is irradiated at a small angle of incidence with respect to the light-receiving surface of the photoelectric conversion film. The purpose of the present invention is to solve the problem of the frame blocking the sunlight irradiated by the frame, and to effectively utilize the irradiated light with such a small angle of incidence for photoelectric conversion regardless of the season. The purpose of this invention is to make the light receiving surface of the photoelectric conversion film sufficiently large while eliminating the reduction in the amount of light incident due to the above-mentioned light shielding.

(ニ) 問題点を解決するための手段 本発明は上記問題点を解決すべく、光照射によ
り光電変換動作する光電変換膜と、該光電変換膜
の受光面側に設けられた大気と接する一枚の透光
性受光板と、該受光板の少なくとも側面を包囲す
る非透光性の枠体と、を備え上記枠体に於ける光
電変換膜の受光面から該受光面と直交する方向の
受光側端面までの距離をhとしたとき、上記端面
の内側遮光周縁から光電変換膜の受光面に平行な
方向に於ける光電変換膜の周縁までの距離lを、
略0.87hとした構成にある。
(d) Means for Solving the Problems In order to solve the above problems, the present invention provides a photoelectric conversion film that performs photoelectric conversion upon irradiation with light, and a surface provided on the light-receiving surface side of the photoelectric conversion film that is in contact with the atmosphere. a light-transmitting light-receiving plate, and a non-light-transmitting frame surrounding at least a side surface of the light-receiving plate; When the distance to the light-receiving side end face is h, the distance l from the inner light-shielding periphery of the end face to the periphery of the photoelectric conversion film in the direction parallel to the light-receiving surface of the photoelectric conversion film is:
It has a configuration of approximately 0.87h.

(ホ) 作用 上述の如く枠体の受光側端面の内側遮光周縁か
ら光電変換膜の受光面に平行な方向に於ける光電
変換膜の周縁までの距離lを、枠体の受光面対応
箇所から受光面と直交する方向の受光側端面まで
の距離hの略0.87倍とすることによつて、上記光
電変換膜の周縁にまで入射角の小さい日の出或い
は日没近くであつてもその照射光を案内すると共
に、これより大きくした場合の上記光電変換膜の
周縁が光起電力装置の内側となり過ぎたことに因
る、光起電力装置全体としての受光面の減少を抑
圧し、その受光面を十分大きくなるように作用す
る。
(E) Effect As mentioned above, the distance l from the inner light-shielding rim of the light-receiving side end face of the frame to the periphery of the photoelectric conversion film in the direction parallel to the light-receiving surface of the photoelectric conversion film is calculated from the point corresponding to the light-receiving surface of the frame. By setting the distance h to the light-receiving end face in the direction orthogonal to the light-receiving surface to approximately 0.87 times, the irradiation light can reach the periphery of the photoelectric conversion film even near sunrise or sunset when the angle of incidence is small. At the same time, it suppresses the reduction in the light-receiving surface of the photovoltaic device as a whole, which would be caused by the peripheral edge of the photovoltaic conversion film becoming too much inside the photovoltaic device when the photovoltaic conversion film is made larger than this. It acts so that it becomes sufficiently large.

(ヘ) 実施例 第1図は本発明光起電力装置を春分(秋分)に
於ける南中時の方向から臨んだ正面図、第2図は
第1図に於ける−′線拡大断面図、第3図は
第1図に於ける−′線拡大図、であり、第4
図は更に要部拡大断面図である。
(f) Example Fig. 1 is a front view of the photovoltaic device of the present invention viewed from the direction of meridian at the vernal (autumn) equinox, and Fig. 2 is an enlarged sectional view taken along the -' line in Fig. 1. , Fig. 3 is an enlarged view of -' line in Fig. 1;
The figure is also an enlarged sectional view of the main part.

