JPH0471276A - Deterioration reduced solar battery module - Google Patents

Deterioration reduced solar battery module

Info

Publication number
JPH0471276A
JPH0471276A JP2182758A JP18275890A JPH0471276A JP H0471276 A JPH0471276 A JP H0471276A JP 2182758 A JP2182758 A JP 2182758A JP 18275890 A JP18275890 A JP 18275890A JP H0471276 A JPH0471276 A JP H0471276A
Authority
JP
Japan
Prior art keywords
solar cell
heat insulating
amorphous silicon
solar battery
adhesive layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2182758A
Other languages
Japanese (ja)
Inventor
Hiroshi Yamamoto
浩史 山本
Fukateru Matsuyama
深照 松山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2182758A priority Critical patent/JPH0471276A/en
Publication of JPH0471276A publication Critical patent/JPH0471276A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To reduce the optical deterioration by a method wherein the rear surface side of the photodetecting surface of an amorphous silicon solar battery element is provided with a heat insulating means. CONSTITUTION:n, i, p, i, p type amorphous silicon thin films are laminated on a stainless steel-made substrate in this order from the substrate side and then indium oxide tin is evaporated as a transparent electrode while 13 step silver paste impressed inseries is used as a grid electrode. Besides, as for the heat insulating material 2, the adhesive layer 3, the surface protective surface material 4 and the rear surface protective material 5, a sheet type glass fiber, a sheet type E, V, A, 'Tefzel' and aluminum foils held by white colored 'tedlar(R)' are respectively applicable. Next, said materials are laminated from the lower side in the order of the rear surface protective material 5, the adhesive layer 3, the heat insulating material 2, an amorphous silicon solar battery element 1, the adhesive layer 3 and the surface protective material 4. Next, the solar battery element 1 is arranged in a frame 6 to be set using an adhesive 7 and then a wiring and an output terminal are fixed. Through these procedures, the optical deterioration of the so lar battery element after long time use can be reduced by the annealing effect.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、太陽電池モジュールに関し、特に非晶質シリ
コン太陽電池素子を用いた劣化の少ない太陽電池モジュ
ールに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a solar cell module, and particularly to a solar cell module using an amorphous silicon solar cell element with little deterioration.

[従来の技術] 太陽エネルギーの利用として、特に太陽電池発電は、枯
渇しない、環境を汚染しない等の特徴を有し、化石エネ
ルギーや原子力エネルギーの代替エネルギーとして、将
来、一般家庭のレベルから大規模な発電用まで広範囲で
の普及が期待されている。
[Conventional technology] As a use of solar energy, solar power generation in particular has the characteristics of not being depleted and not polluting the environment, and is expected to be used on a large scale from the household level to the future as an alternative energy to fossil energy and nuclear energy. It is expected that it will be widely used for power generation.

これらの太陽電池のうち、シリコンを原材料とするもの
には、単結晶、多結晶、非晶質などの太陽電池素子があ
り、様々なタイプのモジュールが市販されている。また
特に、非晶質シリコン太陽電池には、製造コストが安い
ことや、大面積の太陽電池の製造が行えることなどの利
点がある。
Among these solar cells, those using silicon as a raw material include single crystal, polycrystal, and amorphous solar cell elements, and various types of modules are commercially available. In particular, amorphous silicon solar cells have advantages such as low manufacturing cost and the ability to manufacture large-area solar cells.

しかし、この非晶質シリコン太陽電池では、光照射が原
因とされる性能の低下、即ち、いわゆる光劣化が生じ、
光エネルギーを電気エネルギーに変換する度合を示す変
換効率は、累積光照射時間の増加に伴って初期の値を満
足しなくなるという特徴がある。これは単結晶、及び多
結晶シリコン太陽電池では、一般に光劣化は生じないと
言われているため、非晶質シリコン太陽電池の欠点の一
つとなっている。
However, in this amorphous silicon solar cell, a decrease in performance caused by light irradiation, that is, so-called photodeterioration, occurs.
The conversion efficiency, which indicates the degree of conversion of light energy into electrical energy, is characterized in that it no longer satisfies the initial value as the cumulative light irradiation time increases. This is one of the drawbacks of amorphous silicon solar cells because it is generally said that photodeterioration does not occur in monocrystalline and polycrystalline silicon solar cells.