第1図乃至第4図に於いて、S1〜S20は上記米
国特許第4281208号に開示された10〜30cm×10〜
30cm程度の4×5個の光起電力素子で、該光起電
力素子S1〜S20の各々は単独でも電子機器を動作
せしめるべく例えば光電変換膜1は透光性支持基
板2の背面に於いて5分割された後電気的に直列
接続されている。より詳しくは光電変換膜1の
各々は支持基板2側から見て、SnO2、ITO等の
透光性導電酸化物からなる透明電極層3と、シラ
ン雰囲気中でのグロー放電により形成されpin接
合等の半導体接合を備えたアモルフアスシリコン
系の光活性層4と、該光活性層4とオーミツク接
触するAl等のオーミツク金属製の背面電極層5
と、の三層積層構造をなし、斯る積層構造にある
光電変換膜1が光照射を受けると実際に光電変換
動作するのは三層が互いに重なり合う部分であ
る。6は上記光電変換膜1の背面を被覆すべくス
クリーン印刷により形成された樹脂膜である。
In FIGS. 1 to 4, S 1 to S 20 are 10 to 30 cm x 10 to
Each of the photovoltaic elements S 1 to S 20 is composed of 4×5 photovoltaic elements of about 30 cm in size, and in order to operate an electronic device by itself, for example, the photoelectric conversion film 1 is placed on the back side of the transparent support substrate 2. After being divided into five parts, they are electrically connected in series. More specifically, each of the photoelectric conversion films 1 is formed by glow discharge in a silane atmosphere with a transparent electrode layer 3 made of a light-transmitting conductive oxide such as SnO 2 or ITO, when viewed from the support substrate 2 side. an amorphous silicon-based photoactive layer 4 with semiconductor junctions such as, and a back electrode layer 5 made of an ohmic metal such as Al that is in ohmic contact with the photoactive layer 4.
When the photoelectric conversion film 1 in such a laminated structure is irradiated with light, it is the portion where the three layers overlap each other that actually performs the photoelectric conversion operation. 6 is a resin film formed by screen printing to cover the back surface of the photoelectric conversion film 1.

尚、上記光電変換膜1の総合膜厚は約2〜3μ
m程度と支持基板2の厚み1〜3mm程度に比して
極めて肉薄であるが、図に於いては説明の都合上
両者は余り大差なく描いてある。
The total thickness of the photoelectric conversion film 1 is approximately 2 to 3μ.
The thickness of the supporting substrate 2 is approximately 1 to 3 mm, which is extremely thin compared to the thickness of the supporting substrate 2, but for convenience of explanation, the two are not shown to be much different in the figure.

7は上記横方向に4行、縦方向に5列長方形状
に配列された光起電力素子S1〜S20と同一サイズ
の平面を備えた透光性受光板で、風冷強化或いは
化学強化された強化ガラスからなり、該透光性受
光板7の大気と接する光入射面と反対の主面側に
於いて、透光性接着層8を介して4×5個の光起
電力素子S1〜S20が接着固定され機械的に支持さ
れている。上記接着層8は好ましくは各光起電力
素子S1〜S20の支持基板2と受光板7の屈折率と
ほぼ等しい屈折率を備えている。例えば上記支持
基板2及び受光板7として通常の窓ガラス用の所
謂板ガラスを使用すると、そのガラス材はソーダ
石灰ガラスであり約1.45〜1.60程度の屈折率を持
ち、斯る屈折率とほぼ等しい透明接着層8として
は屈折率約1.48のポリビニルブチラール(PVB)
やエチレンビニルアセテート(EVA)が存在す
る。斯るPVB及びEVA共に厚み0.1〜数mm程度の
シート状のものが例えば米国デユポン社から市販
されており、購入時白濁している透明接着層8用
シート材を支持基板2と受光板7との間に挾み込
み、例えば10Torr以下の減圧状態に於いて加熱
温度80〜170℃、圧力0.5〜5Kg/cm2の条件でホツ
トプレスすることにより、白濁していたシート材
から気泡が脱気され透明となつた透明接着材8に
より受光板7と支持基板2とが一体的に結合され
る。
Reference numeral 7 denotes a light-transmitting light-receiving plate having a flat surface of the same size as the photovoltaic elements S 1 to S 20 arranged in a rectangular shape with 4 rows in the horizontal direction and 5 columns in the vertical direction. 4 x 5 photovoltaic elements S are attached via a translucent adhesive layer 8 on the main surface side of the translucent light-receiving plate 7 opposite to the light incident surface in contact with the atmosphere. 1 to S20 are adhesively fixed and mechanically supported. The adhesive layer 8 preferably has a refractive index substantially equal to the refractive index of the support substrate 2 and the light receiving plate 7 of each of the photovoltaic elements S 1 to S 20 . For example, if so-called plate glass for ordinary window glass is used as the support substrate 2 and the light receiving plate 7, the glass material is soda lime glass and has a refractive index of about 1.45 to 1.60, and a transparent glass material that is almost equal to this refractive index. The adhesive layer 8 is made of polyvinyl butyral (PVB) with a refractive index of approximately 1.48.
and ethylene vinyl acetate (EVA). Both PVB and EVA are commercially available in the form of sheets with a thickness of about 0.1 to several mm, for example, from DuPont in the United States. For example, by hot pressing at a reduced pressure of 10 Torr or less at a heating temperature of 80 to 170°C and a pressure of 0.5 to 5 kg/ cm2 , air bubbles are degassed from the cloudy sheet material. The light receiving plate 7 and the supporting substrate 2 are integrally bonded by the transparent adhesive material 8 which has become transparent.