これまで、この光劣化に対しては様々な研究がなされて
おり、低下した変換効率は太陽電池素子をアニーリング
(熱処理)することによって、ある程度まで回復可能で
あることが知られている。
Until now, various studies have been conducted on this photodegradation, and it is known that the reduced conversion efficiency can be recovered to some extent by annealing (heat treatment) the solar cell element.

また、結晶系太陽電池よりも程度は低いものの、非晶質
シリコン太陽電池においても、太陽電池素子の温度上昇
とともに変換効率の僅かな低下がみられることから、従
来、モジュール化に際しては、太陽電池素子の放熱効果
の良さに重点がおかれて製作されてきた。
In addition, although the degree is lower than that of crystalline solar cells, even amorphous silicon solar cells show a slight decrease in conversion efficiency as the temperature of the solar cell element increases. The device has been manufactured with emphasis on its good heat dissipation effect.

[発明が解決しようとしている課B] 前述したように、従来の非晶質シリコン太陽電池は、放
熱効果が良いように作製されており、また気温の上昇に
よる影響もできるかぎり受けないように製造されている
ため、屋外での太陽光受光時に、太陽電池素子の温度が
高温になることは難しい。
[Problem B that the invention seeks to solve] As mentioned above, conventional amorphous silicon solar cells are manufactured to have good heat dissipation effects, and are manufactured to be as unaffected by temperature rise as possible. Therefore, it is difficult for the temperature of the solar cell element to reach a high temperature when receiving sunlight outdoors.

即ち、屋外での太陽光受光時に、前述のアニーング効果
を期待することは難しく、低下した変換効率を回復し、
長期的にみれば光劣化を減少させるということは行われ
難い。
In other words, it is difficult to expect the above-mentioned annealing effect when receiving sunlight outdoors, and it is necessary to recover the reduced conversion efficiency and
In the long term, it is difficult to reduce photodeterioration.

即ち、従来の非晶質シリコン太陽電池では、太陽光受光
時に、同時に受ける熱によるアニーリング効果を有効に
利用して、光劣化を防止するということが、考えられて
いない。
That is, in conventional amorphous silicon solar cells, it has not been considered to prevent photodeterioration by effectively utilizing the annealing effect caused by the heat simultaneously received when sunlight is received.

[発明の目的] 本発明は、上記の課題に鑑み、非晶質シリコン太陽電池
素子の放熱を減少させ、上記太陽光受光時の太陽電池素
子の温度の上昇を促進するとともに、気温による温度下
降の影響を減少させることによって、上記太陽電池素子
の温度を常時高温に保ち、それによるアニーリング効果
を有効に利用し、結果として、長期間使用後、太陽電池
素子の光劣化を減少させる非晶質シリコン太陽電池モジ
ュールを提供することを目的とする。
[Object of the Invention] In view of the above-mentioned problems, the present invention reduces the heat dissipation of an amorphous silicon solar cell element, promotes the temperature increase of the solar cell element when receiving sunlight, and also reduces the temperature drop due to air temperature. By reducing the influence of the amorphous material, the temperature of the solar cell element can be maintained at a high temperature at all times, and the resulting annealing effect can be effectively used, and as a result, the photodeterioration of the solar cell element can be reduced after long-term use. Its purpose is to provide silicon solar cell modules.

[課題を解決するための手段及び作用]上記の目的を達
成するための手段として、本発明は、非晶質シリコン太
陽電池モジュールにおいて、非晶質シリコン太陽電池素
子の受光面の裏面側に、断熱手段を具備することを特徴
とする少劣化太陽電池モジュールを提供するものである
[Means and effects for solving the problem] As a means for achieving the above-mentioned object, the present invention provides an amorphous silicon solar cell module, in which on the back side of the light receiving surface of the amorphous silicon solar cell element, The present invention provides a solar cell module with little deterioration characterized by being equipped with a heat insulating means.