9は光起電力素子S1〜S20の背面を保護するポ
リビニルフロライド、Al、ポロビニルフロライ
ドの三層構造からなる保護膜で、光起電力素子S1
〜S20を背面に於いて結線した後、上記受光板7
の接着層8と同じ材料の接着層10及び同一工程
に於いて接着固定される。11はAl製の枠体で、
受光板7、光起電力素子S1〜S20及び保護膜9の
積層構造体の側面を包囲し架台への取付けを容易
ならしめている。
9 is a protective film consisting of a three-layer structure of polyvinyl fluoride, Al, and polyvinyl fluoride that protects the back surfaces of the photovoltaic elements S 1 to S 20 .
~ After connecting S 20 on the back, connect the light receiving plate 7 above.
The adhesive layer 10 is made of the same material as the adhesive layer 8 and is adhesively fixed in the same process. 11 is a frame made of Al,
The side surface of the laminated structure of the light-receiving plate 7, the photovoltaic elements S1 to S20 , and the protective film 9 is surrounded to facilitate attachment to the pedestal.

12は上記枠体11の内壁と積層構造体の側面
との間に充填されたブチルゴム等の充填材で、斯
る積層構造体側面への雨水の回込みを防止してい
る。
Reference numeral 12 denotes a filler such as butyl rubber filled between the inner wall of the frame 11 and the side surface of the laminated structure to prevent rainwater from flowing into the side surface of the laminated structure.

而して、上記枠体11は光電変換膜1の受光面
PSから該受光面PSと直交する方向の受光側端面
PEまでの距離hを有しており入射角の南北面へ
の投影角θを境界にそれ以上の入射角を持つ入射
光Iは少なくとも光電変換膜1の周縁1eまで到
達し、該周縁1eより内側の光電変換膜1を照射
範囲とする。従つて、斯る投影角θが小さければ
小さいほど太陽が春分(秋分)時の方向より南北
方向に傾いた場合でも有効に光電変換動作を可能
ならしめる。また、その一方で、この投影角θを
小さくすることは、光電変換膜の受光面の周縁が
かなり内側とすることから、光起電力装置に於け
る受光面の面積が小さなものとなつてしまう。こ
のため、上記投影角θの設定が重要となる。
Thus, the frame 11 serves as the light receiving surface of the photoelectric conversion film 1.
Light-receiving side end face in the direction perpendicular to the light-receiving surface PS from PS
Incident light I having a distance h to PE and having an incident angle greater than the projection angle θ on the north-south plane reaches at least the peripheral edge 1e of the photoelectric conversion film 1, and from the peripheral edge 1e. The inner photoelectric conversion film 1 is set as the irradiation range. Therefore, the smaller the projection angle θ is, the more effectively the photoelectric conversion operation can be performed even when the sun is tilted in the north-south direction from the direction at the vernal equinox (autumn equinox). On the other hand, reducing the projection angle θ means that the periphery of the light-receiving surface of the photoelectric conversion film is placed considerably inside, which reduces the area of the light-receiving surface in the photovoltaic device. . Therefore, setting the projection angle θ is important.

今、例えば年間を通じての太陽光の有効利用を
考え、光電変換膜1の受光面PSの法線を春分
(秋分)時の南中方向に設定した場合の冬至(夏
至)に於ける午前8時から午後4時頃の太陽光が
光電変換膜1全域を照射範囲とする。この時の南
北方向の受光側端面PEの内側遮光周縁IEから光
電変換膜1の受光面PSに平行な方向に於ける光
電変換膜1の周縁1eまでの距離lはl=hcotθ
で与えられ、地球を球形、空気の屈折率を1とし
た場合、上記cotθは cotθ=tanχ/cos で求められる。
Now, for example, considering the effective use of sunlight throughout the year, if the normal to the light-receiving surface PS of the photoelectric conversion film 1 is set in the south-center direction at the vernal equinox (autumn equinox), then at 8 a.m. at the winter solstice (summer solstice) to 4:00 pm, the entire area of the photoelectric conversion film 1 is irradiated. At this time, the distance l from the inner light-shielding periphery IE of the light-receiving end face PE in the north-south direction to the periphery 1e of the photoelectric conversion film 1 in the direction parallel to the light-receiving surface PS of the photoelectric conversion film 1 is l=hcotθ
If the earth is spherical and the refractive index of air is 1, the above cotθ can be found as cotθ=tanχ/cos.