このような構成の非晶質太陽電池モジュールを用いるこ
とによって、上記太陽電池素子の放熱が減少し、太陽光
受光時の上記素子の温度の上昇は促進されるとともに、
気温による温度下降の影響を受は難くなる。よって上記
太陽電池素子の温度は常時高温に保たれ、アニーリング
効果が有効に利用され、長時間使用後、結果として非晶
質太陽電池の光劣化は減少する。
By using an amorphous solar cell module having such a configuration, the heat dissipation of the solar cell element is reduced, and the temperature increase of the element when receiving sunlight is promoted,
It becomes less susceptible to the effects of temperature drops. Therefore, the temperature of the solar cell element is always kept high, the annealing effect is effectively utilized, and as a result, photodeterioration of the amorphous solar cell is reduced after long-term use.

第1図は、本発明の特徴を最も良く表わす図であり、非
晶質シリコン太陽電池モジュールの構成を概念的に示し
た断面図である。第1図において、lは非晶質シリコン
太陽電池素子、2は断熱材、3は接着剤層、4は表面保
護材、5は裏面保護材、6はフレーム材、7は接着剤で
ある。太陽光は図の上方から入射する。このように本発
明の太陽電池は、非晶質シリコン太陽電池素子1の受光
面の裏面側に断熱手段として、例えば断熱材2を有して
構成されている。
FIG. 1 is a diagram that best represents the features of the present invention, and is a cross-sectional view conceptually showing the structure of an amorphous silicon solar cell module. In FIG. 1, l is an amorphous silicon solar cell element, 2 is a heat insulating material, 3 is an adhesive layer, 4 is a surface protection material, 5 is a back surface protection material, 6 is a frame material, and 7 is an adhesive. Sunlight enters from above the figure. As described above, the solar cell of the present invention is configured to include, for example, a heat insulating material 2 as a heat insulating means on the back side of the light-receiving surface of the amorphous silicon solar cell element 1.

また図では上記太陽電池素子の配線および出力端子は省
略して描いである。
Further, in the figure, the wiring and output terminal of the solar cell element are omitted.

断熱材2としては、耐熱性、耐火性、耐水性を備える材
質であり、またモジュール化に際して過大な容積を必要
としないものが望ましく、例としては、シート状のガラ
ス繊維があげられるが、材質及び形状はこれに限るもの
ではない。
The heat insulating material 2 is preferably a material that has heat resistance, fire resistance, and water resistance, and that does not require an excessive volume when modularized. Examples include sheet-shaped glass fiber, but the material And the shape is not limited to this.

また断熱手段としては、第1図のように断熱材2と非晶
質太陽電池素子1を表面保護材4及び裏面保護材5によ
ってラミネートする方法に限るものではない。例として
、上記太陽電池素子の受光面の裏面側に閉空間を形成し
、空気を断熱材として用いることもできる。また、更に
上記の閉空間に、断熱材を充満させることもできる。
Further, the heat insulating means is not limited to the method of laminating the heat insulating material 2 and the amorphous solar cell element 1 with the surface protection material 4 and the back surface protection material 5 as shown in FIG. For example, a closed space may be formed on the back side of the light-receiving surface of the solar cell element, and air may be used as a heat insulating material. Further, the closed space described above can also be filled with a heat insulating material.

[実施例] (実施例1) 本実施例においては、第1図のように、非晶質シリコン
太陽電池素子lと断熱材2を、表面保護材4及び裏面保
護林5によってラミネートする方法を用いて太陽電池モ
ジュールを製作し、実際に屋外で太陽光を照射して、上
記太陽電池素子の光劣化を調べる試行実験を行なった。
[Example] (Example 1) In this example, as shown in FIG. A trial experiment was conducted to examine the photodeterioration of the solar cell element by actually irradiating it with sunlight outdoors.

本実施例で用いた非晶質シリコン太陽電池素子lとして
は、ステンレス・スチール製基板上に基板側から順にn
+Lp+n+l+Il型非晶質シリコン薄膜型針晶質シ
リコン薄膜いて積層した後、透明電極として酸化インジ
ウム・錫を蒸着し、最後にグリッド電極として銀ペース
トを印刷して約30x9cm”の単位としたものを13
段直列化したものを用いた。
As the amorphous silicon solar cell element l used in this example, n is placed on a stainless steel substrate in order from the substrate side.
+Lp+n+l+Il type amorphous silicon thin film type Needle crystalline silicon thin film is laminated, then indium/tin oxide is vapor deposited as a transparent electrode, and finally silver paste is printed as a grid electrode to form a unit of approximately 30 x 9 cm.13
A series of stages was used.

また断熱材2としては、約2論議厚のシート状のガラス
繊維を、上記太陽電池素子1と同寸法に成形したものを
用い、また接着剤層3としては、シート状のE、V、A
を用い、表面保護林4としては、100μ菖厚のテフゼ
ルを用い、裏面保護材5としては、アルミニウム箔を両
面から白色テトラ−で挟んだものを用いた。
Further, as the heat insulating material 2, a sheet of glass fiber having a thickness of approximately 2 mm is formed into the same dimensions as the solar cell element 1, and as the adhesive layer 3, a sheet of E, V, A, etc. is used as the adhesive layer 3.
As the surface protection material 4, Tefzel with a thickness of 100 μm was used, and as the back surface protection material 5, aluminum foil sandwiched between white tetras was used from both sides.

上記の材料を、下から裏面保護林5、接着剤層3、断熱
材2、非晶質シリコン太陽電池素子1、接着剤層3、表
面保護材4の順に積層し、真空ラミネーターを用いて1
00℃でラミネートした。
The above materials are laminated in the following order from the bottom: back protection layer 5, adhesive layer 3, heat insulating material 2, amorphous silicon solar cell element 1, adhesive layer 3, surface protection material 4, and using a vacuum laminator.
It was laminated at 00°C.

ラミネートした上記太陽電池素子は、アルミニウム製の
フレーム6に設置し、シリコン・ゴム系の接着剤7で固
定し、配線及び出力端子を取り付けてモジュールとして
作製した。
The laminated solar cell element was installed on an aluminum frame 6, fixed with a silicone rubber adhesive 7, and attached with wiring and output terminals to produce a module.

また、これとは別に、ラミネートする際に断熱材2を用
いないもの、即ち上記と同じ材料を用い、下から裏面保
護材5、接着剤層3.非晶質シリコン太陽電池素子l、
接着剤層3、表面保護材4の順に積層し、ラミネートし
たものを、フレーム材6に、接着剤7で固定したモジュ
ールも作製した。
Apart from this, when laminating, the heat insulating material 2 is not used, that is, the same material as above is used, and from the bottom, the back protection material 5, the adhesive layer 3. amorphous silicon solar cell element l,
A module was also produced in which the adhesive layer 3 and the surface protection material 4 were laminated in this order and the laminated product was fixed to a frame material 6 with an adhesive 7.

但し上記のモジュール化に用いた上記太陽電池素子の個
々の単位の特性、特に実効変換効率は、はぼ同等のもの
を選択した。モジュールの総出力は、約23 watt
であった。
However, the characteristics of the individual units of the solar cell elements used in the above modularization, especially the effective conversion efficiency, were selected to be approximately the same. The total output of the module is approximately 23 watts
Met.

以上に述べた2個のモジュールを用いて、屋外で光劣化
の度合を比較する実験を行なった。手順は次の通りであ
る。
Using the two modules described above, an experiment was conducted outdoors to compare the degree of photodeterioration. The steps are as follows.

まず各々のモジュールは、その受光面をアルミニウム箔
で包囲した後、屋外に予めモジュールの受光面が真南の
方角を向き、かつ水平面と37度の角度となるように作
製した架台に設置した。上記架台には、同時に全天日射
計、及び熱電対を設置し、太陽の日射量密度、及び気温
が測定できるようにした。
First, the light-receiving surface of each module was surrounded with aluminum foil, and then installed outdoors on a pedestal prepared in advance so that the light-receiving surface of the module faced due south and was at an angle of 37 degrees with the horizontal plane. A global pyranometer and a thermocouple were installed on the mount at the same time, so that the solar radiation density and temperature could be measured.