ただし、χは公転面に対する地球の自転の傾
き、即ち約23.5°であり、は地球の自転軸を回
転軸とし正午の太陽の位置を0°としたときの太陽
の回転角である。
However, χ is the inclination of the Earth's rotation with respect to the orbital plane, that is, approximately 23.5 degrees, and is the rotation angle of the sun when the axis of rotation is the axis of rotation of the Earth and the position of the sun at noon is 0 degrees.

従つて、冬至(夏至)に於ける午前8時及び午
後4時頃のは約60°であり、χ=23.5°及び=
60°を上式に代入すれば、 cotθ=tan23.5°/cos60°=0.87 が得られ、その結果上記内側遮光周縁IEから光
電変換膜1の周縁1eまでの距離lは、 l=0.87h となる。即ち、上式から明らかな如く、距離lを
距離hの0.87倍となるべく設定すると、冬至(夏
至)に於ける午前8時から午後4時頃までは太陽
光は光電変換1全域を照射することが可能とな
り、その一方でその距離lがhの0.87倍よりも大
きくしすぎた場合、上記周縁1eが内側に大きく
入り込むことにより受光面の減少を抑圧し、よつ
て発電効率の低下を防止することができる。
Therefore, the angle at around 8 am and 4 pm at the winter solstice (summer solstice) is approximately 60°, and χ = 23.5° and =
By substituting 60° into the above equation, cotθ=tan23.5°/cos60°=0.87 is obtained, and as a result, the distance l from the inner light-shielding edge IE to the edge 1e of the photoelectric conversion film 1 is l=0.87h. becomes. That is, as is clear from the above equation, if the distance l is set to be 0.87 times the distance h, sunlight will illuminate the entire area of the photoelectric conversion 1 from 8 a.m. to 4 p.m. at the winter solstice (summer solstice). On the other hand, if the distance l is made too large than 0.87 times h, the peripheral edge 1e will move inward to suppress the reduction in the light receiving surface, thereby preventing a decrease in power generation efficiency. be able to.

従つて、枠体11の内側遮光周縁IEから光電
変換膜1の周縁1eまでの距離lを、受光面PS
から受光側端面PEまでの距離(高さ)hの略
0.87倍とすることにより冬至(夏至)であつても
午前8時から午後4時頃まで光電変換膜1全域に
太陽光を照射し得ると共に、上記距離lを大きく
したことに因る、受光面の減少を抑圧することが
できることとなる。
Therefore, the distance l from the inner light shielding edge IE of the frame 11 to the edge 1e of the photoelectric conversion film 1 is defined as the light receiving surface PS.
Abbreviation for distance (height) h from to the receiving end face PE
By multiplying by 0.87, the entire area of the photoelectric conversion film 1 can be irradiated with sunlight from 8:00 a.m. to around 4:00 p.m. even during the winter solstice (summer solstice). This means that it is possible to suppress the decrease in

第5図は第1図の如く南北方向に光電変換膜1
…を多段に直列接続せしめた同一構成にある光起
電力S1〜S20を4×5個配列し、それらを略0.87h
を満足する試料A、満足しない試料B、更には枠
体11の存在しない試料Cについての冬至に於け
る出力特性の経時変化を示す。
Figure 5 shows the photoelectric conversion film 1 in the north-south direction as shown in Figure 1.
4 x 5 photovoltaic forces S 1 to S 20 having the same configuration connected in series in multiple stages are arranged, and they are connected in series for approximately 0.87 h.
3 shows changes over time in the output characteristics at the winter solstice for sample A that satisfies the above, sample B that does not satisfy the above, and sample C that does not have the frame 11.

試料Aはh=5mm、l=4.5mmのものであり、
上記略0.87hを満足しており、また試料Bはh=
5mm、l=1.5mmである。上記条件略0.87hを満足
しない試料Bにあつては午前9時以前、午後3時
以降に於いて枠体11による遮光現象により枠体
11のない試料Cに比較して約30%出力低下を招
くのに対し、条件を満足する試料Aにあつてはほ
とんど遮光により出力が低下しないことが実証さ
れた。また冬至以外の日に於いても同様の試料A
〜Cにつき経時出力特性を測定したところ、同じ
傾向の結果が得られた。
Sample A has h = 5 mm and l = 4.5 mm,
It satisfies approximately 0.87h above, and sample B has h=
5 mm, l=1.5 mm. For sample B, which does not satisfy the above condition approximately 0.87h, the output decreases by approximately 30% compared to sample C without frame 11 due to the light shielding phenomenon caused by frame 11 before 9 a.m. and after 3 p.m. On the other hand, in the case of sample A that satisfies the conditions, it has been demonstrated that the output hardly decreases due to light shielding. Also, the same sample A on days other than the winter solstice
When the output characteristics over time were measured for ~C, results with the same tendency were obtained.

(ト) 発明の効果 本発明は以上の説明から明らかな如く、枠体の
受光側端面の内側遮光周縁から光電変換膜の受光
面に平行な方向に於ける光電変換膜の周縁までの
距離lを、枠体の受光面対応箇所から受光面と直
交する方向の受光側端面までの距離hの略0.87倍
とすることによつて、特に南北方向に配置された
枠体の遮光による影響を除去し、上記光電変換膜
の周縁にまで入射角の小さい日の出或いは日没近
くであつてもその照射光を案内すべく作用するの
共に、これにより上記光電変換膜の周縁が光起電
力装置の内側となり過ぎることに因る、光起電力
電力装置全体としての受光面の減少を抑圧し、最
適な状態で受光面を十分大きくできるように作用
する。
(G) Effects of the Invention As is clear from the above description, the present invention provides the distance l from the inner light-shielding periphery of the light-receiving side end face of the frame to the periphery of the photoelectric conversion film in a direction parallel to the light-receiving surface of the photoelectric conversion film. By making 0.87 times the distance h from the part of the frame corresponding to the light-receiving surface to the light-receiving end face in the direction orthogonal to the light-receiving surface, the influence of light shielding by the frame arranged in the north-south direction is particularly eliminated. It acts to guide the irradiated light to the periphery of the photoelectric conversion film even near sunrise or sunset when the angle of incidence is small, and this also allows the periphery of the photoelectric conversion film to reach the inside of the photovoltaic device. This suppresses the reduction in the light-receiving surface of the photovoltaic power device as a whole, which would be caused by an excessive amount of light, and functions to make the light-receiving surface sufficiently large in an optimal state.

従つて、有効に光電変換に利用することがで
き、電力損失の抑圧された光起電力装置を提供す
ることができる。
Therefore, it is possible to provide a photovoltaic device that can be effectively used for photoelectric conversion and suppresses power loss.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第4図は本発明光起電力装置を示
し、第1図は正面図、第2図は第1図に於ける
−′線断面図、第3図は第1図に於ける−
線断面図、第4図は要部拡大断面図、第5図は出
力の経時変化特性図、第6図及び第7図は従来例
を示し、第6図は正面図、第7図は要部拡大断面
図である。 1……光電変換膜、2……支持基板、7……受
光板、11……枠体。
1 to 4 show the photovoltaic device of the present invention, FIG. 1 is a front view, FIG. 2 is a sectional view taken along the line -' in FIG. 1, and FIG. −
4 is an enlarged sectional view of the main part, FIG. 5 is a graph of the change in output over time, FIGS. 6 and 7 are a conventional example, FIG. 6 is a front view, and FIG. 7 is a diagram of main parts. FIG. DESCRIPTION OF SYMBOLS 1... Photoelectric conversion film, 2... Support substrate, 7... Light receiving plate, 11... Frame.