また各々のモジュールの電流・電圧曲線の測定系を、市
販のバソコ・ン、デジタル・マルチメーター2台、電子
負荷装置、ブロック−で構成した。
The measurement system for the current/voltage curves of each module was composed of a commercially available bus computer, two digital multimeters, an electronic load device, and a block.

これらの測定系によって、まず、晴天日の正午に日射量
密度が1.0に胃/Ill #で安定していることを確
かめ、モジュールの受光面上のアルミニウム箔を取り除
き、上記太陽電池素子の温度が安定したと思われる10
分後に、各々のモジュールの電流・電圧曲線と日射量密
度を測定して実効変換効率を算出した。
Using these measurement systems, first confirm that the solar radiation density is stable at 1.0 at noon on a clear day, remove the aluminum foil on the light-receiving surface of the module, and remove the solar cell element. The temperature seems to have stabilized 10
Minutes later, the current/voltage curve and solar radiation density of each module were measured to calculate the effective conversion efficiency.

その結果、実効変換効率は、断熱材を用いたモジュール
が5.3%、用いないモジュールが5.5%であり、断
熱材を用いたことによって、太陽電池素子の温度がより
高温となり、変換効率は低くなっていることがわかった
As a result, the effective conversion efficiency was 5.3% for the module using insulation material and 5.5% for the module without insulation material, and by using insulation material, the temperature of the solar cell element became higher and the conversion efficiency was 5.3%. It was found that the efficiency was low.

測定後、2個のモジュールには各々の電流・電圧曲線の
最適負荷に相当する抵抗を接続した状態で、約100日
問屋外に放置した。その後、晴天日の正午で上述の測定
時とほぼ同じ日射量密度、気温の日を選び、上述の手順
で各々のモジュールの実効変換効率を測定した。
After the measurements, the two modules were left outdoors for about 100 days with a resistor connected to them corresponding to the optimum load for each current/voltage curve. Thereafter, we selected a day at noon on a clear day with almost the same solar radiation density and temperature as the measurement described above, and measured the effective conversion efficiency of each module using the procedure described above.

ここで光劣化の度合を、約100日後と最初の実効変換
効率の差を最初の実効変換効率で除したものと定義する
Here, the degree of photodeterioration is defined as the difference between the effective conversion efficiency after about 100 days and the initial effective conversion efficiency divided by the initial effective conversion efficiency.

その結果、光劣化の度合は、断熱材を用いない方が15
%、一方、用いた方は12%であり、割合にして劣化に
対する耐久性は、20%向上し、当初の目的が達成され
ていることを確認できた。
As a result, the degree of photodegradation was 15% higher when no insulation material was used.
%, on the other hand, the one used was 12%, and the durability against deterioration was improved by 20%, confirming that the original purpose was achieved.

(実施例2) 本実施例が実施例1と異なる点は、まず断熱材が太陽電
池素子とともにラミネートされず、その代わりに、ラミ
ネートされた太陽電池素子の受光面の裏面側に閉空間を
設け、そこに、満たされた空気を断熱材として用いるこ
とである。この方法の利点は、フレームに蓋を取り付け
るのみで効果が期待できるという構造の簡易性にある。
(Example 2) The difference between this example and Example 1 is that the heat insulating material was not laminated with the solar cell element, but instead, a closed space was provided on the back side of the light-receiving surface of the laminated solar cell element. , where the filled air is used as insulation. The advantage of this method lies in the simple structure in which the effect can be expected by simply attaching the lid to the frame.

第2図は、この様な本実施例の特徴を表わす構造概念図
であり、図において、1は非晶質シリコン太陽電池素子
、3は接着剤層、4は表面保護材、5は裏面保護材、6
はフレーム材、7は接着剤、8はフレーム蓋、12は断
熱材としての空気である。但しこの図においても、配線
及び出力端子は図示を省略した。また用いた非晶質シリ
コン太陽電池素子1、接着剤層3、表面保護材4、裏面
保護林5.フレーム材6、接着剤7は実施例1と同材質
、同寸法のものである。
FIG. 2 is a structural conceptual diagram showing the characteristics of this embodiment. In the figure, 1 is an amorphous silicon solar cell element, 3 is an adhesive layer, 4 is a surface protection material, and 5 is a back surface protection material. Material, 6
is a frame material, 7 is an adhesive, 8 is a frame lid, and 12 is air as a heat insulating material. However, in this figure as well, wiring and output terminals are not shown. Also used were amorphous silicon solar cell element 1, adhesive layer 3, surface protection material 4, back surface protection layer 5. The frame material 6 and the adhesive 7 are made of the same materials and have the same dimensions as those in Example 1.

上記の材料を下から裏面保護材5、接着剤層3、非晶質
シリコン太陽電池素子1、接着剤層3、表面保護林4の
順に積層し、真空ラミネーターを用いて100℃でラミ
ネートし、フレーム材6に接着剤7で固定した。
The above materials are laminated in this order from the bottom: back protection material 5, adhesive layer 3, amorphous silicon solar cell element 1, adhesive layer 3, surface protection layer 4, and are laminated at 100°C using a vacuum laminator. It was fixed to the frame material 6 with adhesive 7.

これを2個作製し、一方のフレーム材6には、受光面の
反対側に閉空間を形成するようにフレーム蓋8を不図示
の接着剤によって固定した。もう一方のモジュールのフ
レーム材6にはフレーム蓋8は取り付けなかった。
Two of these were produced, and a frame lid 8 was fixed to one of the frame members 6 with an adhesive (not shown) so as to form a closed space on the opposite side of the light receiving surface. The frame lid 8 was not attached to the frame material 6 of the other module.

但し実施例1と同様に、上記のモジュール化に用いた上
記太陽電池素子の個々の単位の特性、特に実効変換効率
は、はぼ同等のものを選択した。
However, as in Example 1, the characteristics, particularly the effective conversion efficiency, of the individual units of the solar cell elements used for the modularization were selected to be approximately the same.

以上に示した2個のモジュールを用いて、屋外で光劣化
の度合を比較する実験を行なった。手順は、実施例1と
同じとし、上記のモジュールを設置する架台も同じもの
を用いた。
Using the two modules shown above, an experiment was conducted outdoors to compare the degree of photodeterioration. The procedure was the same as in Example 1, and the same pedestal for installing the module was used.

その結果、光劣化の度合は、フレーム蓋8を用いない方
が15%、用いた方が14%であり、劣化に対する耐久
性は1割合にして7%向上し、本実施例においても当初
の目的が達成されていることを確認できた。
As a result, the degree of photodeterioration was 15% when the frame lid 8 was not used and 14% when it was used, and the durability against deterioration was improved by 7% as a percentage. It was confirmed that the objective was achieved.

(実施例3) 本実施例では、前述のラミネート加工の際には断熱材は
挿入せず、受光面の裏面側に閉空間な設けるという点は
同じであるが、上記の閉空間に断熱材を充満させる点が
異なる。
(Example 3) In this example, a heat insulating material is not inserted during the lamination process described above, and a closed space is provided on the back side of the light receiving surface, but a heat insulating material is provided in the closed space. The difference is that it is filled with

本実施例においても、フレーム蓋の取り付けと、断熱材
の充満のみで効果が期待できるという構造の簡易性が利
点である。
This embodiment also has the advantage of a simple structure in that the effect can be expected only by attaching a frame lid and filling with a heat insulating material.

第3図は、本実施例の特徴を表わす構造概念図であり、
図において、実施例2と同じ構成部分には同じ番号を付
しである。また22は、閉空間に充満した断熱材である
FIG. 3 is a structural conceptual diagram showing the features of this embodiment.
In the figure, the same components as in Example 2 are given the same numbers. Further, 22 is a heat insulating material that fills the closed space.

ただしこの図においても配線及び出力端子は、図示を省
略した。
However, wiring and output terminals are not shown in this figure as well.