Claims (1)

【特許請求の範囲】[Claims] 1 光照射により光電変換動作する光電変換膜
と、該光電変換膜の受光面側に設けられた大気と
接する一枚の透光性受光板と、該受光板の少なく
とも側面を包囲する非透光性の枠体と、を備え、
上記枠体に於ける光電変換膜の受光面から該受光
面と直交する方向の受光側端面までの距離をhと
したとき、上記端面の内側遮光周縁から光電変換
膜の受光面に平行な方向に於ける光電変換膜の周
縁までの距離lを、略0.87hとしたことを特徴と
する光起電力装置。
1. A photoelectric conversion film that performs photoelectric conversion upon irradiation with light, a light-transmitting light-receiving plate provided on the light-receiving surface side of the photoelectric conversion film and in contact with the atmosphere, and a non-light-transmitting light-receiving plate surrounding at least the side surface of the light-receiving plate. Equipped with a sexual framework,
When the distance from the light-receiving surface of the photoelectric conversion film in the frame body to the light-receiving side end surface in the direction perpendicular to the light-receiving surface is h, the distance from the inner light-shielding periphery of the end surface to the direction parallel to the light-receiving surface of the photoelectric conversion film A photovoltaic device characterized in that the distance l to the periphery of the photoelectric conversion film in the photoelectric conversion film is approximately 0.87h.
JP59204733A 1984-09-28 1984-09-28 Photovoltaic apparatus Granted JPS6181675A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59204733A JPS6181675A (en) 1984-09-28 1984-09-28 Photovoltaic apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59204733A JPS6181675A (en) 1984-09-28 1984-09-28 Photovoltaic apparatus

Publications (2)

Publication Number Publication Date
JPS6181675A JPS6181675A (en) 1986-04-25
JPH0568867B2 true JPH0568867B2 (en) 1993-09-29

Family

ID=16495411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59204733A Granted JPS6181675A (en) 1984-09-28 1984-09-28 Photovoltaic apparatus

Country Status (1)

Country Link
JP (1) JPS6181675A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4656981B2 (en) * 2005-03-31 2011-03-23 三洋電機株式会社 SOLAR CELL MODULE AND ITS MOUNTING DEVICE
JP5140706B2 (en) * 2010-07-12 2013-02-13 シャープ株式会社 Thin film solar cell module and manufacturing method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5658277A (en) * 1979-10-17 1981-05-21 Toshiba Corp Panel for solar cell
JPS5854679A (en) * 1981-09-28 1983-03-31 Hitachi Ltd Solar battery device
JPS5853168B2 (en) * 1981-05-01 1983-11-28 日本ラヂヱーター株式会社 Manufacturing method for a built-in oil cooler in a radiator
JPS5946070A (en) * 1982-09-09 1984-03-15 Toshiba Corp Solar battery module

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5853168U (en) * 1981-10-07 1983-04-11 株式会社ほくさん solar cell module

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5658277A (en) * 1979-10-17 1981-05-21 Toshiba Corp Panel for solar cell
JPS5853168B2 (en) * 1981-05-01 1983-11-28 日本ラヂヱーター株式会社 Manufacturing method for a built-in oil cooler in a radiator
JPS5854679A (en) * 1981-09-28 1983-03-31 Hitachi Ltd Solar battery device
JPS5946070A (en) * 1982-09-09 1984-03-15 Toshiba Corp Solar battery module

Also Published As

Publication number Publication date
JPS6181675A (en) 1986-04-25

Similar Documents

Publication Publication Date Title
US8859880B2 (en) Method and structure for tiling industrial thin-film solar devices
JP3618802B2 (en) Solar cell module
US6307145B1 (en) Solar cell module
RU2435250C2 (en) Front contact with high-work function tco for use in photovoltaic device and method of making said contact
JP3288876B2 (en) Solar cell module and method of manufacturing the same
JPH11135820A (en) Solar battery module and reinforcing member therefor
KR102360087B1 (en) Color film applied solar module and manufacturing method thereof
EP1454365B1 (en) Cover glass for a solar battery
US20110232757A1 (en) Photovoltaic module
JP2002043594A (en) Optical transmission type thin film solar cell module
JP4043100B2 (en) Solar cell device
JPS6262073B2 (en)
CN202120950U (en) Frameless BIVP solar energy battery pack
JPH09116182A (en) Solar battery module and manufacture of solar battery module
JPH0568867B2 (en)
CN214753802U (en) Solar energy conversion structure
JP4330241B2 (en) Solar cell module
JP2016025119A (en) Solar battery module and manufacturing method for solar battery module
CN210110807U (en) Double-sided photovoltaic module and photovoltaic power generation system
JPH11214734A (en) Solar battery module, its manufacture and execution method and solar battery power generation system
JP3760569B2 (en) Solar cell module
KR20210106682A (en) Sorar cell module
CN219246695U (en) Photovoltaic module
JPH0471276A (en) Deterioration reduced solar battery module
KR102519710B1 (en) Photovoltaic Module With Improved Shadow

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term