断熱材22としては、実施例1で用いたシート状のもの
ではなく、綿状のガラス繊維を用いた。
As the heat insulating material 22, instead of the sheet-like material used in Example 1, cotton-like glass fiber was used.

上記の材料を、実施例2に示したと同様の手順でラミネ
ートし、フレーム材6に接着剤7で固定した。
The above materials were laminated in the same manner as shown in Example 2 and fixed to the frame material 6 with adhesive 7.

これを2個作製し、一方のモジュールのフレーム材で囲
まれた部分に上記の断熱材22を入れ、フレーム蓋8を
フレーム6に、不図示の接着剤で固定した。もう一方の
モジュールには断熱材22とフレーム蓋8は取り付けな
かった。
Two modules were manufactured, the above-mentioned heat insulating material 22 was placed in the area surrounded by the frame material of one module, and the frame lid 8 was fixed to the frame 6 with an adhesive (not shown). The insulation material 22 and frame lid 8 were not attached to the other module.

但し実施例1、実施例2と同様に上記のモジュール化に
用いた上記太陽電池素子の個々の単位の特性、特に実効
変換効率は、はぼ同等のものを選択した。
However, as in Examples 1 and 2, the characteristics, particularly the effective conversion efficiency, of the individual units of the solar cell elements used for the above modularization were selected to be approximately the same.

以上に示した2個のモジュールを用いて、屋外で光劣化
の度合を比較する実験を行なった。手順は、実施例1、
実施例2と同じとし、上記のモジュールを設置する架台
も同じものを用いた。
Using the two modules shown above, an experiment was conducted outdoors to compare the degree of photodeterioration. The procedure is as in Example 1,
The same structure as in Example 2 was used, and the same mount on which the module was installed was used.

その結果、光劣化の度合は、断熱材22とフレーム蓋8
を用いない方が15%、断熱材22とフレーム蓋8を用
いた方が12.5%であり、劣化に対する耐久性は、割
合にして17%向上し、本実施例においても当初の目的
が達成されていることを確認できた。
As a result, the degree of photodeterioration is the same as that of the heat insulating material 22 and the frame lid 8.
It is 15% better without using the heat insulating material 22 and 12.5% better with the frame lid 8.The durability against deterioration is improved by 17% in proportion, and the original purpose of this example is also achieved. I can confirm that this has been achieved.

上述した実施例では、断熱材として、ガラス繊維や空気
を用いたが、本発明はこれに限るわけではない。
In the embodiments described above, glass fiber or air was used as the heat insulating material, but the present invention is not limited to this.

[発明の効果] 以上説明したように、非晶質シリコン太陽電池モジュー
ルにおいて、非晶質シリコン太陽電池素子の受光面の裏
面側に断熱手段を具備することにより、上記太陽電池素
子の放熱を減少させ、太陽光受光時の上記太陽電池素子
の温度の上昇を促進するとともに、気温下降の影響を減
少させることによって、アニーリング効果を有効に利用
することができる。そのため、このアニーリング効果に
より、結果として、長期間使用後、上記太陽電池素子の
光劣化を減少させる効果が得られる。
[Effects of the Invention] As explained above, in an amorphous silicon solar cell module, by providing a heat insulating means on the back side of the light-receiving surface of the amorphous silicon solar cell element, heat dissipation from the solar cell element can be reduced. The annealing effect can be effectively utilized by increasing the temperature of the solar cell element when receiving sunlight and reducing the influence of a decrease in temperature. Therefore, this annealing effect results in the effect of reducing photodeterioration of the solar cell element after long-term use.

2・・・シート状断熱材 4・・・表面保護材 6・・・フレーム材 8・・・フレーム蓋 22・・・綿状断熱材2...Sheet-like insulation material 4...Surface protection material 6...Frame material 8...Frame lid 22... cotton-like insulation material

Claims (1)

【特許請求の範囲】[Claims] 非晶質シリコン太陽電池モジュールにおいて、非晶質シ
リコン太陽電池素子の受光面の裏面側に断熱手段を具備
することを特徴とする少劣化太陽電池モジュール。
1. A low-deterioration solar cell module characterized in that the amorphous silicon solar cell module is provided with a heat insulating means on the back side of the light-receiving surface of the amorphous silicon solar cell element.
JP2182758A 1990-07-12 1990-07-12 Deterioration reduced solar battery module Pending JPH0471276A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2182758A JPH0471276A (en) 1990-07-12 1990-07-12 Deterioration reduced solar battery module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2182758A JPH0471276A (en) 1990-07-12 1990-07-12 Deterioration reduced solar battery module

Publications (1)

Publication Number Publication Date
JPH0471276A true JPH0471276A (en) 1992-03-05

Family

ID=16123920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2182758A Pending JPH0471276A (en) 1990-07-12 1990-07-12 Deterioration reduced solar battery module

Country Status (1)

Country Link
JP (1) JPH0471276A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5578142A (en) * 1994-07-07 1996-11-26 Sunstar Engineering Inc. Solar-cell module and process for producing the same
WO1997007549A1 (en) * 1995-08-14 1997-02-27 Sunstar Giken Kabushiki Kaisha Solar cell module and its manufacturing method
US6525264B2 (en) 2000-07-21 2003-02-25 Sharp Kabushiki Kaisha Thin-film solar cell module
US20120055542A1 (en) * 2010-09-03 2012-03-08 Tatung Company Photovoltaic cell
CN102760782A (en) * 2012-06-05 2012-10-31 丁锋 Sectional material for photovoltaic module frame

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5578142A (en) * 1994-07-07 1996-11-26 Sunstar Engineering Inc. Solar-cell module and process for producing the same
WO1997007549A1 (en) * 1995-08-14 1997-02-27 Sunstar Giken Kabushiki Kaisha Solar cell module and its manufacturing method
US6172295B1 (en) 1995-08-14 2001-01-09 Sunster Giken Kabushiki Kaisha Solar battery module and method for assembling the same
US6525264B2 (en) 2000-07-21 2003-02-25 Sharp Kabushiki Kaisha Thin-film solar cell module
DE10134901B4 (en) * 2000-07-21 2010-11-11 Sharp K.K. Transmissive thin-film solar cell module with a transparent substrate, a translucent section and a translucent sealing layer
US20120055542A1 (en) * 2010-09-03 2012-03-08 Tatung Company Photovoltaic cell
CN102760782A (en) * 2012-06-05 2012-10-31 丁锋 Sectional material for photovoltaic module frame

Similar Documents

Publication Publication Date Title
EP0755080B1 (en) A process of producing a semiconductor device
US4625070A (en) Laminated thin film solar module
KR101215694B1 (en) Solar Cell Module And Manufacturing Method Thereof
US6175075B1 (en) Solar cell module excelling in reliability
US8859880B2 (en) Method and structure for tiling industrial thin-film solar devices
Yamada et al. Maximization of conversion efficiency based on global normal irradiance using hybrid concentrator photovoltaic architecture
JPH0262953B2 (en)
WO2007052671A1 (en) Cis-type thin-film solar battery module and process for producing the same
CN102460722A (en) Photoelectric conversion device and method for manufacturing the same
US8766088B2 (en) Dopant-containing contact material
EP2700102A1 (en) Solar cell module structure and fabrication method for preventing polarization
CN106133920B (en) Solar module with aligned packages
JP2008218578A (en) Solar cell unit and solar cell module
JP2008060374A (en) Solar-battery module
JPH0471276A (en) Deterioration reduced solar battery module
JP2007201291A (en) Solar battery module and method of reproducing same
CN209544369U (en) A kind of solar double-glass assemblies
KR101130966B1 (en) Solar battery module
CN215342625U (en) Photovoltaic module
WO2014050193A1 (en) Photoelectric conversion module
JP2001127320A (en) Solar cell module
WO2020158023A1 (en) Solar battery cell, method for manufacturing same, and solar battery module
JPS59198776A (en) Solar battery module
JP2001230437A (en) Solar battery module
KR20140135950A (en) Application of fluorine doped tin (iv) oxide sno2:f for making a heating layer on a photovoltaic panel, and the photovoltaic panel